JPH0663725B2 - Piezoelectric sensor - Google Patents

Piezoelectric sensor

Info

Publication number
JPH0663725B2
JPH0663725B2 JP60299350A JP29935085A JPH0663725B2 JP H0663725 B2 JPH0663725 B2 JP H0663725B2 JP 60299350 A JP60299350 A JP 60299350A JP 29935085 A JP29935085 A JP 29935085A JP H0663725 B2 JPH0663725 B2 JP H0663725B2
Authority
JP
Japan
Prior art keywords
piezoelectric
output
piezoelectric thin
thin film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60299350A
Other languages
Japanese (ja)
Other versions
JPS62156503A (en
Inventor
亨 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP60299350A priority Critical patent/JPH0663725B2/en
Publication of JPS62156503A publication Critical patent/JPS62156503A/en
Publication of JPH0663725B2 publication Critical patent/JPH0663725B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温度変化の影響を受けることなく高精度の圧電
変換機能を発揮し得る圧電センサに関する。
The present invention relates to a piezoelectric sensor capable of exhibiting a highly accurate piezoelectric conversion function without being affected by temperature changes.

(従来の技術) ロボツトハンド用触覚センサとしては、従来はマイクロ
スイツチ,導電性ゴム,含炭素スポンジ等による電導体
間の導通,不導通が利用されており、例えば「ロボツト
の触覚,長谷川健介著」(システムと制御,VOL 22,No.
7,PP409〜416,1978)によつても開示されている。
(Prior Art) As a tactile sensor for a robot hand, conduction or non-conduction between electric conductors such as a micro switch, a conductive rubber, and a carbon-containing sponge has been conventionally used. (System and Control, VOL 22, No.
7, PP409-416, 1978).

(発明が解決しようとする問題点) 上述する各センサはワークと接触したかどうかを識別す
る接触々覚であり、これで壊れやすい物を損壊しないで
把持する場合を考えると、指部が物に及ぼしている圧力
を検出し指部の開閉制御を行う必要がある。
(Problems to be Solved by the Invention) Each of the above-mentioned sensors is a contact sensation that identifies whether or not it has contacted a work. Considering a case where a fragile object is gripped without damage, the fingers are It is necessary to detect the pressure exerted on the finger and control the opening and closing of the finger.

このような種類のセンサとしては、従来、歪ゲージが多
く用いられ、これらは指の一部に屈曲変位の大きい弾性
梁を設けて取り付けられるため、感度を上げようとする
と弾性梁を細くしなければならないが、細くすると把持
に際して指部が折れ易くなる。
Conventionally, strain gauges are often used as sensors of this type, and these are attached by mounting elastic beams with large bending displacement on part of the finger, so in order to increase sensitivity, the elastic beams must be thin. Although it has to be done, if it is thin, the fingers are likely to break during gripping.

従つて、ある程度太い弾性梁にする必要があるが、それ
では感度が低下して一長一短である。
Therefore, it is necessary to use a thick elastic beam to some extent, but this has a disadvantage in that the sensitivity is lowered.

また、温度によつて特性の変動が大きいため、その改良
手段としてダミーの歪ゲージを組み合わせてブリツジ回
路を組む必要があるため、検出部が大きい形状となり、
所要スペースが相当大きくなる。
Further, since the characteristics vary greatly depending on the temperature, it is necessary to combine a dummy strain gauge to form a bridge circuit as a means for improving the characteristics, and thus the detection unit has a large shape,
The required space is considerably large.

かかる問題点の解決手段として高分子圧電材料を人工皮
膚の如くロボツトの指先部に貼りつけ、ワークなど物体
を把持することによつて生じる高分子圧電材料の歪みを
これに対応する電圧などの電気信号として捕える方法が
既知である。
As a means for solving such a problem, a piezoelectric polymer material is attached to the fingertip portion of a robot like artificial skin, and distortion of the piezoelectric polymer material caused by gripping an object such as a work is corrected by an electric voltage such as a voltage. A method of capturing as a signal is known.

しかしながら実際にこの高分子圧電材料を使用してみる
と、該材料は圧電性と同時に焦電性、すなわち、温度の
変化に対して電圧を発する性質を有するために雰囲気温
度の変化や温かい物を把持したときなどに電気信号の顕
著な変化が生じて使用に耐え得ないのが実状である。
However, when actually using this polymeric piezoelectric material, the material has piezoelectricity and pyroelectricity at the same time, that is, it has the property of emitting a voltage in response to a change in temperature. The actual situation is that the electric signal cannot be used due to a remarkable change in the electric signal when it is gripped.

かかる問題点に対処して従来の問題点を解消し得る圧電
センサを提供するべく本発明は成されたものであつて、
特に高分子圧電材料を使用して歪ゲージと同じくダミー
ゲージを付設する基本構造を採用することによつて、特
に温度の変化による圧電変換特性の変動を補正せしめ、
もつて温度変動に影響されることなく特性の安定化を十
分に発揮し得るようにすることを目的とする。
The present invention has been made to provide a piezoelectric sensor that can solve the above problems and solve the conventional problems.
In particular, by using a basic structure in which a dummy gauge is attached as well as a strain gauge using a polymeric piezoelectric material, it is possible to correct variations in piezoelectric conversion characteristics due to changes in temperature,
The purpose is to make it possible to sufficiently exhibit the stabilization of the characteristics without being affected by the temperature fluctuation.

(問題点を解決するための手段) しかして本発明は実施例の示す図面によつて明らかな如
く、高分子圧電材料からなる圧電薄膜(2)を、接地極
としての導電膜(3)の両面に密着させ、さらにこの両
圧電薄膜(2,2)の外側面に圧電変換信号を取り出す検
出極としての電導膜(4)を夫々密着すると共に、2枚
の前記圧電薄膜(2,2)を同一方向に分極処理してなる
バイモルフ構造のシートにより面状圧電素子(1)を形
成して、前記検出極としての一方の電導膜(4)の出力
系に、該出力系の出力電圧に対して、両検出極の温度変
化に対する電圧特性から決まる所定の変換係数で変換を
加える補正手段(5)を設けると共に、検出極としての
他方の電動膜(4)の出力と前記補正手段(5)の出力
とを前記面状圧電素子(1)の無変形時における異極性
として相殺的に加算する加算手段(7)を設けた圧電セ
ンサの構成を特徴とする。
(Means for Solving Problems) However, in the present invention, as is apparent from the drawings showing the embodiments, the piezoelectric thin film (2) made of a polymer piezoelectric material is formed into a conductive film (3) as a ground electrode. The two piezoelectric thin films (2, 2) are adhered to both surfaces, and further, the conductive films (4) as detection electrodes for extracting piezoelectric conversion signals are adhered to the outer surfaces of the piezoelectric thin films (2, 2). The sheet-like piezoelectric element (1) is formed by a sheet having a bimorph structure obtained by polarization in the same direction, and is applied to the output system of one conductive film (4) as the detection electrode, and to the output voltage of the output system. On the other hand, a correction means (5) for performing conversion with a predetermined conversion coefficient determined by the voltage characteristics of both detection electrodes with respect to temperature changes is provided, and the output of the other electric membrane (4) as a detection electrode and the correction means (5). ) Output when the planar piezoelectric element (1) is not deformed. It is characterized by the configuration of a piezoelectric sensor provided with an addition means (7) for destructively adding the different polarities.

(作用) 本発明においては温度補正用のダミーゲージとしての圧
電薄膜(2)と検出用センサとしての圧電薄膜(2)と
が2枚重ねて薄層であるので、対象物の温度を直接的に
ダミーゲージが受けることになり、温度により生じる電
荷が相互に打ち消し合うように異極性として相殺的に加
算されるために、温度補正を適切に行わせ得る。
(Operation) In the present invention, since the piezoelectric thin film (2) as the dummy gauge for temperature correction and the piezoelectric thin film (2) as the detection sensor are two thin layers, the temperature of the object is directly measured. Since the dummy gauge is subjected to, and the charges generated by the temperature are destructively added as different polarities so as to cancel each other, temperature correction can be appropriately performed.

しかも曲げ変位が加えられた際には両圧電薄膜(2)に
生じる電荷が等極性となつて加算されるので、所期の圧
電変換特性が発揮される。
Moreover, when a bending displacement is applied, the charges generated in both piezoelectric thin films (2) are added with the same polarity, so that the desired piezoelectric conversion characteristics are exhibited.

かくして正確な温度補正が可能となり、しかもバイモル
フ構造としたことによつて柔軟性は何等そこなわれるこ
となく圧電センサとしての機能は満足される。
Thus, accurate temperature correction is possible, and since the bimorph structure is employed, the function as a piezoelectric sensor is satisfied without any deterioration in flexibility.

(実施例) 以下、本発明の実施例を添付図面にもとづき説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.

本発明センサの圧電変換素子部の構造は第1図に示され
る通りであつて、高分子圧電材料からなる圧電薄膜
(2),(2)を、電導膜(3)例えばアルミニウム薄
膜(3)の両面に熱圧着又は接着剤を使用して貼り合わ
せて一体となし、さらに、その表,裏両面に電導膜
(4)例えばアルミニウム蒸着膜(4)を夫々密着せし
めて面状圧電素子(1)に形成している。
The structure of the piezoelectric conversion element portion of the sensor of the present invention is as shown in FIG. 1, in which the piezoelectric thin films (2) and (2) made of a polymeric piezoelectric material are replaced with a conductive film (3), for example, an aluminum thin film (3). Are bonded to each other by thermocompression bonding or using an adhesive to form one body, and further, a conductive film (4), for example, an aluminum vapor deposition film (4) is closely adhered to both the front and back surfaces of the planar piezoelectric element (1). ) Is formed.

このようなサンドウイツチ構造をバイモルフ構造と称す
るものである。
Such a sandwitch structure is called a bimorph structure.

なお、前記熱圧着とは、ホツトプレスのことであつて、
高分子圧電材料/アルミニウム薄膜/高分子圧電材料と
サンドウイツチ状に重ね合わせて高分子圧電材料の融点
まで温度を上げることにより高分子圧電材料を溶かし、
かつ垂直方向に圧力を加えて圧着する方法であつて、高
分子樹脂を接合する一般的な方法である。
The thermocompression bonding is a hot press.
Polymer piezoelectric material / aluminum thin film / polymer piezoelectric material is laminated in a sandwich shape to raise the temperature up to the melting point of the polymer piezoelectric material to melt the polymer piezoelectric material,
In addition, it is a method of applying pressure in the vertical direction to perform pressure bonding, which is a general method of joining polymer resins.

この場合の高分子圧電材料としては、例えばポリフツ化
ビニリデン(PVDF)等が用いられるのであつて、後述す
る如く分極処理された高分子圧電材料が使用される。
As the polymer piezoelectric material in this case, for example, polyvinylidene fluoride (PVDF) is used, and the polymer piezoelectric material that is polarized as described later is used.

ところで高分子圧電材料は、表面間に直流高電界を印加
することによつて、はじめて圧電性を生じるものであ
り、これを分極処理と称している。
By the way, a polymeric piezoelectric material first exhibits piezoelectricity by applying a high DC electric field between its surfaces, and this is called polarization treatment.

分極の方向としては、バイモルフ構造の場合、第2図
(イ),(ロ)に示す2種類があり、高分子圧電材料の
曲げ変形に対し中心層となる電導膜(3)を中立層とし
て第1層例えば第2図の上層は伸ばされ、第2層は縮め
られるようになる。
In the case of the bimorph structure, there are two types of polarization directions, as shown in FIGS. 2 (a) and 2 (b). The conductive film (3), which is the central layer against bending deformation of the polymeric piezoelectric material, is used as the neutral layer. The first layer, for example the upper layer of FIG. 2, becomes stretched and the second layer becomes contracted.

従つて圧電変換信号を取り出す、表,裏面の検出極とし
ての電導膜(4)は等電位電極あるいは対向電位電極と
して外部配線と接続せしめる。
Accordingly, the piezoelectric conversion signals are taken out, and the conductive films (4) as front and back detection electrodes are connected to the external wiring as equipotential electrodes or counter potential electrodes.

しかして本発明は分極処理に際して第2図(イ)に示す
同一方向分極方式を用いる。
Therefore, the present invention uses the same-direction polarization method shown in FIG.

かかる分極処理を行わせた面状圧電素子(1)に対して
外部より熱を加えると、第3図のように電荷が生じる
が、この現象が焦電性と称されている。
When heat is applied from the outside to the planar piezoelectric element (1) which has been subjected to such polarization treatment, electric charges are generated as shown in FIG. 3, but this phenomenon is called pyroelectricity.

上記電荷は圧電薄膜(2)の両層の特性が全く同一であ
れば発生する電荷は同じであるので、第2図(イ)及び
第3図に図示する信号取り出し(結線)を行つていれば
各電荷は互いに相殺される筈である。
If the characteristics of both layers of the piezoelectric thin film (2) are exactly the same, the generated electric charge is the same, so the signal extraction (wiring) shown in FIGS. 2A and 3 is performed. Then, the charges should cancel each other out.

しかしながら、実際には、2つの圧電薄膜(2)の層は
厚さが微妙に異なつたりすることか、生じる電荷量には
差を有する。
However, in reality, the two layers of the piezoelectric thin film (2) have slightly different thicknesses, or there is a difference in the amount of generated charges.

そこで第4図に示す如く、FET(電界効果トランジス
タ)を入力端に有する高インビーダンス入力オペアンプ
(OP),(OP)を要素としてなるバツフア回路
(6)で圧電荷を受けるように外部回路を形成して、前
記面状圧電素子(1)を恒温槽に収容した状態で恒温槽
の温度を変えながら端子(CT−1),(CT−2)より発
生電荷に対応する出力を取り出させて測定を行わせる。
Therefore, as shown in FIG. 4, the buffer circuit (6) including high impedance input operational amplifiers (OP 1 ) and (OP 2 ) having FETs (field effect transistors) at the input terminals receives piezoelectric charges. An external circuit is formed, and the output corresponding to the generated charges is output from the terminals (CT-1) and (CT-2) while changing the temperature of the thermostat while the planar piezoelectric element (1) is housed in the thermostat. Let it be taken out and measure.

これを更に詳述すれば、焦電性によって生ずる電荷は温
度変化に焦電率を乗じたものであり、一方、焦電率は物
理的には材料がもつ固有の特性であるが、圧電薄膜の厚
さ、分極処理条件等により焦電感度は異なる。
To further explain this in detail, the electric charge generated by pyroelectricity is obtained by multiplying the temperature change by the pyroelectric rate. On the other hand, the pyroelectric rate is physically a characteristic peculiar to a material. The pyroelectric sensitivity varies depending on the thickness, the polarization treatment conditions, and the like.

そこで第4図に示すバイモルフ構成の面状圧電素子にお
いては製造上、上側の圧電薄膜(2)と下側の圧電薄膜
(2)の厚みは異なる。従って同じ環境温度変化に対し
て生ずる焦電電荷量は焦電感度が異なるため上側の圧電
薄膜と下側の圧電薄膜で異なる。
Therefore, in the planar piezoelectric element having the bimorph structure shown in FIG. 4, the upper piezoelectric thin film (2) and the lower piezoelectric thin film (2) have different thicknesses in manufacturing. Therefore, the amount of pyroelectric charge generated for the same environmental temperature change is different between the upper piezoelectric thin film and the lower piezoelectric thin film because the pyroelectric sensitivity is different.

なお、焦電(あるいは圧電)効果によって圧電薄膜に物
理的に生ずるのは電荷であるが、この電荷をFET(電界
効果トランジスタ)を入力端に有する高インピーダンス
入力オペアンプ(OP,OP)を要素としてなるバッフ
ァ回路で受けることにより、電圧に変換することができ
る。
Electric charges are physically generated in the piezoelectric thin film due to the pyroelectric (or piezoelectric) effect, and the high impedance input operational amplifiers (OP 1 and OP 2 ) having the FET (Field Effect Transistor) at the input end of the electric charges are charged. It can be converted into a voltage by being received by the buffer circuit as an element.

したがって、第4図に示す観測端子CT−1部においては
上側の圧電薄膜から得られる(焦電)電荷による出力電
圧を、観測端子CT−2部においては、下側の圧電薄膜か
ら得られる(焦電)電荷による出力電圧を取り出すこと
ができる。
Therefore, in the observation terminal CT-1 portion shown in FIG. 4, the output voltage due to (pyroelectric) charges obtained from the upper piezoelectric thin film is obtained from the lower piezoelectric thin film in the observation terminal CT-2 portion ( It is possible to take out the output voltage due to the pyroelectric charge.

そして第4図に示すように、上側,下側2枚の圧電薄膜
で構成されたバイモルフ型面状圧電素子を同じ環境温度
変化のもとに置き、観測端子CT−1部とCT−2部からの
出力により、温度変化に対する出力比Avを算出すれば、
それが、2枚の圧電薄膜の温度変化に対する焦電感度比
となる。
Then, as shown in Fig. 4, the bimorph type planar piezoelectric element composed of the upper and lower two piezoelectric thin films is placed under the same environmental temperature change, and the observation terminals CT-1 part and CT-2 part are placed. By calculating the output ratio Av with respect to temperature change from the output from
That is the pyroelectric sensitivity ratio with respect to the temperature change of the two piezoelectric thin films.

この測定結果から温度変化に対する出力比(電圧特性)
Av=|Δv|/ΔT÷|Δv|/ΔTを算出せしめ
る。
From this measurement result, output ratio (voltage characteristic) against temperature change
Av = | Δv 2 | / ΔT ÷ | Δv 1 | / ΔT is calculated.

但し△v:オペアンプ(OP)の出力変化 △v:オペアンプ(OP)の出力変化 △T:恒温槽の温度変化 このようにして得られた出力比Avを一方の電導膜(4)
に接続したオペアンプ(OP)に直列接続してなる補正
手段としての補正回路(5)における増幅率として与
え、さらに該補正回路(5)の出力端子と他方の電導膜
(4)に接続したオペアンプ(OP)の出力端子とを直
結し加算手段としての加算回路(7)にインプツトする
ことによつて、一方の圧電薄膜(2)で生じた温度変動
に対する電荷と、他方の圧電薄膜(2)に係る同様の電
荷との固有差は確実に相殺されることになる。
However, Δv 1 : change in output of operational amplifier (OP 1 ) Δv 2 : change in output of operational amplifier (OP 2 ) ΔT: change in temperature of thermostatic chamber The output ratio Av thus obtained is used for one conductive film (4 )
It is given as an amplification factor in a correction circuit (5) as a correction means that is connected in series to an operational amplifier (OP 1 ) connected to the output terminal of the correction circuit (5) and the other conductive film (4). By directly connecting the output terminal of the operational amplifier (OP 2 ) to the adder circuit (7) as an adder means, the charge due to the temperature fluctuation generated in one piezoelectric thin film (2) and the other piezoelectric thin film ( The inherent difference with the similar charges in 2) will be canceled out with certainty.

即ち、本発明は、バイモルフ型面状圧電素子において、
温度変化を受けた時に、焦電効果によって生ずる誤動作
(本来、この圧電素子は、接触力による高分子圧電材料
の歪に対応した圧電信号を得るためのもので、温度変化
による焦電信号はノイズに相当する)を解消する方法
で、ある温度変化ΔT(この温度変化はバイモルフ型面
状圧電素子を構成する2枚の圧電薄膜が同時に受ける)
を受けた時、上側の圧電薄膜より生ずる焦電電圧(観測
端子CT−2部にて観測する電圧)をΔv、下側の圧電
薄膜より生ずる焦電電圧(観測端子CT−2部にて観測す
る電圧)を−Δvとすると、補正回路(5)の増幅率
Avを上側の圧電薄膜よりの焦電電圧Δvに乗じ、下側
の圧電薄膜よりの焦電電圧−Δvを加算回路(7)に
て加算することにより、 Δv×Av+(−Δv)=Δv×Δv/ΔT÷Δ
/ΔT+(−Δv)=0 となり、焦電電圧を相殺できることがわかる。
That is, the present invention is a bimorph type planar piezoelectric element,
Malfunction caused by pyroelectric effect when subjected to temperature change (Originally, this piezoelectric element is for obtaining a piezoelectric signal corresponding to strain of polymer piezoelectric material due to contact force. A temperature change ΔT (this temperature change is simultaneously received by the two piezoelectric thin films forming the bimorph-type planar piezoelectric element).
, The pyroelectric voltage generated by the upper piezoelectric thin film (the voltage observed at the observation terminal CT-2 part) is Δv 1 , and the pyroelectric voltage generated by the lower piezoelectric thin film (at the observation terminal CT-2 part) Assuming that the observed voltage) is −Δv 2 , the amplification factor of the correction circuit (5)
By multiplying Av by the pyroelectric voltage Δv 1 from the upper piezoelectric thin film and adding the pyroelectric voltage −Δv 2 from the lower piezoelectric thin film in the adding circuit (7), Δv 1 × Av + (− Δv 2 ) = Δv 1 × Δv 2 / ΔT ÷ Δ
Since v 1 / ΔT + (− Δv 2 ) = 0, it can be seen that the pyroelectric voltage can be canceled.

なお、曲げ変位に対して発生する電荷は、何等キヤンセ
ルされることなく加算されるのは言うまでもない。
Needless to say, the charges generated with respect to the bending displacement are added without any cancellation.

叙上の構成を有する圧電センサは、バイモルフ構造の面
状圧電素子(1)に温度変動があつた場合には、前述す
る如く、両電導膜(4),(4)に温度変化により生じ
た電荷は各電導膜(4),(4)に接続した外部回路で
互いに打ち消し合うことになり、(第3図参照)一方、
曲げ変形による電荷は第2図(イ)から明らかなように
相加わるようになるところから、温度に対する特性は補
正されながら圧電変換信号を正確に取り出すことが可能
となる。
In the piezoelectric sensor having the above structure, when the planar piezoelectric element (1) having a bimorph structure has a temperature change, as described above, it is caused by the temperature change in both conductive films (4) and (4). The charges cancel each other out in the external circuits connected to the conductive films (4) and (4) (see FIG. 3).
As is apparent from FIG. 2A, the electric charges due to the bending deformation are added, so that the piezoelectric conversion signal can be accurately extracted while the characteristics with respect to temperature are corrected.

以上説明した実施例は、初段入力回路としてバツフア回
路(6)を用いたものを示しているが、本発明は第5図
乃至第7図の各実施例における変形構造とすることも可
能である。
Although the embodiment explained above shows the one using the buffer circuit (6) as the first stage input circuit, the present invention can be modified structure in each of the embodiments of FIGS. 5 to 7. .

第5図々示例は、電導膜(4),(4)と補正回路
(5)との間を回路を、電流/電圧変換回路(8)と積
分回路(9)とが前後の2段に設けられた構成としたも
のであり、第6図々示例はチヤージアンプ回路(10)の
単段構成としたものである。
In the example shown in each of FIGS. 5A and 5B, a circuit is provided between the conductive films (4) and (4) and the correction circuit (5), and a current / voltage conversion circuit (8) and an integration circuit (9) are provided in two stages before and after. The configuration shown in FIG. 6 is a single-stage configuration of the charge amplifier circuit (10).

また、第7図々示例は、前述の第4図に示す例が補正回
路(5)を非反転増幅回路に形成しているのに対して、
反転形補正回路(5)′となし、さらに後段の加算回路
(7)に替えて減算回路(11)を用いた構成であつて、
機能としては第4図々示例と変りがない。
Further, in the example shown in FIGS. 7A and 7B, in contrast to the example shown in FIG. 4 in which the correction circuit (5) is formed as a non-inverting amplifier circuit,
In the configuration using the subtraction circuit (11) instead of the inverting correction circuit (5) ′ and further adding the addition circuit (7) in the subsequent stage,
The function is the same as the example shown in FIG.

なお、以上の述べた各例と同じ原理にもとづいて、第8
図に示すように、第4図のバツフア回路(6)の出力を
アナログ−デイジタル変換回路(12)によつてデイジタ
ル信号に変換させてマイクロコンピユータ(13)にとり
込み、温度変化に対する出力比Av=△V/△T÷△V
/△Tの算出、補正回路(5)と同様の増幅操作なら
びに加算回路(7)と同様の加算操作をソフトウエアで
行はせるようにしても良い。
In addition, based on the same principle as each example described above,
As shown in the figure, the output of the buffer circuit (6) in FIG. 4 is converted into a digital signal by the analog-to-digital conversion circuit (12) and taken into the microcomputer (13), and the output ratio Av = ΔV 2 / ΔT ÷ ΔV
The calculation of 1 / ΔT, the amplification operation similar to that of the correction circuit (5) and the addition operation similar to that of the addition circuit (7) may be performed by software.

叙上の構成になる圧電センサは、人工皮膚としてロボツ
トハンドのワーク把持部に直接装着し使用できるが、そ
の他、一般の力−電気変換用の圧電センサに適用可能で
ある。
The piezoelectric sensor having the above configuration can be directly attached to the work holding portion of the robot hand as artificial skin and used, but it is also applicable to other general piezoelectric sensors for force-electric conversion.

(発明の効果) 本発明は以上述べたように、高分子圧電材料からなる圧
電薄膜(2)を2枚重ねにしたバイモルフ構造となして
温度補正のための補正回路(5)と組合わせた構成とし
たことにより、1枚の高分子圧電材料を使用する場合に
比して、出力及び感度が高く、かつ温度変動に対して圧
電変換特性に変化がなく、安定かつ正確な検出が可能で
ある。
(Effects of the Invention) As described above, the present invention has a bimorph structure in which two piezoelectric thin films (2) made of a polymeric piezoelectric material are stacked and combined with a correction circuit (5) for temperature correction. Due to the configuration, the output and sensitivity are higher than when one sheet of polymer piezoelectric material is used, and there is no change in the piezoelectric conversion characteristics with respect to temperature fluctuations, enabling stable and accurate detection. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の1実施例に係る面状圧電素子の原理的
構造図、第2図(イ),(ロ)は面状圧電素子における
分極及び結線の態様の説明図、第3図は同じく熱影響に
ついての説明図、第4図乃至第8図は本発明の各実施例
に係る略示構造図である。 (1)……面状圧電素子,(2)……圧電薄膜, (3)……電導膜,(4)……電導膜, (5)……補正手段,(7)……加算手段,
FIG. 1 is a principle structure diagram of a planar piezoelectric element according to an embodiment of the present invention, FIGS. 2 (a) and 2 (b) are explanatory views of polarization and connection modes in the planar piezoelectric element, and FIG. Similarly, FIG. 4 is an explanatory view of the influence of heat, and FIGS. 4 to 8 are schematic structural views according to each embodiment of the present invention. (1) ... planar piezoelectric element, (2) ... piezoelectric thin film, (3) ... conductive film, (4) ... conductive film, (5) ... correction means, (7) ... addition means,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高分子圧電材料からなる圧電薄膜(2)
を、接地極としての電導膜(3)の両面に密着させ、さ
らにこの両圧電薄膜(2,2)の外側面に圧電変換信号を
取り出す検出極としての電導膜(4)を夫々密着すると
共に、2枚の前記圧電薄膜(2,2)を同一方向に分極処
理してなるバイモルフ構造のシートにより面状圧電素子
(1)を形成して、前記検出極としての一方の電導膜
(4)の出力系に、該出力系の出力電圧に対して、両検
出極の温度変化に対する電圧特性から決まる所定の変換
係数で変換を加える補正手段(5)を設けると共に、検
出極としての他方の電導膜(4)の出力と前記補正手段
(5)の出力とを、前記面状圧電素子(1)の無変形時
における異極性として相殺的に加算する加算手段(7)
を設けたことを特徴とする圧電センサ。
1. A piezoelectric thin film (2) made of a piezoelectric polymer material.
To the both surfaces of the conductive film (3) as the ground electrode, and further to the outer surfaces of the piezoelectric thin films (2, 2) with the conductive films (4) as the detection electrodes for extracting the piezoelectric conversion signals. A sheet-like piezoelectric element (1) is formed from a sheet having a bimorph structure obtained by polarizing two piezoelectric thin films (2, 2) in the same direction, and one conductive film (4) as the detection electrode is formed. The output system is provided with a correction means (5) for converting the output voltage of the output system with a predetermined conversion coefficient determined by the voltage characteristics of the detection electrodes with respect to the temperature change, and at the same time, the other conductive member serving as the detection electrode. Adder means (7) for cancelingly adding the output of the film (4) and the output of the correction means (5) as different polarities when the planar piezoelectric element (1) is not deformed.
A piezoelectric sensor characterized by being provided with.
JP60299350A 1985-12-27 1985-12-27 Piezoelectric sensor Expired - Lifetime JPH0663725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60299350A JPH0663725B2 (en) 1985-12-27 1985-12-27 Piezoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60299350A JPH0663725B2 (en) 1985-12-27 1985-12-27 Piezoelectric sensor

Publications (2)

Publication Number Publication Date
JPS62156503A JPS62156503A (en) 1987-07-11
JPH0663725B2 true JPH0663725B2 (en) 1994-08-22

Family

ID=17871414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60299350A Expired - Lifetime JPH0663725B2 (en) 1985-12-27 1985-12-27 Piezoelectric sensor

Country Status (1)

Country Link
JP (1) JPH0663725B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427665B2 (en) * 2004-07-28 2010-03-10 国立大学法人広島大学 Bending deformation sensor and deformation measuring apparatus
JP2015087283A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Force detection device, robot, electronic component conveyance device, electronic component inspection device, and component processing device
JP6285259B2 (en) * 2014-01-14 2018-02-28 Nissha株式会社 Pressure sensor
JP2015190863A (en) * 2014-03-28 2015-11-02 日本写真印刷株式会社 Pressure detector
CN106461486B (en) 2014-07-04 2019-06-28 株式会社村田制作所 Piezoelectric transducer and piezoelectric element
WO2016027495A1 (en) 2014-08-22 2016-02-25 株式会社村田製作所 Piezoelectric sensor and detection device
JP2016121883A (en) * 2014-12-24 2016-07-07 日本写真印刷株式会社 Pressure sensor
WO2016132581A1 (en) 2015-02-18 2016-08-25 株式会社村田製作所 Piezoelectric element and piezoelectric sensor
CN113008124B (en) * 2021-02-20 2023-10-17 宁波诺丁汉新材料研究院有限公司 Multimode sensor and preparation method thereof

Also Published As

Publication number Publication date
JPS62156503A (en) 1987-07-11

Similar Documents

Publication Publication Date Title
US11487381B2 (en) Piezoelectric sensor apparatus
US3940974A (en) Electrically compensated sensor
US10429255B2 (en) Piezoelectric sensor and detecting device
JP6106011B2 (en) Pressure detection device
JP5854143B2 (en) Pressure sensor
JPH0663725B2 (en) Piezoelectric sensor
US10502542B2 (en) Piezoelectric element and piezoelectric sensor
US10656729B2 (en) Pressing detector and electronic device
JPS5813317Y2 (en) Miyakuhakukei
JP4761186B2 (en) Swimming element using a switching element and a switching element
JPS5911841B2 (en) electret sensing device
JPH06229848A (en) Sensor for simultaneously detecting pressure and heat quantity by using ferroelectric polymer film
WO2019244594A1 (en) Pressing force sensor and pressing force detection device
US20230123365A1 (en) Sensor and sensor processing device
JP2004226294A (en) Static and dynamic pressure detection sensor
JPS639801A (en) Tactile sensor
JPS58111517A (en) Mechanical coupling type electric isolator with output stabilizing means
JP2004132882A (en) Static and kinetic pressure detecting sensor
WO2019047063A1 (en) Integrated detection sensor and touch sensing device
GB2197121A (en) Force transducer with temperature correction
JPH0627134A (en) Acceleration sensor
JPS63195573A (en) Piezoelectric acceleration sensor
JPH0786619A (en) Strain gauge and manufacture thereof
JPH0414946Y2 (en)
JPS58111518A (en) Mechanical coupling type electric isolator with plural outputs and stabilizing means