JPH0664938B2 - Flexible and vibration-resistant flexible conductor - Google Patents

Flexible and vibration-resistant flexible conductor

Info

Publication number
JPH0664938B2
JPH0664938B2 JP63248885A JP24888588A JPH0664938B2 JP H0664938 B2 JPH0664938 B2 JP H0664938B2 JP 63248885 A JP63248885 A JP 63248885A JP 24888588 A JP24888588 A JP 24888588A JP H0664938 B2 JPH0664938 B2 JP H0664938B2
Authority
JP
Japan
Prior art keywords
wire
twisted
child
layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63248885A
Other languages
Japanese (ja)
Other versions
JPH0298009A (en
Inventor
佐次郎 清水
兼造 井手
敬三 浅尾
徹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP63248885A priority Critical patent/JPH0664938B2/en
Publication of JPH0298009A publication Critical patent/JPH0298009A/en
Publication of JPH0664938B2 publication Critical patent/JPH0664938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電流容量が大きくかつ耐屈曲性、耐振動性に
優れる可撓導体に関する。
Description: TECHNICAL FIELD The present invention relates to a flexible conductor having a large current capacity and excellent bending resistance and vibration resistance.

[従来の技術と解決しようとする課題] 例えば、工業用ロボットを利用したスポット溶接機の電
力供給用リード線は、溶接の度に極めて大きい電流が流
され、併せて衝撃的(電気力学的)振動が生ずる。また
ロボットが作動する毎にリード線は振り廻され、繰返し
屈曲される。したがってこのように使用されるリード線
は可撓導体である。
[Problems to be Solved by Conventional Techniques] For example, a lead wire for power supply of a spot welding machine using an industrial robot is shocked (electrodynamically) due to an extremely large current being applied each time welding is performed. Vibration occurs. Also, the lead wire is swung around each time the robot is operated and repeatedly bent. The lead wire thus used is thus a flexible conductor.

この可撓導体は、通常、軟銅線よりなる素線を集合撚り
し、この集合撚線を同心撚りして複合撚線(子撚)と
し、この複合撚線をさらに同心撚りして複複合撚線とし
たものからなり、例えば第4図のごとき断面構造をなし
ている。
This flexible conductor is usually made by collectively twisting strands of annealed copper wire, concentrically twisting this collective twisted wire into a composite twisted wire (child twist), and further twisting this composite twisted wire into a multiple composite twisted wire. It is composed of lines, and has a sectional structure as shown in FIG. 4, for example.

上記可撓導体の使用状況を観察すると、繰返し屈曲や衝
撃を受けている間に複複合撚線の素線は互いに接する部
分で擦られて摩耗断線が生じる。一部の素線が断線する
と、導体の抵抗が大きくなり、その部分が過熱して更に
断線し易くなって悪循環を繰返し、断線が進行して行
く。
When the usage of the flexible conductor is observed, the strands of the composite multi-strand wire are rubbed at the portions in contact with each other during repeated bending and impact, and wear breakage occurs. When a part of the wire breaks, the resistance of the conductor increases, the part is overheated, and the wire breaks more easily, which repeats a vicious circle and the wire breaks.

この断線は、複複合撚りされた最外層の子撚(2c′)とそ
の下層の子撚(2b′)とが接する部分で最も顕著に現わ
れ、特に最外層の子撚(2c′)よりもその下層の子撚(2
b′)における素線断線が顕著である。各子撚(2a′)(2
b′)(2c′)の素線に純軟銅線を用いた第4図の複複合撚
線の耐用テストによると、最外層の子撚(2c′)と接する
下層の子撚(2b′)の中でも外層部分の集合撚線(1d′)の
素線が断線が特に顕著であった。
This disconnection is most noticeable at the portion where the outermost layer twisted (2c ′) and the lower layer twisted (2b ′), which are double-composite twists, contact each other, and more particularly than the outermost layer twisted (2c ′). The child twist (2
The wire breakage in b ') is remarkable. Each child twist (2a ') (2
b ′) (2c ′) strands are made of pure annealed copper wire. According to the durability test of the compound composite stranded wire shown in FIG. 4, the outermost layer twisted layer (2c ′) and the lower layer twisted layer (2b ′) Among them, the breakage of the strands of the assembled stranded wire (1d ′) in the outer layer part was particularly remarkable.

したがって、この種の可撓導体としては、その使用上、
加熱下での耐屈曲性および耐振動性を向上させて前記の
素線断線を防止することが望まれる。
Therefore, as a flexible conductor of this type,
It is desired to improve bending resistance and vibration resistance under heating to prevent the wire breakage.

そのため、上記の観察結果等から、最外層の子撚とその
下層の子撚の撚方向を同一にして互いに接する素線がク
ロスしないようにしたものが提案(実願昭63−879
06号)されたが、この場合素線がクロスする従来品に
比して断線が生じ難くなるものの、充分に満足できる効
果は得られないものであった。
Therefore, from the above observation results, it is proposed that the outermost layer and the lower layer are twisted in the same twist direction so that the wires in contact with each other do not cross each other (Japanese Utility Model Application No. 63-879).
No. 06), but in this case, the wire breakage is less likely to occur as compared with the conventional product in which the strands cross, but a sufficiently satisfactory effect cannot be obtained.

そこで本発明者等は、上記の摩耗断線の防止について、
さらに種々の研究、検討を重ねている過程において、同
一金属線同士、特に純軟銅線同士が接している場合より
も、異種金属線同士が接してい場合のほうが、摩擦係数
が小さくて素線の擦れ等による摩耗断線が著しく少なく
なることを知見するに至った。
Therefore, the inventors of the present invention, for the prevention of the above wear disconnection,
Furthermore, in the process of conducting various studies and studies, the friction coefficient is smaller when the dissimilar metal wires are in contact with each other than when the same metal wires are in contact with each other, especially when the pure annealed copper wires are in contact with each other. It has been found that wear disconnection due to rubbing or the like is significantly reduced.

これに基づいて、純銅素線を用いた子撚と、別記銅合金
の素線を用いた子撚とを接触させるようにして、屈曲、
振動を与えて摩耗テストを行なったところ、耐摩耗性が
大きく向上することが判った。
Based on this, the twisting using a pure copper wire and the twisting using a wire of a copper alloy as described above are brought into contact with each other, and bending,
When a wear test was conducted by applying vibration, it was found that the wear resistance was greatly improved.

[課題を解決するための手段] 本発明は、上記知見に基いてなしたものであって、複複
合撚線における最も断線が生じ易い第1層の子撚、つま
り最外層の子撚と接する下層の子撚の素線に、導電性が
良くてしかも耐熱性および耐屈曲性等の機械的特性に優
れる下記銅合金の軟化線を用いることとし、これにより
導電性を損うことなく耐屈曲、耐振動性を向上させ、素
線の摩耗断線防止にきわめて効果のある可撓導体を提供
するものである。
[Means for Solving the Problems] The present invention has been made based on the above findings, and is in contact with the first-layer child twist, that is, the outer-most child twist, in which the disconnection is most likely to occur in the multiple composite twisted wire. For the lower strand of the twisted strand, we will use a softened wire of the following copper alloy that has good electrical properties and excellent mechanical properties such as heat resistance and bending resistance, so that it can be bent without sacrificing conductivity. The present invention provides a flexible conductor which has improved vibration resistance and is extremely effective in preventing abrasion and breakage of the wire.

すなわち、本発明の第1は、特に集合撚線を同心撚りし
た複合撚線を子撚とし、この子撚を更に同心撚りして複
複合撚線とした可撓導体において、その最外層を構成す
る子撚の素線を純軟銅線とし、最外層の子撚と接する下
層の子撚の素線に、Fe、MgおよびPを含有し、その
含有量が Fe:0.02〜3重量% Mg:0.02〜3重量% P :Fe含量に対して25〜80重量%でありかつMg含
量に対して70〜90重量% で、残部が銅からなる銅合金の軟化線を用いて構成した
ものである。
That is, the first aspect of the present invention is, in particular, in a flexible conductor in which a composite twisted wire obtained by concentrically twisting a collective twisted wire is used as a child twist, and this child twist is further concentrically twisted to form a double composite twisted wire, and the outermost layer thereof is formed. The element wire of the child twist is a pure annealed copper wire, and Fe, Mg and P are contained in the element wire of the child twist of the lower layer in contact with the child twist of the outermost layer, and the content is Fe: 0.02 to 3% by weight Mg: 0.02 to 3% by weight P: 25 to 80% by weight with respect to the Fe content and 70 to 90% by weight with respect to the Mg content, and is composed of a softening wire of a copper alloy with the balance being copper. .

また本発明の第2は、最外層の子撚と接する下層の子撚
の中でも外層部分の集合撚線の素線断線が顕著であるこ
と、また前記銅合金のコスト等を考慮してなしたもので
あって、前記同様の複複合撚線による可撓導体におい
て、その最外層を構成する子撚の素線を純軟銅線とし、
最外層の子撚と接する下層の子撚の外層部分の集合撚線
の素線を上記した銅合金の軟化線とし、他の集合撚線の
素線を純軟銅線としたことを特徴とするものである。
A second aspect of the present invention was made in consideration of the fact that the strand break of the aggregated twisted wire in the outer layer portion is remarkable among the child twists of the lower layer in contact with the child twist of the outermost layer, and the cost of the copper alloy and the like. In the flexible conductor by the same complex composite stranded wire as described above, the strand of the child twist forming the outermost layer is a pure annealed copper wire,
It is characterized in that the strands of the gathered stranded wire in the outer layer portion of the lower twisted child layer that is in contact with the outermost twisted strand are softened wires of the above copper alloy, and the strands of other gathered twisted wires are pure soft copper wires. It is a thing.

上記の発明で用いる銅合金において、Fe含量を0.02〜
3重量%としたのは、0.023重量%未満では繰返し曲げ
強度、引張り強度および耐熱性等の効果が少なくなり、
他方3重量%を越えると導電性(熱伝導性)の低下が大
きくなるからである。またMg含量を0.02〜3重量%と
したのは、0.02重量%未満ではやはり繰返し曲げ強度、
引張り強度および耐熱性等の効果が少なくなり、他方、
3重量%を越えると導電率が低下し、鋳造性も低下する
からである。Pの含有量は、存在するFe含量に対して
25〜80重量%添加することが微細な金属間化合物の形成
に効果的であり、またMg含量に対しては70〜90重量%
が同じく効果的である。FeおよびMgに対して前記上
限量を越えてのPの添加は未反応部分のPが残って導電
性をかえって失う。
In the copper alloy used in the above invention, the Fe content is 0.02 to
3% by weight means that if it is less than 0.023% by weight, the effects of repeated bending strength, tensile strength and heat resistance will decrease.
On the other hand, if it exceeds 3% by weight, the decrease in conductivity (heat conductivity) becomes large. The Mg content of 0.02 to 3% by weight means that the bending strength is less than 0.02% by weight.
Effects such as tensile strength and heat resistance are reduced, while
This is because if it exceeds 3% by weight, the conductivity is lowered and the castability is also lowered. P content is relative to the Fe content present
Addition of 25-80% by weight is effective for forming fine intermetallic compounds, and 70-90% by weight for Mg content.
Is also effective. When P is added to Fe and Mg in excess of the above upper limit, unreacted P remains and conductivity is lost.

前記の銅合金は、本出願人等が提案しているる特願昭5
8−198357号に開示されたものであって、同号明
細書に記載されているように導電性および熱伝導性が良
くて、しかも耐熱性および繰返し屈曲や引張り強度等の
機械的特性に優れている。
The above-mentioned copper alloy is disclosed in Japanese Patent Application No.
No. 8-198357, which has good electrical conductivity and thermal conductivity as described in the specification, and has excellent heat resistance and mechanical properties such as repeated bending and tensile strength. ing.

[作用] 上記の本発明の第1の可撓導体によれば、複複合撚線の
最外層の子撚の素線を純軟銅線とし、これと接する下層
の子撚の素線を上述した銅合金としたことにより、素線
の摩耗断線が顕著な最外層の子撚とその下層の子撚との
接触部分においては異種金属線同士の接触となり、その
ため同一の金属線同士の場合よりも摩擦係数が小さくな
って、耐摩耗性が大幅に向上し、摩耗断線がきわめて生
じ難いものである。しかしてこれが、断線の生じ易い下
層(第1層)の子撚の素線に、導電性が良くてかつ耐熱
性および繰返し屈曲や引張り強度等の機械的特性に優れ
る銅合金の軟化線を用いたことと相俟って、素線の摩耗
断線防止の効果を高め、断線発生率を大幅に減少でき
る。
[Operation] According to the above-mentioned first flexible conductor of the present invention, the outermost layer of the child-twisted element wire of the composite composite stranded wire is a pure annealed copper wire, and the lower-layer child-twisted element wire in contact with this is described above. By using a copper alloy, dissimilar metal wires are in contact with each other in the contact portion between the outer twist of the outermost layer and the lower twist of the outer layer in which the wear breakage of the strand is remarkable, and therefore, compared with the case of the same metal wire. The coefficient of friction is reduced, the wear resistance is greatly improved, and wear disconnection is extremely unlikely to occur. However, this is a soft wire made of copper alloy that has good electrical conductivity and excellent heat resistance and mechanical properties such as repeated bending and tensile strength for the lower-layer (first layer) twisted strands that are easily broken. Combined with this, the effect of preventing wire wear and wire breakage can be enhanced, and the wire breakage occurrence rate can be greatly reduced.

また上記の第2の発明によるときは、最外層の子撚と接
する下層の子撚のうち、最も摩耗断線の生じ易い外層部
分の集合撚線の素線を前記銅合金の軟化線とし、他の集
合撚線の素線を純軟銅線としているので、この子撚と最
外層の子撚との接触部分が異種金属線同士の接触とな
り、前記と同様にこの部分での摩擦断線が生じ難くなる
ことに加え、前記外層部分の集合撚線と中心部の集合撚
線との接触部分でも異種金属線同士の接触となって、こ
の接触部分での摩耗および断線も生じ難くなる。しかも
前記外層部分以外の集合撚線の素線を純軟銅線としたこ
とで、可撓導体全体としての可撓性も問題がない。
Further, according to the second aspect of the invention, among the child twists of the lower layer in contact with the child twists of the outermost layer, the strands of the gathered twisted wires in the outer layer portion that are most likely to cause abrasion breakage are the softened wires of the copper alloy, and Since the strands of the assembled stranded wire of are made of pure annealed copper wire, the contact portion between this child twist and the outermost child twist becomes a contact between different metal wires, and like the above, frictional disconnection is unlikely to occur in this part. In addition to the above, dissimilar metal wires also come into contact with each other at the contact portion between the gathered twisted wire in the outer layer portion and the gathered twisted wire in the central portion, and abrasion and disconnection at this contact portion hardly occur. Moreover, since the strands of the assembled stranded wire other than the outer layer portion are pure annealed copper wires, there is no problem in the flexibility of the flexible conductor as a whole.

[実施例] 次に本考案の1実施例を図面に基き説明する。[Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は第1の本発明に係る複複合撚線よりなる可撓導
体の断面構造を示している。図において、(1)は直径
0.26mmの素線26本を集合撚りした集合撚線、(2)
は前記集合撚線(1)7本を同心撚りした集合撚線であ
る。複複合撚りの可撓導体(3)は、1本の複合撚線(2)を
中心層の子撚(2a)とし、その外側の第1層の子撚(2b)と
して6本の複合撚線(2)を、さらにその外側の第2層の
子撚(2c)として12本の複合撚線(2)をそれぞれ配して
同心撚りしてなる。
FIG. 1 shows a cross-sectional structure of a flexible conductor made of a complex composite stranded wire according to the first aspect of the present invention. In the figure, (1) is a set stranded wire in which 26 strands having a diameter of 0.26 mm are set and stranded, (2)
Is a collective twisted wire obtained by concentrically twisting the above seven twisted wires (1). The flexible conductor (3) of the multiple composite twists has one composite twisted wire (2) as the child twist (2a) of the center layer, and six compound twists as the child twist (2b) of the outer first layer. The wire (2) is further concentrically twisted by arranging twelve composite twisted wires (2) as the second layer child twist (2c) on the outer side thereof.

前記第1層の子撚(2c)と最外層の子撚(2b)とは従来同様
に互いに反対方向に同心撚りする場合のほか、両層の子
撚(2c)(2b)を共に同じ方向に同心撚りする場合がある。
後者の場合、子撚(2c)(2b)の素線同士が撚り方向に沿っ
て接触することとなり、従来の素線が互いにクロスして
接触する可撓導体のように局部的に強く接触せず、その
ため後述の異種金属線同士の接触による摩耗断線防止の
効果が一層大きくなる。
The first layer child twist (2c) and the outermost layer child twist (2b) are concentrically twisted in opposite directions as in the conventional case, and both layer child twists (2c) and (2b) are in the same direction. There may be concentric twists.
In the latter case, the strands of the child strands (2c) and (2b) come into contact with each other along the twisting direction, and the conventional strands are strongly contacted locally like flexible conductors that cross each other and come into contact. Therefore, the effect of preventing wear and disconnection due to contact between different types of metal wires, which will be described later, is further enhanced.

そして、前記構造の可撓導体において、最外層の子撚(2
c)を構成する素線に純軟銅線を用い、この子撚(2c)と接
する下層の子撚(2b)を構成する素線に、Fe、Mgおよ
びPをそれぞれ上述した配合比率で含有する銅合金、す
なわち特願昭58−198357号の明細書に記載の軟
化線を用いて構成している。そのため、最外層とその下
層の子撚(2c)(2b)同士の接触部分が異種金属線同士の接
触となり、この部分の摩擦係数が小さくて摩耗断線が生
じ難いものとなっている。なお、図面においては、銅合
金の軟化線を用いた部分にのみハッチングを入れて示
す。
Then, in the flexible conductor having the above structure, the outermost layer child twist (2
Pure annealed copper wire is used for the element wire constituting c), and the element wire constituting the lower layer child twist (2b) in contact with this child twist (2c) contains Fe, Mg and P in the above-mentioned compounding ratios, respectively. A copper alloy, that is, a softening wire described in the specification of Japanese Patent Application No. 58-198357 is used. Therefore, the contact portion between the outermost layer and the child twist (2c) and (2b) of the lower layer becomes contact between different metal wires, and the friction coefficient of this portion is small, so that abrasion disconnection hardly occurs. In the drawings, hatching is shown only in the portion using the softening line of the copper alloy.

中心層の子撚(2a)を構成する素線を、第1層の子撚(2b)
と同様に前記銅合金とすることもできるが、耐用試験の
結果、中心層の子撚(2a)の素線に純軟銅線を用いるほう
が、中心層と第1層の子撚(2a)(2b)の接触部分が異種金
属線同士の接触となって、かえって素線の摩耗断線が少
なくなり、かつ可撓性が低下することもなく、また軟銅
線に比して高価な銅合金の使用量が少なくなるため、実
施上より好適である。
The strands that compose the center layer child twist (2a) are connected to the first layer child twist (2b)
Although the copper alloy can be used in the same manner as the above, as a result of a durability test, it is better to use pure annealed copper wire for the strands of the center layer of the child twist (2a) when the center layer and the first layer of the child twist (2a) ( The contact part of 2b) is a contact between dissimilar metal wires, which does not cause abrasion and breakage of the wires, and does not reduce flexibility, and the use of an expensive copper alloy compared to annealed copper wire Since the amount is small, it is preferable in practice.

第2図は本発明の第2の可撓導体の断面構造を示してお
り、上記と同様の複複合撚線による可撓導体において、
最外層の子撚(2c)と接する下層(第1層)の複合撚線
(2)による子撚(2b)のうち、摩耗断線の生じ易い外層部
分の集合撚線(1d)の素線を上記した銅合金の軟化線と
し、これ以外の集合撚線、図の場合中心部分の集合撚線
(1e)の素線を最外層の子撚(2c)と同様の純軟銅線として
いる。図面においては、銅合金の軟化線を用いた集合撚
線の部分にのみハッチングを入れて示している。
FIG. 2 shows a sectional structure of a second flexible conductor of the present invention.
Lower layer (first layer) composite stranded wire in contact with the outermost child strand (2c)
Of the twisted wires (2b) according to (2), the strands of the assembled stranded wire (1d) in the outer layer portion where wear breakage is likely to occur are the above-mentioned copper alloy softened wires, and other assembled stranded wires, mainly in the case of the figure Part stranded wire
The element wire of (1e) is a pure annealed copper wire similar to the outermost layer of the twisted wire (2c). In the drawings, hatching is shown only in the portion of the gathered stranded wire using the softened wire of the copper alloy.

この場合も、最外層の子撚(2c)とその下層の子撚(2b)と
の接触部分においては異種金属線同士の接触となるため
に、この部分での摩耗断線が生じ難くなっており、また
銅合金の使用量も少ない。
In this case as well, since the dissimilar metal wires come into contact with each other at the contact portion between the outermost layer twist (2c) and the lower layer twist (2b), abrasion disconnection is less likely to occur at this portion. Also, the amount of copper alloy used is small.

中心層の子撚(2a)については、上記と同様に前記銅合金
の軟化線とする場合と、純軟銅線にする場合とがある。
Regarding the child twist (2a) of the central layer, there are cases where the softening wire of the copper alloy is used and cases where it is pure soft copper wire as in the above.

上記の可撓導体(3)は、従来と同様に、例えば第3図に
示すように両端部に接続端子(4)が固着されるととも
に、両端子間に絶縁外筒(5)が被せられて冷却水を流通
可能に水密に保持され、溶接ロボットの電力供給用のリ
ード線等に使用される。
As in the conventional case, the flexible conductor (3) has the connection terminals (4) fixed to both ends as shown in FIG. 3, and the insulating outer cylinder (5) is covered between the terminals. The cooling water is kept watertight so that it can be circulated, and is used as a lead wire for supplying power to the welding robot.

(効果の確認の試験) 上記第1図に示す実施例の可撓導体、および第2図に示
す実施例の可撓導体と、第4図に示す可撓導体(素線全
てが純軟銅線よりなるもの)について、それぞれ最外層
(第2層)の子撚とその下層(第1層)の子撚との撚り
方向を交叉方向にして同心撚りしたもの(A)と、同じ
方向にして同心撚りしたもの(B)とについて、それぞ
れ同じ条件で、溶接ロボットに試用し、スポット溶接の
耐用回数の比較を行ない、摩耗断線状況を観察したとこ
ろ、次のような結果となった。
(Test of Confirmation of Effect) The flexible conductor of the embodiment shown in FIG. 1 and the flexible conductor of the embodiment shown in FIG. 2 and the flexible conductor shown in FIG. 4 (all the wires are pure annealed copper wires). Of the outermost layer (the second layer) and the lower layer (the first layer) of the twisted layers in the same direction as the concentric twisted (A) The concentric twisted product (B) was tested in a welding robot under the same conditions, the durability of the spot welding was compared, and the wear disconnection condition was observed. The results were as follows.

試供品 撚方向 スポット回数 第1図の実施例 A 40〜50万回 同 B 60万回以上 第2図の実施例 A 30〜40万回 同 B 50万回以上 第4図(従来品)A 約10万回 同 (比較例)B 30〜40万回 前記表のように、従来品は約10万スポットで摩耗断線
が生じ、その断線率は接続端子に近い両端部分で25%
〜35%にもなったが、本発明の場合、いずれも従来品
に比して3〜6倍、あるいはそれ以上ものスポット回数
の使用に耐え、しかもその断線率は両端部分でも10%
以下となり、特に最外層とその下層の子撚の撚り方向を
同方向にした場合、摩耗断線が一層生じ難くなった。
Samples Twisting direction Number of spots Example of Figure 1 A 40 to 500,000 times Same as B 600,000 times or more Example of Figure 2 A 300 to 400,000 times Same as B 500,000 times or more Figure 4 (Conventional product) A Approximately 100,000 times (Comparative example) B 300 to 400,000 times As shown in the above table, the conventional product suffers wear disconnection at about 100,000 spots, and the disconnection rate is 25% at both ends near the connection terminal.
However, in the case of the present invention, each of them can withstand the use of the spot number of 3 to 6 times or more as compared with the conventional product, and the disconnection rate is 10% at both ends.
In particular, when the outermost layer and the lower layer are twisted in the same direction, abrasion breakage is more difficult to occur.

[発明の効果] 上記したように、本発明によれば、導電性を損うことな
く耐屈曲、耐振動特性を従来品に比して著しく向上で
き、溶接ロボットの電力供給用のリード線等に使用され
るこの種の可撓導体として、長期に渡って摩耗断線を防
止し得てその耐久性を非常に高めることができる。しか
も最外層と接する下層の子撚の素線にのみ銅合金を用い
るため、比較的高価な銅合金の使用量も少なくて済む。
殊に最外層の子撚と接する下層の子撚のうち、最も摩耗
断線の生じ易い外層部分の集合撚線の素線を銅合金の軟
化線とし、他の集合撚線の素線を純軟銅線とした場合に
は、前記銅合金の使用量がさらに少なく、コスト安価に
製造、提供できる。
[Advantages of the Invention] As described above, according to the present invention, the bending resistance and the vibration resistance can be remarkably improved as compared with the conventional products without impairing the conductivity, and lead wires for power supply of the welding robot, etc. As a flexible conductor of this type used for, it is possible to prevent wear disconnection for a long period of time and to greatly enhance its durability. Moreover, since the copper alloy is used only for the lower twisted strands that are in contact with the outermost layer, the amount of relatively expensive copper alloy used can be small.
In particular, of the lower-layer twists that are in contact with the outer-most twists, the strands of the outer strands that are most susceptible to wear breakage are the strands of copper alloy softening and the strands of the other strands are pure soft copper. In the case of a wire, the amount of the copper alloy used is further smaller, and the wire can be manufactured and provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の可撓導体の実施例を示す断面構造の略
示図、第2図は本発明の他の例を示す断面構造の略示
図、第3図は可撓導体を接続端子に接続した使用状態を
示す平面図、第4図は従来の可撓導体の断面構造の略示
図である。 (1)…集合撚線、(1d)…外層部分の集合撚線、(1e)…中
心部分の集合撚線、(2)…複合撚線、(2a)(2b)(2c)…各
層の子撚、(3)…可撓導体。
FIG. 1 is a schematic view of a sectional structure showing an embodiment of a flexible conductor of the present invention, FIG. 2 is a schematic view of a sectional structure showing another example of the present invention, and FIG. FIG. 4 is a plan view showing a use state in which it is connected to a terminal, and FIG. 4 is a schematic view of a cross-sectional structure of a conventional flexible conductor. (1) ... Assembled stranded wire, (1d) ... Assembled stranded wire in outer layer part, (1e) ... Assembled stranded wire in central part, (2) ... Composite stranded wire, (2a) (2b) (2c) ... Each layer Child twist, (3) ... Flexible conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 徹 大阪府東大阪市岩田町2丁目3番1号 タ ツタ電線株式会社内 (56)参考文献 実開 昭60−164710(JP,U) 実開 昭63−108113(JP,U) 伸銅技術研究会誌Vol.16,1977 165〜176頁 金属便覧622頁 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Matsui 2-3-1 Iwata-cho, Higashi-Osaka City, Osaka Prefecture Tatsuta Electric Wire Co., Ltd. (56) References: 60-164710 Kai 63-108113 (JP, U) Copper Technology Research Journal Vol. 16, 1977 pp. 165-176 Metal Handbook p. 622

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】集合撚線を同心撚りした複合撚線を子撚と
し、この子撚を更に同心撚りして複複合撚線とした可撓
導体において、最外層を構成する子撚の素線を純軟銅線
とし、最外層の子撚と接する下層の子撚の素線を下記
(a)の銅合金の軟化線としたことを特徴とする耐屈曲、
耐振動可撓導体。 (a)Fe、Mg及びPを含有し、その含有量が Fe:0.02〜3重量% Mg:0.02〜3重量% P :Fe含量に対して25〜80重量%であり、かつMg
含量に対して70〜90重量% で、残部が銅からなる銅合金。
1. A flexible conductor comprising a composite stranded wire obtained by concentrically twisting a set stranded wire as a child twist, and further concentrically twisting the child twisted wire into a composite composite stranded wire, which is an outermost layer of a child stranded wire. Is a pure annealed copper wire, and the element wire of the lower layer of the twisted wire that is in contact with the outermost layer of the twisted wire is
(a) Copper alloy softening wire, which is characterized by bending resistance,
Vibration resistant flexible conductor. (a) Fe, Mg and P are contained, and the content is Fe: 0.02 to 3% by weight Mg: 0.02 to 3% by weight P: 25 to 80% by weight based on the Fe content, and Mg
A copper alloy with 70 to 90% by weight of the content and the balance being copper.
【請求項2】集合撚線を同心撚りした複合撚線を子撚と
し、この子撚を更に同心撚りして複複合撚線とした可撓
導体において、最外層を構成する子撚の素線を純軟銅線
とし、最外層の子撚と接する下層の子撚の外層部分の集
合撚線の素線を下記(a)の銅合金の軟化線とし、他の集
合撚線の素線を純軟銅線としたことを特徴とする耐屈
曲、耐振動可撓導体。 (a)Fe、Mg及びPを含有し、その含有量が Fe:0.02〜3重量% Mg:0.02〜3重量% P :Fe含量に対して25〜80重量%であり、かつMg
含量に対して70〜90重量% で、残部が銅からなる銅合金。
2. A flexible conductor comprising a composite twisted wire obtained by concentrically twisting a collective twisted wire as a child twist, and further concentrically twisting the child twisted wire into a composite twisted wire, which is an outermost layer of a child twisted wire. Is a pure annealed copper wire, and the strands of the aggregated stranded wire in the outer layer part of the lower layer of the twisted layer that is in contact with the outermost layer of the twisted strand are the softened wires of the copper alloy in (a) below, and the other strands of the aggregated strand are pure. A flexible conductor resistant to bending and vibration, characterized by using an annealed copper wire. (a) Fe, Mg and P are contained, and the content is Fe: 0.02 to 3% by weight Mg: 0.02 to 3% by weight P: 25 to 80% by weight based on the Fe content, and Mg
A copper alloy with 70 to 90% by weight of the content and the balance being copper.
JP63248885A 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor Expired - Lifetime JPH0664938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248885A JPH0664938B2 (en) 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248885A JPH0664938B2 (en) 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor

Publications (2)

Publication Number Publication Date
JPH0298009A JPH0298009A (en) 1990-04-10
JPH0664938B2 true JPH0664938B2 (en) 1994-08-22

Family

ID=17184889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248885A Expired - Lifetime JPH0664938B2 (en) 1988-09-30 1988-09-30 Flexible and vibration-resistant flexible conductor

Country Status (1)

Country Link
JP (1) JPH0664938B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5875386B2 (en) * 2012-01-25 2016-03-02 太陽ケーブルテック株式会社 Movable cable
JP2018077942A (en) * 2016-11-07 2018-05-17 住友電気工業株式会社 Coated electric wire, electric wire having terminal, copper alloy wire and copper alloy twisted wire

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164710U (en) * 1984-04-12 1985-11-01 株式会社 潤工社 flat cable
JPS6164835A (en) * 1984-09-04 1986-04-03 Nippon Mining Co Ltd Copper alloy having high strength, heat resistance and electric conductivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
伸銅技術研究会誌Vol.16,1977165〜176頁
金属便覧622頁

Also Published As

Publication number Publication date
JPH0298009A (en) 1990-04-10

Similar Documents

Publication Publication Date Title
JPH04138616A (en) Electric wire conductor for harness
US6169252B1 (en) Hollow twisted and drawn cables and method for making the same
JP4170497B2 (en) Wire conductor for harness
JP2709178B2 (en) Wire conductor for harness
JPH0664938B2 (en) Flexible and vibration-resistant flexible conductor
JPH0664940B2 (en) Flexible and vibration-resistant flexible conductor
JPH0664939B2 (en) Flexible and vibration-resistant flexible conductor
JPH0580084B2 (en)
JPH0580085B2 (en)
JPH02148513A (en) Flexible, vibration resistant bendable conductor
JPS6129133Y2 (en)
JPH0580083B2 (en)
JPH02142017A (en) Bending-and vibration-resistant flexible conductor
JPH0298010A (en) Flexure failure-resistant, vibration-proof flexible conductor
RU204344U1 (en) ONBOARD AIRCRAFT ELECTRIC WIRE
JPH02142016A (en) Bending-and vibration-resistant flexible conductor
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
JP2005093300A (en) Electric wire for automobile
JPS61161610A (en) Shield structure for flexible cable
JPS6346984Y2 (en)
JPH02117014A (en) Anti-bending and anti-vibration flexible conductor
JPH02123617A (en) Bending-proof, oscillation proof flexible conductor
JPH02148514A (en) Flexible, vibration resistant bendable conductor
JPH082885Y2 (en) Water cooled cable
JP2001210153A (en) Water-cooled cable