JPH0663613B2 - Reburning method for unburned components in fluidized bed combustion boiler - Google Patents

Reburning method for unburned components in fluidized bed combustion boiler

Info

Publication number
JPH0663613B2
JPH0663613B2 JP60046047A JP4604785A JPH0663613B2 JP H0663613 B2 JPH0663613 B2 JP H0663613B2 JP 60046047 A JP60046047 A JP 60046047A JP 4604785 A JP4604785 A JP 4604785A JP H0663613 B2 JPH0663613 B2 JP H0663613B2
Authority
JP
Japan
Prior art keywords
freeboard
temperature
fluidized bed
cyclone
unburned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60046047A
Other languages
Japanese (ja)
Other versions
JPS61205710A (en
Inventor
恂 舘林
友昭 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP60046047A priority Critical patent/JPH0663613B2/en
Publication of JPS61205710A publication Critical patent/JPS61205710A/en
Publication of JPH0663613B2 publication Critical patent/JPH0663613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/02Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed
    • F23C10/04Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone
    • F23C10/08Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases
    • F23C10/10Fluidised bed combustion apparatus with means specially adapted for achieving or promoting a circulating movement of particles within the bed or for a recirculation of particles entrained from the bed the particles being circulated to a section, e.g. a heat-exchange section or a return duct, at least partially shielded from the combustion zone, before being reintroduced into the combustion zone characterised by the arrangement of separation apparatus, e.g. cyclones, for separating particles from the flue gases the separation apparatus being located outside the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2206/00Fluidised bed combustion
    • F23C2206/10Circulating fluidised bed
    • F23C2206/103Cooling recirculating particles

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、流動床燃焼ボイラの未燃分再燃焼方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for reburning unburned components of a fluidized bed combustion boiler.

[従来技術とその課題] 従来の流動床燃焼ボイラにおいて、総合燃焼効率を高め
るための未燃分燃焼方法には、未燃分燃焼装置を別置す
る未燃灰再燃焼方法と、未燃分を流動層に戻す未燃灰再
循環方式とがある。
[Prior art and its problems] In a conventional fluidized bed combustion boiler, unburned ash re-combustion method in which an unburned content combustor is separately installed and unburned ash reburning method for increasing overall combustion efficiency. There is an unburnt ash recirculation system that returns the fluid to the fluidized bed.

前者の未燃灰再燃焼方式は、第2図に示すように、流動
床燃焼ボイラ1内で燃焼中の流動層2からとび出した微
粒子が、フリーボード3で一部燃焼したのち、接触伝熱
部4を経て排ガスと共にダクト5を通って第1マルチサ
イクロン6に入り、ここで比較的粒径の大きいもののみ
が捕捉され、これが未燃灰再燃焼炉7で再燃焼せしめる
ものである。この未燃灰再燃焼炉7の排ガスは、第2マ
ルチサイクロン8に入り、ここでできるだけ多くの粒子
を捕捉させ、第2マルチサイクロン8を出た排ガスは、
第1マルチサイクロン6を出た排ガスと共にエアヒータ
9に入り、ここで上記流動床燃焼ボイラ1、および、未
燃灰燃焼炉7に供給する燃焼用空気を加熱して温度降下
されたのち集塵器10に入り、除塵されたのち煙突11より
大気中に放散せしめられる。
In the former unburnt ash reburning method, as shown in FIG. 2, the fine particles that have flown out of the fluidized bed 2 in the fluidized bed combustion boiler 1 are partially burned by the freeboard 3 and then contact heat transfer is performed. After passing through the section 4, the exhaust gas and the exhaust gas pass through the duct 5 and enter the first multi-cyclone 6, where only those having a relatively large particle size are trapped and reburned in the unburned ash reburning furnace 7. The exhaust gas from the unburned ash reburning furnace 7 enters the second multi-cyclone 8, where as many particles as possible are captured, and the exhaust gas from the second multi-cyclone 8 is
After entering the air heater 9 together with the exhaust gas from the first multi-cyclone 6, the combustion air supplied to the fluidized bed combustion boiler 1 and the unburned ash combustion furnace 7 is heated to lower the temperature and then the dust collector. After entering 10 and being dust-removed, it is diffused into the atmosphere through the chimney 11.

しかしながらこの未燃灰燃焼方法は、未燃灰燃焼炉7が
必要となり、プラントの設備費が嵩むばかでなく、プラ
ント全体の制御システムが複雑となり、特にNOx排出値
を抑えるために造粒したりするときは、未燃灰再燃焼炉
7へ未燃灰の供給がきわめて複雑である。
However, this unburned ash combustion method requires the unburned ash combustion furnace 7, the facility cost of the plant is not high, the control system of the entire plant is complicated, and especially granulation is performed to suppress the NOx emission value. When doing so, the supply of unburned ash to the unburned ash reburning furnace 7 is extremely complicated.

また、後者の未燃分再循環方式は、第3図に示すよう
に、流動床燃焼ボイラ1内で燃焼中の流動層2からとび
出した微粒子が、フリーボード3で一部燃焼したのち、
接触伝熱部4を経て排ガスと共にダクト5を通って第1
マルチサイクロン6に入り、ここで比較的粒径の大きい
もののみが捕捉され、この未燃灰が循環路12を通して流
動層2内に送り込まで、再燃焼されること繰り返される
ものである。また、第1マルチサイクロン6を出た排ガ
スはエアヒータ9に入り、ここで前記流動床燃焼ボイラ
1に送給する燃焼用空気を加熱して温度降下されたのち
集塵器10に入り、除塵されたのち煙突11より大気中に放
散せしめられる。
Further, in the latter unburned matter recirculation system, as shown in FIG. 3, after part of the fine particles protruding from the fluidized bed 2 in the fluidized bed combustion boiler 1 are combusted in the freeboard 3,
First through the contact heat transfer section 4 and the exhaust gas through the duct 5
It enters the multi-cyclone 6, where only those having a relatively large particle size are captured, and this unburned ash is repeatedly burned until it is fed into the fluidized bed 2 through the circulation path 12 and is repeated. Further, the exhaust gas from the first multi-cyclone 6 enters the air heater 9, where the combustion air sent to the fluidized bed combustion boiler 1 is heated and the temperature thereof is lowered, and then the dust collector 10 is entered to remove dust. After that, it is released into the atmosphere from the chimney 11.

この未燃分再循環方式は、未燃灰が接触伝熱部4で吸熱
されて300〜360℃以下に温度せしめられ、更に、ハンド
リングしやすいように、アッシュクーラーで150℃程度
以下まで温度降下せしめられるので、この未燃灰が流動
層2内に送り込まれても温度上昇に時間がかかり、十分
燃える前に流動層2から再飛散してしまい、フリーボー
ド3ではその未燃灰が急速に冷えるので、大巾な燃焼効
率の向上は期待できない。しかも、流動層2内での他の
流動媒体を冷やすことになって、流動層2内の燃焼効率
が低下し、脱硫,脱硝反応効率が十分に上がらないなど
の問題点がある。
In this unburned matter recirculation method, unburned ash is absorbed by the contact heat transfer section 4 and is heated to a temperature of 300 to 360 ° C or less, and further, the temperature is lowered to about 150 ° C or less with an ash cooler for easy handling. Even if the unburnt ash is sent into the fluidized bed 2, it takes time to rise in temperature, and it scatters again from the fluidized bed 2 before it burns sufficiently. Since it cools down, a significant improvement in combustion efficiency cannot be expected. In addition, there is a problem in that the other fluid medium in the fluidized bed 2 is cooled, the combustion efficiency in the fluidized bed 2 is lowered, and the desulfurization and denitration reaction efficiency is not sufficiently increased.

[発明の技術的背景] 従来技術の問題点を解消するため本件発明者らは、未燃
分の温度を降下させることなく、温度状態を保持したま
までこの未燃分を第1マルチサイクロンからフリーボー
ドに循環させ、このフリーボード部で未燃分をほぼ完全
に燃焼させ、流動床燃焼ボイラにおける燃焼効率を大巾
に向上するとともに、フリーボード部における脱硫,脱
硝反応を促進させ、脱硫剤の所要量の節減を図り、更
に、NOxの発生を制御する目的で、流動床燃焼ボイラの
第1マルチサイクロンまでの接触電熱部を殆んどなく
し、フリーボード周壁,排ガスダクト、および、これに
連なる第1マルチサイクロンの殆んどを断熱構造とし
て、流動層からとび出した未燃灰を含む粒子を、フリー
ボードから排ガスダクトを介して第1マルチサイクロン
に至まで高温に保持し、第1マルチサイクロンで捕捉し
た比較的粒径の大きな粒子を高温状態で循環路を通して
フリーボードに戻すこと繰り返して、流動層からの飛散
粒子中の未燃灰を再燃焼させ、フリーボード中の温度を
脱硫,脱硝反応に適した温度(800〜1,000℃)に制御す
る手段を、特願昭59−174262号として提案しているが、
この手段で、フリーボード中温度が1,000℃を超える
と、脱硫反応が抑制されるだけでなく、一部CaSOが熱
分解し、CaO+SOに逆戻りするし、また、NOをCで還
元しなくなるため、SOx,NOxの発生が多くなるという問
題点がある。
[Technical Background of the Invention] In order to solve the problems of the prior art, the inventors of the present invention can remove the unburned component from the first multi-cyclone while maintaining the temperature state without lowering the temperature. It circulates in the freeboard and burns the unburned matter almost completely in this freeboard part, greatly improving the combustion efficiency in the fluidized bed combustion boiler, and promoting desulfurization and denitration reaction in the freeboard part, and desulfurizing agent. In order to reduce the required amount of NOx and to control the generation of NOx, the contact electric heating part up to the first multi-cyclone of the fluidized bed combustion boiler is almost eliminated, and the freeboard peripheral wall, exhaust gas duct, and this Most of the first multi-cyclone in the series has a heat insulating structure, and the particles containing unburned ash that have jumped out of the fluidized bed reach the first multi-cyclone from the freeboard through the exhaust gas duct. To a freeboard through a circulation path while keeping the high-temperature particles up to a high temperature, captured by the first multi-cyclone, and returning them to the freeboard through a circulation path repeatedly to reburn the unburned ash in the particles scattered from the fluidized bed. As a means for controlling the temperature in the freeboard to a temperature (800 to 1,000 ° C) suitable for desulfurization and denitration reactions, Japanese Patent Application No. 59-174262 has been proposed.
By this means, when the temperature in the freeboard exceeds 1,000 ° C, not only the desulfurization reaction is suppressed, but also some CaSO 4 is thermally decomposed and returns to CaO + SO 2 , and NO is not reduced by C. Therefore, there is a problem that SOx and NOx are frequently generated.

本発明の目的は、フリーボードの温度条件が、脱硫反
応,脱硝反応を妨げない温度条件に制御しうる方法を提
供せんとするものである。
An object of the present invention is to provide a method capable of controlling the temperature condition of the freeboard to a temperature condition that does not interfere with the desulfurization reaction and the denitration reaction.

[課題を解決するための手段] 従来技術の課題を解決する本発明の構成は、流動床燃焼
ボイラのフリーボード部から第1マルチサイクロンまで
の接触伝熱部を殆んどなくし、フリーボード周壁,排ガ
スダクト、および、これに連る第1マルチサイクロンの
殆んどを断熱構造となして、流動層から飛散した未燃灰
などを含む粒子を、フリーボードから排ガスダクトを通
って第1マルチサイクロンに入るまで高温に保持せしめ
るとともに、該第1マルチサイクロンで捕捉した比較的
粒径の大きな粒子を、高温状態で断熱構造とした循環路
を介してフリーボード下部に戻すことを繰り返して行わ
せ、フリーボード中の脱硫剤であるCaO,還元剤である未
燃カーボンの濃度を高めて、流動層からの飛散粒子中の
未燃分を再燃焼するとともに、上記第1マルチサイクロ
ンから循環路を通ってフリーボード中に戻される高温未
燃灰の一部、または、全てを冷却し、フリーボードにお
ける燃焼反応を抑制し、更に、フリーボード内の温度を
検知し、該温度が脱硫反応と、脱硝反応を妨げる温度に
達した温度検知値で、冷却手段を動作させ、循環する高
温未燃灰の一部、または全てを冷却してフリーボードの
上限温度を、脱硫,脱硝反応を妨げない800〜1,000℃の
温度条件に制御維持し、未燃灰が燃焼し還元剤として働
きうる800〜1,000℃以上を温度とすると同時に、脱硫剤
であるCaOがSOxと反応しCaSOとなり再分解しない範囲
の温度に保つものである。
[Means for Solving the Problems] According to the configuration of the present invention for solving the problems of the prior art, the contact heat transfer section from the freeboard section to the first multi-cyclone of the fluidized bed combustion boiler is almost eliminated, and the freeboard peripheral wall is eliminated. The exhaust gas duct and most of the first multi-cyclone connected to the exhaust gas duct have a heat insulating structure so that particles including unburned ash scattered from the fluidized bed are passed from the freeboard to the first multi-cycle through the exhaust gas duct. Keeping the temperature high until it enters the cyclone, and returning the particles with a relatively large particle size captured by the first multi-cyclone to the lower part of the freeboard through a circulation path having an adiabatic structure at high temperature repeatedly. The concentration of CaO, which is a desulfurizing agent, and unburned carbon, which is a reducing agent, in the freeboard is increased to reburn the unburned components in the particles scattered from the fluidized bed, and Cooling some or all of the high temperature unburned ash returned from the cyclone to the freeboard through the circulation path, suppressing the combustion reaction in the freeboard, and further detecting the temperature in the freeboard, When the temperature reaches the desulfurization reaction and the temperature detection value that reaches the temperature that interferes with the denitration reaction, the cooling means is operated to cool part or all of the circulating high-temperature unburned ash to desulfurize the upper limit temperature of the freeboard. Control and maintain the temperature condition of 800 to 1,000 ℃, which does not disturb the denitration reaction, and keep the temperature at 800 to 1,000 ℃ or higher where unburned ash burns and can act as a reducing agent, and at the same time, CaO, which is a desulfurizing agent, reacts with SOx and CaSO It is 4 and is kept at a temperature in the range where it is not redissolved.

[実施例] 本発明の流動床燃焼ボイラにおける未燃部再燃焼方法の
実施例について説明する。第1図は本発明を実施するた
めの流動床燃焼ボイラプラントの構成を概略を示してい
る。先ず、この図により、本発明方法を実施する流動床
燃焼ボイラプラントの構成をを説明する。
[Example] An example of the unburned portion re-combustion method in the fluidized bed combustion boiler of the present invention will be described. FIG. 1 schematically shows the structure of a fluidized bed combustion boiler plant for carrying out the present invention. First, the configuration of a fluidized bed combustion boiler plant for carrying out the method of the present invention will be described with reference to this figure.

21は、流動層22及びフリーボード23などを有する流動床
燃焼ボイラである。上記フリーボード23の上部には、排
ガスダクト24を介して第1マルチサイクロン25が連結さ
れ、この第1マルチサイクロン25の下部に設けた粒子排
出口と、上記フリーボード23とを傾斜した循環路26にて
接続する。そして、少くとも、上記フリーボード23の周
壁を、築炉構造など吸熱しない断熱構造となすととも
に、フリーボード23の下端側に続く第1マルチサイクロ
ン25までの接触伝熱部を殆んどなくして、フリーボード
23の上端部に、直接断熱材28を内張りした上記排ガスダ
クト24を連結する。そして、この排ガスダクト24に連な
る上記第1マルチサイクロン25の内面に断熱材28を内張
りして吸熱しない構造とするとともに、上記循環路26も
上述のような断熱構造としたものである。
Reference numeral 21 is a fluidized bed combustion boiler having a fluidized bed 22, a freeboard 23 and the like. A first multi-cyclone 25 is connected to an upper portion of the freeboard 23 via an exhaust gas duct 24, and a particle discharge port provided at a lower portion of the first multi-cyclone 25 and the freeboard 23 are provided with an inclined circulation path. Connect at 26. At least the peripheral wall of the freeboard 23 has a heat insulating structure that does not absorb heat, such as a furnace construction structure, and the contact heat transfer section to the first multi-cyclone 25 continuing to the lower end side of the freeboard 23 is almost eliminated. , Freeboard
The exhaust gas duct 24 having a heat insulating material 28 lined therein is directly connected to the upper end portion of 23. The heat insulating material 28 is lined on the inner surface of the first multi-cyclone 25 connected to the exhaust gas duct 24 so as not to absorb heat, and the circulation path 26 has the heat insulating structure as described above.

また、上記第1マルチサイクロン25から第2マルチサイ
クロン29への排ガスダクト30の途中には、接触伝熱部と
して、蒸発器,節炭器などのガス冷却器31を設ける。図
中32はエアヒータ,33は集塵器、34は煙突である。
Further, a gas cooler 31 such as an evaporator or a economizer is provided as a contact heat transfer part in the middle of the exhaust gas duct 30 from the first multi-cyclone 25 to the second multi-cyclone 29. In the figure, 32 is an air heater, 33 is a dust collector, and 34 is a chimney.

そして本発明を実施するための第1図に示すプラント
は、上記循環路26に、これの上流側と下流側に接続した
バイパス流路35を設け、このバイパス流路35の中途部に
クーラー36を設け、該クーラー36で熱交換を行わせ、高
温未燃灰の一部バイパス流路35を通しながら冷却し、こ
の冷却された未燃灰を循環路26中を通る主流の高温未燃
灰に混入させてフリーボード23に戻し、ここで再燃焼す
るようにしたものである。
In the plant shown in FIG. 1 for carrying out the present invention, a bypass passage 35 connected to the upstream side and the downstream side of the circulation passage 26 is provided in the circulation passage 26, and a cooler 36 is provided in the middle of the bypass passage 35. Is provided to cause heat exchange in the cooler 36, and the high temperature unburned ash is cooled while passing through the partial bypass flow path 35, and the cooled unburned ash is passed through the circulation path 26 and is the main stream of high temperature unburned ash. It is mixed in and returned to the freeboard 23, where it is burned again.

また、第2図に示すプラントは、上記循環路26の一部を
クーラー37にて囲み、循環路26内に通る高温未燃灰の一
部を冷却してフリーボード23に戻し、ここで再燃焼させ
るようにしたものである。
Further, in the plant shown in FIG. 2, a part of the circulation path 26 is surrounded by a cooler 37, and a part of the high temperature unburned ash passing through the circulation path 26 is cooled and returned to the freeboard 23, where it is recycled. It is designed to burn.

また、特に図示してないが、上記プラントの各クーラー
36,37は、フリーボード23の内部温度を検知し、この温
度検知信号により制御されるようにすることが望まし
い。また、他の手段として、特に図示してないが、フリ
ーボード23に水の噴射ノズルを設け、この噴射ノズルか
らフリーボード23中に水を噴射状態で供給することによ
り、フリーボード23における未燃灰の燃焼を一時的に低
下し、燃焼温度を制御する手段もある。
Also, although not particularly shown, each cooler of the above plant
It is desirable that 36 and 37 detect the internal temperature of the freeboard 23 and be controlled by this temperature detection signal. Further, as another means, although not particularly shown, a water jet nozzle is provided on the freeboard 23, and water is jetted into the freeboard 23 from the jet nozzle to supply unburned water to the freeboard 23. There is also a means of temporarily reducing the combustion of ash and controlling the combustion temperature.

上記ボイラプラントに基づいて、本発明による流動床燃
焼ボイラの未燃分再燃焼方法について述べる。
Based on the above-mentioned boiler plant, a method for reburning unburned components of a fluidized bed combustion boiler according to the present invention will be described.

流動床燃焼ボイラ21を運転し、流動層燃焼を開始する
と、流動層22から未燃灰含む微粒子がフリーボード23方
向に向け飛散する。この飛散した微粒子は、フリーボー
ド23の周壁が築炉構造27であるため、温度降下すること
なくフリーボード23で一部が燃焼したのち、排ガスと共
に排ガスダクト24を通って第1マルチサイクロン25に入
り、ここで比較的粒径の大きい粒子のみ捕捉される。こ
の際、流動床燃焼ボイラ21には、フリーボード23に連る
接触伝熱部が、全て、または、殆んどなく、排ガスダク
ト24、および、第1マルチサイクロン25には断熱材28,2
8が内張りされているので、排ガス中の飛散粒子は温度
降下が少ない。
When the fluidized bed combustion boiler 21 is operated and the fluidized bed combustion is started, fine particles containing unburned ash are scattered from the fluidized bed 22 toward the freeboard 23. Since the peripheral wall of the freeboard 23 has the furnace construction structure 27, a part of the scattered fine particles is burned in the freeboard 23 without a temperature drop, and then passes through the exhaust gas duct 24 together with the exhaust gas to the first multi-cyclone 25. Incoming, where only particles of relatively large size are captured. At this time, the fluidized bed combustion boiler 21 has no or almost no contact heat transfer section connected to the freeboard 23, and the exhaust gas duct 24 and the first multi-cyclone 25 have heat insulating materials 28,2.
Since 8 is lined, the temperature of scattered particles in exhaust gas does not drop.

そして、この第1マルチサイクロン25まで捕捉された粒
子は、800〜1,000℃の高温を保って第1マルチサイクロ
ン25から重力で循環路26を通ってフリーボード23の下部
に戻され、フリーボード23で再び燃焼される。以後この
行程が繰り返し行われ、上記流動層22内からとび出した
未燃灰は、フリーボード23において燃焼され、また、第
1マルチサイクロン25に送られ捕捉された未燃灰は再び
フリーボード23に戻され、ほぼ完全に燃焼される。そし
て、上述した築炉構造27,断熱構造28による作用と併せ
て、フリーボード23を高温状態に保持し、脱硫,脱硝反
応を有効に行わせ、排ガス中SOx,NOx排出値を大巾に低
下させる。
Then, the particles captured up to the first multi-cyclone 25 are returned from the first multi-cyclone 25 by gravity to the lower part of the freeboard 23 through the circulation path 26 while maintaining a high temperature of 800 to 1,000 ° C. Is burned again. After that, this process is repeated, and the unburned ash that has jumped out of the fluidized bed 22 is burned in the freeboard 23, and the unburned ash that has been sent to the first multi-cyclone 25 and captured is returned to the freeboard 23. It is returned and burned almost completely. In addition to the above-mentioned actions by the furnace construction 27 and the heat insulation structure 28, the freeboard 23 is kept at a high temperature to effectively perform the desulfurization and denitration reactions, and the SOx and NOx emission values in the exhaust gas are drastically reduced. Let

ところが、フリーボード23内の温度が異常に、詳しく
は、1,000℃以上に上昇すると、折角脱硫反応されたCaS
Oが熱分解し、脱硫前のCaO+SOの状態に逆戻りし、
また、NOがCで還元する反応が停止し、SOx,NOxの増大
を来す。
However, when the temperature inside the freeboard 23 is abnormal, more specifically, when the temperature rises above 1,000 ° C, the CaS that has undergone the desulfurization reaction has turned into
O 4 was thermally decomposed and returned to the state of CaO + SO 2 before desulfurization,
Further, the reaction of reducing NO with C is stopped, and SOx and NOx are increased.

そこで本発明は、フリーボード23中の燃焼温度が、1,00
0℃を超えたことを検知した場合、または、1,000℃付近
に上昇したとき、あるいはSOx,NOxの値が基準値を越え
た場合に、第1マルチサイクロン25から循環路26に入っ
た高温未燃灰の一部をバイパス流路35に導き、この導か
れた高温未燃灰をクーラー36部で熱交換して冷却させ、
この冷却された未燃灰を再び循環路26内を通る主流の高
温未燃灰中に混合し、これをフリーボード23に戻して再
燃焼させる。このとき未燃灰一部が低温であるためフリ
ーボード23における燃焼は低下し、フリーボード23の温
度は800〜1,000℃の範囲に制御され、脱硫,脱硝反応が
有効に行われる。
Therefore, according to the present invention, the combustion temperature in the freeboard 23 is 1,00.
When it is detected that the temperature exceeds 0 ° C, or when the temperature rises to around 1,000 ° C, or when the SOx and NOx values exceed the reference values, the high temperature unreacted from the first multi-cyclone 25 into the circulation path 26 A part of the burned ash is guided to the bypass flow path 35, and the guided high temperature unburned ash is cooled by exchanging heat with the cooler 36 part,
This cooled unburned ash is mixed again with the mainstream high temperature unburned ash passing through the circulation path 26, and this is returned to the freeboard 23 and reburned. At this time, since the unburned ash is partly low in temperature, the combustion in the freeboard 23 is reduced, the temperature of the freeboard 23 is controlled in the range of 800 to 1,000 ° C., and the desulfurization and denitration reactions are effectively performed.

また、他の手段として、第2図に示すように、循環路26
がクーラー37内を通ることから、循環路26の通る高温未
燃灰の熱が奪われ、高温未燃灰が冷却されることによ
り、フリーボード23における燃焼が低下し、温度が800
〜1,000℃の範囲に制御され、未燃灰が燃焼し還元剤と
して働きうる800℃以上の温度とすると同時に、脱硫剤
であるCaOがSOxと反応しCaSOとなり再分解しない範囲
の温度に保たれる。
In addition, as another means, as shown in FIG.
Is passed through the cooler 37, heat of the high temperature unburned ash passing through the circulation path 26 is removed, and the high temperature unburned ash is cooled.
Is controlled in the range of ~ 1000 ° C., at the same time non-combusted ash is a temperature above 800 ° C. which may serve as a combustion reducing agent, retaining the temperature range is desulfurizing agent CaO does not react with CaSO 4 becomes re decomposes SOx Be drunk

また、他の手段として、フリーボード23中に水を噴霧状
として供給することにより燃焼を低下させ、温度を800
〜1,000℃に制御する。
In addition, as another means, combustion is reduced by supplying water in the freeboard 23 in the form of spray, and the temperature is reduced to 800
Control to ~ 1,000 ℃.

更に、上記第1マルチサイクロン25で粒径の大きい粒子
を捕捉した残りの微粒子類を含む排ガスは、第1マルチ
サイクロン25を出たあと、ガス冷却器(蒸発器,節炭器
など)31で冷却されたのち、第2マルチサイクロン29に
入り、ここでできるだけ多くの粒子を捕捉する。そし
て、この第2マルチサイクロン29を出た排ガスは、エア
ヒータ32に入り、ここで流動床燃焼ボイラ21の風箱に送
給する燃焼用空気と熱交換せしめられ、温度が低下した
排ガスは集塵器33に入り、除塵されたのち煙突24より大
気中に放散される。
Further, the exhaust gas containing the remaining fine particles captured by the first multi-cyclone 25 having a large particle size is discharged from the first multi-cyclone 25 and then is fed to a gas cooler (evaporator, economizer, etc.) 31. After cooling, it enters the second multi-cyclone 29, where it traps as many particles as possible. Then, the exhaust gas discharged from the second multi-cyclone 29 enters the air heater 32, where it is heat-exchanged with the combustion air to be fed to the wind box of the fluidized bed combustion boiler 21, and the exhaust gas having a lowered temperature is collected. After entering the container 33 and being dedusted, it is emitted from the chimney 24 into the atmosphere.

[発明の効果] 上述のように本発明の構成によれば、次のような効果が
得られる。
[Effects of the Invention] According to the configuration of the present invention as described above, the following effects can be obtained.

(a)フリーボード部に、流動層より飛散する未燃灰を
高温のまま捕集してフリーボードに循環させるシステム
を付加したことにより、未燃灰の有効燃焼が図れ、フリ
ーボードを高温に保持し、脱硫,脱硝反応が促進され、
NOxの発生値が著しく抑制しうるとともに、脱硫剤の節
減が図れる。。
(A) By adding a system to the freeboard part, which collects unburned ash scattered from the fluidized bed at high temperature and circulates it to the freeboard, effective combustion of unburned ash is achieved and the freeboard is heated to a high temperature. Hold, the desulfurization and denitration reactions are promoted,
The NOx generation value can be significantly suppressed, and the desulfurizing agent can be saved. .

(b)循環して再燃焼される高温未燃灰が増大し、フリ
ーボード中で再燃焼されて温度が異常に上昇したときな
どに、高温未燃灰の一部、または全てを冷却することに
より、フリーボードの燃焼を低下させ、温度を脱硫,脱
硝反応に適した温度に制御し、脱硫,脱硝反応を大巾に
促進することができる。
(B) Cooling some or all of the high temperature unburned ash when the amount of high temperature unburned ash that is circulated and reburned increases and is reburned in the freeboard and the temperature rises abnormally. Thus, the combustion of the freeboard can be reduced, the temperature can be controlled to a temperature suitable for the desulfurization and denitration reactions, and the desulfurization and denitration reactions can be greatly promoted.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は、本発明方法を実施するための流動
床燃焼ボイラプラントの概略図,第3図及び第4図は、
それぞれ従来の未燃分再燃焼方法を実施する流動床燃焼
ボイラプラントの概略図である。 21……流動床燃焼ボイラ,22……流動層,23……フリーボ
ード,24……排ガスダクト,25……第1マルチサイクロ
ン,26……循環路,27……築炉構造,28……断熱材,35……
バイパス流路,36,37……クーラー。
1 and 2 are schematic views of a fluidized bed combustion boiler plant for carrying out the method of the present invention, and FIGS. 3 and 4 are
It is a schematic diagram of the fluidized bed combustion boiler plant which implements the conventional unburned-contents recombustion method, respectively. 21 …… Fluidized bed combustion boiler, 22 …… Fluidized bed, 23 …… Freeboard, 24 …… Exhaust gas duct, 25 …… First multi-cyclone, 26 …… Circulation path, 27 …… Furnace construction structure, 28 …… Insulation, 35 ……
Bypass channel, 36, 37 ... Cooler.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流動床燃焼ボイラのフリーボード部から第
1マルチサイクロンまでの接触伝熱部を殆んどなくし、
フリーボード周壁,排ガスダクト、および、これに連る
第1マルチサイクロンの殆んどを断熱構造となして、流
動層から飛散した未燃灰などを含む粒子を、フリーボー
ドから排ガスダクトを通って第1マルチサイクロンに入
るまで高温に保持せしめるとともに、該第1マルチサイ
クロンで捕捉した比較的粒径の大きな粒子を、高温状態
で断熱構造とした循環路を介してフリーボードの下部に
戻すことを繰り返して行わせ、フリーボード中の脱硫剤
であるCaO,還元剤である未燃カーボンの濃度を高めて、
流動層からの飛散粒子中の未燃分を再燃焼するととも
に、 上記第1マルチサイクロンから循環路を通ってフリーボ
ード中に戻される高温未燃灰の一部、または、全てを冷
却し、フリーボードにおける燃焼反応を抑制し、更に、
フリーボード内の温度を検知し、該温度が脱硫反応と、
脱硝反応を妨げる温度に達した温度検知値で、冷却手段
を動作させ、循環する高温未燃灰の一部、または全てを
冷却してフリーボードの上限温度を、脱硫,脱硝反応を
妨げない800〜1,000℃の温度条件に制御維持し、未燃灰
が燃焼し還元剤として働きうる800〜1,000℃以上の温度
とすると同時に、脱硫剤であるCaOがSOxと反応しCaSO
となり再分解しない範囲の温度に保つことを特徴とする
流動床燃焼ボイラにおける未燃分再燃焼方法。
1. A contact heat transfer section from a freeboard section to a first multi-cyclone of a fluidized bed combustion boiler is almost eliminated.
The surrounding wall of the freeboard, the exhaust gas duct, and most of the first multi-cyclone connected to the freeboard are made into an insulating structure, and particles containing unburned ash scattered from the fluidized bed are passed from the freeboard through the exhaust gas duct. The temperature is kept high until it enters the first multi-cyclone, and the particles having a relatively large particle size captured by the first multi-cyclone are returned to the lower part of the freeboard through a circulation path having an adiabatic structure in a high temperature state. Repeatedly, increase the concentration of desulfurizing agent CaO and reducing agent unburned carbon in the freeboard,
Reburns the unburned matter in the particles scattered from the fluidized bed, and cools some or all of the high temperature unburned ash returned from the first multi-cyclone to the freeboard through the circulation path to free it. Suppresses the burning reaction on the board,
Detects the temperature inside the freeboard, and this temperature is the desulfurization reaction,
With the temperature detection value that reaches the temperature that prevents the denitration reaction, the cooling means is operated to cool part or all of the circulating high temperature unburned ash to the upper limit temperature of the freeboard, which does not interfere with the desulfurization and denitration reaction 800 The temperature is controlled to be maintained at ~ 1,000 ℃, and the temperature is set at 800 ~ 1,000 ℃ or higher at which unburned ash burns and can act as a reducing agent. At the same time, CaO, which is a desulfurizing agent, reacts with SOx and CaSO 4
A method for recombusting unburned components in a fluidized bed combustion boiler, characterized in that the temperature is maintained within a range that does not cause re-decomposition.
JP60046047A 1985-03-08 1985-03-08 Reburning method for unburned components in fluidized bed combustion boiler Expired - Lifetime JPH0663613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046047A JPH0663613B2 (en) 1985-03-08 1985-03-08 Reburning method for unburned components in fluidized bed combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046047A JPH0663613B2 (en) 1985-03-08 1985-03-08 Reburning method for unburned components in fluidized bed combustion boiler

Publications (2)

Publication Number Publication Date
JPS61205710A JPS61205710A (en) 1986-09-11
JPH0663613B2 true JPH0663613B2 (en) 1994-08-22

Family

ID=12736112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046047A Expired - Lifetime JPH0663613B2 (en) 1985-03-08 1985-03-08 Reburning method for unburned components in fluidized bed combustion boiler

Country Status (1)

Country Link
JP (1) JPH0663613B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830566B2 (en) * 1987-09-22 1996-03-27 三井造船株式会社 Circulating fluidized bed boiler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606908U (en) * 1983-06-22 1985-01-18 バブコツク日立株式会社 boiler equipment

Also Published As

Publication number Publication date
JPS61205710A (en) 1986-09-11

Similar Documents

Publication Publication Date Title
KR100661117B1 (en) Circulating fluidized bed boiler
JPH0229372Y2 (en)
CZ297796A3 (en) Purification of gas combustion products and apparatus for making the same
US4843981A (en) Fines recirculating fluid bed combustor method and apparatus
US5103773A (en) Fluid bed furnace
JP5535782B2 (en) Combustion system
CA1271945A (en) Fines recirculating fluid bed combustor method and apparatus
JP2006292264A (en) Method and system for waste combustion treatment
JPH0663613B2 (en) Reburning method for unburned components in fluidized bed combustion boiler
JP2002243110A (en) Pulverized coal boiler
JPH07506179A (en) Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant
JPH0658165B2 (en) Reburning method for unburned components in fluidized bed combustion boiler
CA1290988C (en) Method of combustion for fluidized bed incinerators
JP3309387B2 (en) Waste incinerator
JPH0235892B2 (en)
JP2642568B2 (en) Secondary combustion method of refuse incinerator
JPH0658166B2 (en) Reburning method for unburned components in fluidized bed combustion boiler
KR930005289B1 (en) Desulphurization method and apparatus of exhaust gas
JP3217470B2 (en) Boiler equipment
JP3453347B2 (en) Circulating fluidized bed combustion furnace and operating method thereof
JPH0660727B2 (en) Temperature control method in fluidized bed combustion boiler
JPS62123211A (en) Control of unburnt constituent in fluidized bed combustion boiler
JPS5833368Y2 (en) Fluidized bed combustion equipment
JPS58163421A (en) Treatment of exhaust gas of fluidized combustion boiler
JPH04186001A (en) Fluidized bed combustion device