JPS62123211A - Control of unburnt constituent in fluidized bed combustion boiler - Google Patents

Control of unburnt constituent in fluidized bed combustion boiler

Info

Publication number
JPS62123211A
JPS62123211A JP26460285A JP26460285A JPS62123211A JP S62123211 A JPS62123211 A JP S62123211A JP 26460285 A JP26460285 A JP 26460285A JP 26460285 A JP26460285 A JP 26460285A JP S62123211 A JPS62123211 A JP S62123211A
Authority
JP
Japan
Prior art keywords
cyclone
freeboard
temperature
fluidized bed
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26460285A
Other languages
Japanese (ja)
Other versions
JPH065125B2 (en
Inventor
Tomoaki Takada
高田 友昭
Jun Tatebayashi
舘林 恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP26460285A priority Critical patent/JPH065125B2/en
Publication of JPS62123211A publication Critical patent/JPS62123211A/en
Publication of JPH065125B2 publication Critical patent/JPH065125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To control the flow amount of gas in accordance with the fluctuation of a load and obtain a constant flow speed at all times by a method wherein an operation, in which particles including unburnt ash or the like dispersed from a fluidized bed are kept in a high temperature and the particles, having comparatively large grain sizes and collected by a cyclone, are returned to a free board under a high temperature condition through a circulating path, is repeated. CONSTITUTION:All or a part of the peripheral wall of a free board 4 is constituted by a heat insulating structure while all or a part of a contacting and heat transferring section until high-temperature cyclones 6a, 6b continued to the lower side of the free board 4 is lined by an insulating material 9. Further, the heat insulating structure is applied to circulating paths 7a, 7b. Unburnt constituent, flying out of a fluidized bed 2, is burnt in the free board section 4 and the unburnt constituent, corrected by the high-temperature cyclones 6a, 6b, returns to the free board section again and is burnt substantially perfectly while the free board section 4 is kept in a high- temperature condition by the heat insulating effects of the structure 8 of the furnace and the heat insulating material 9 whereby the reactions of denitrification and desulfurization may be effected effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流動床燃焼ボイラにおける未燃分制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling unburned matter in a fluidized bed combustion boiler.

〔発明の背景〕[Background of the invention]

一般にこの種流動床燃焼ボイラにおいては、負荷が低下
すると、流rJhH内温度が低下、ガス温度も低下し、
さらにフリーボードを通過するガス流延、即ち、流速が
低下し、ガス温度がさらに低下する現争が生じる。この
ことば低負荷時における未燃分のとび出し量の減少、及
び低負荷時では、流速によって支配されろサイクロンの
効率が悪くなり、捕集効率の確保ができなく、その循環
量が減少することにより、一層加速されることになる。
Generally, in this type of fluidized bed combustion boiler, when the load decreases, the temperature inside the flow rJhH decreases, and the gas temperature also decreases.
Furthermore, the problem arises that the gas flow through the freeboard, that is, the flow velocity is reduced, and the gas temperature is further reduced. This means a decrease in the amount of unburned matter that comes out when the load is low, and when the load is low, the efficiency of the cyclone deteriorates due to the flow velocity, making it impossible to ensure collection efficiency and reducing the amount of unburned matter circulating. This will further accelerate the process.

従って従来の流動床燃焼ボイラにおいては、負荷が変化
したときに、フリーボード部における燃焼量と伝熱面と
の熱交換作用とがバランスしなくなりフリーボード部の
温度が低下するという問題点があ抄、ボイラの総合燃焼
効率を低下させることになる。
Therefore, in conventional fluidized bed combustion boilers, when the load changes, there is a problem that the combustion amount in the freeboard section and the heat exchange effect with the heat transfer surface become unbalanced, and the temperature of the freeboard section decreases. This will reduce the overall combustion efficiency of the boiler.

〔発明の目的〕[Purpose of the invention]

本発明は、このような実情に鑑みなされたもので、簡単
な面も合理的手段によって従来技術の問題点を解消せし
め、負荷の変動に応じてガス流量を制御し、常に一定し
た流速が得られるようになし、何れかのサイクロンの効
率を維持させ、負荷に対応してフリーボード部の温度を
脱硫、脱硝に最適な温度に維持するための制御方法を提
供せんとするものである。
The present invention has been developed in view of the above circumstances, and it solves the problems of the prior art by simple and rational means, and controls the gas flow rate in accordance with load fluctuations so that a constant flow rate can always be obtained. The purpose of the present invention is to provide a control method for maintaining the efficiency of either cyclone and maintaining the temperature of the freeboard section at the optimum temperature for desulfurization and denitration in accordance with the load.

〔発明の構成〕[Structure of the invention]

従来技術の問題点を解決する本発明の構成は、流動床燃
焼ボイラのサイクロンまでの接触伝熱部を全てまた(よ
一部をなくし、フリーボード周壁。
The structure of the present invention, which solves the problems of the prior art, eliminates all contact heat transfer parts up to the cyclone of the fluidized bed combustion boiler, and eliminates the freeboard peripheral wall.

排ガスダクトおよびこれに連なる火炉出口の高温サイク
ロンの全て、または、その一部を断熱構造となして、流
動層から飛散した未燃灰などを含む粒子を、フリーボー
ドから排ガスダクトを通ってサイクロンに入るまで高温
に保持せしめ、サイクロンで捕捉した比較的粒径の大き
な粒子を、高温状態で循環路を介してフリーボードに戻
すことを繰り返して、流動層からの飛散粒子中の未燃分
を再燃焼する手段、上記フリーボードに複数の排ガスダ
クトを介して火炉出口の高温サイクロン、及び後部伝熱
面を各別に接続し、該サイクロン、後部伝熱面を通過す
るガス量を、該後部伝熱面の下手側に接続せる低温ガス
流路に設けた流量制御用のダンパーによって各別に通過
ガス量を制御する手段、とにより、フリーボード部での
ガス流速。
All or part of the exhaust gas duct and the high-temperature cyclone at the furnace outlet connected to it are made to have an insulated structure, and particles including unburned ash scattered from the fluidized bed are transferred from the freeboard to the cyclone through the exhaust gas duct. The relatively large particles captured by the cyclone are repeatedly returned to the freeboard via the circulation path in a high temperature state, and the unburned particles in the particles scattered from the fluidized bed are regenerated. A combustion means, a high-temperature cyclone at the outlet of the furnace, and a rear heat transfer surface are each connected to the freeboard through a plurality of exhaust gas ducts, and the amount of gas passing through the cyclone and the rear heat transfer surface is controlled by the amount of gas passing through the rear heat transfer surface. The gas flow rate in the freeboard section is controlled by a means for controlling the amount of passing gas separately by a damper for controlling the flow rate provided in the low temperature gas flow path connected to the lower side of the surface.

サイクロンの捕集効率を低負荷でも大巾な変化がないよ
うにし、フリーボード部の温度パターンを脱硫、脱硝に
適した温度に制御することを特徴とする流動床燃焼ボイ
ラにおける未燃分制御方法、および、流動床燃焼ボイラ
のサイクロンまでの接触伝熱部を全てまたは一部をなく
し、フリーボード周壁、排ガスダクトおよびこれに連な
る火炉出口の高温サイクロンの全て、または、その一部
を断熱構造となして、流動層から飛散した未燃灰などを
含む粒子を、フリーボードから排ガスダクトを通ってサ
イクロンに入るまで高温に保持せしめ、サイクロンで捕
捉した比較的粒径の大きな粒子を、高温状態で循環路を
介してフリーボードに戻すことを繰り返して、流rrj
J層からの飛散粒子中の未燃分を再燃焼する手段、上記
フリーボードを複数に分割するとともに、分割された各
フリーボード部に、夫々上記排ガスダクトを介して火炉
出口の高温サイクロン、及び後部伝熱面を各別に接続し
、該サイクロン、後部伝熱面を通過するガス量を、該後
部伝熱面の下手側に接続せる低温ガス流路に設けた流量
制御用のダンパーによって各別に通過ガス量を制御する
手段、とにより、フリーボード部でのガス流速、サイク
ロンの捕集効率を低負荷でも大巾な変化がないようにし
、フリーボード部の温度パターンを脱硫、脱硝に適した
温度に制御することを特徴とするものである。
A method for controlling unburned matter in a fluidized bed combustion boiler, which is characterized by preventing large changes in the collection efficiency of the cyclone even at low loads, and controlling the temperature pattern of the freeboard section to a temperature suitable for desulfurization and denitrification. , and all or part of the contact heat transfer part up to the cyclone of the fluidized bed combustion boiler is eliminated, and all or part of the freeboard peripheral wall, the exhaust gas duct, and the high-temperature cyclone at the furnace outlet connected thereto are made into an insulated structure. Particles including unburned ash scattered from the fluidized bed are kept at high temperature until they pass from the freeboard through the exhaust gas duct and enter the cyclone, and relatively large particles captured by the cyclone are kept at high temperature. Repeatedly returning to the freeboard via the circulation path, the flow
A means for re-burning unburned matter in the particles scattered from the J layer, dividing the freeboard into a plurality of parts, and connecting each divided freeboard to a high-temperature cyclone at the furnace outlet via the exhaust gas duct; The rear heat transfer surfaces are connected separately, and the amount of gas passing through the cyclone and the rear heat transfer surface is controlled separately by a damper for flow rate control provided in the low temperature gas flow path connected to the lower side of the rear heat transfer surface. By means of controlling the amount of gas passing through, the gas flow velocity in the freeboard section and the collection efficiency of the cyclone are prevented from changing significantly even at low loads, and the temperature pattern of the freeboard section is made suitable for desulfurization and denitrification. It is characterized by temperature control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次のような効果が得られる。 According to the present invention, the following effects can be obtained.

(a)  フリーボード部に、流動層より飛散する未燃
灰を高温のまま捕集してフリーボード部に循環させるシ
ステムを付加したことにより、未燃灰の有効燃焼が計れ
、フリーボード部を高温に保持し、脱硫、脱硝反応が促
進され、NOxの発生値が著しく制御しうるとともに、
脱硫剤の節減が計れる。
(a) By adding a system to the freeboard section that collects unburned ash scattered from the fluidized bed at a high temperature and circulates it to the freeboard section, effective combustion of unburned ash can be measured, and the freeboard section can be By maintaining the temperature at a high temperature, desulfurization and denitrification reactions are promoted, and the NOx generation value can be significantly controlled.
You can save on desulfurizing agent.

(b)  部分負荷時には、使用するサイクロンの数を
減らすことにより、ガス流速を適正範囲内に保持して捕
集効率の確保がなしうる。
(b) At partial load, by reducing the number of cyclones used, the gas flow rate can be maintained within an appropriate range and collection efficiency can be ensured.

(e)  ダンパーは後部伝熱面の下手側である低温部
に設置されるため、流通制御部の信頼性が高い。
(e) The reliability of the flow control section is high because the damper is installed in the low-temperature section on the lower side of the rear heat transfer surface.

(d)  負荷が変化したとき、燃焼量と伝熱面とのバ
ランスが崩れても、複数のダンパーのうち、何れかのダ
ンパーを閉塞することにより当該ダンパーに対応するフ
リーボード部の使用を中断させ、残りのフリーボード部
をそのまま使用させ、フリーボード部の湿度パターンを
脱硫、脱硝に適した温度に制御しうろ。
(d) When the load changes, even if the balance between the combustion amount and the heat transfer surface is lost, the use of the freeboard section corresponding to the damper can be interrupted by blocking any one of the multiple dampers. The remaining freeboard section can be used as is, and the humidity pattern of the freeboard section should be controlled to a temperature suitable for desulfurization and denitrification.

〔実施例IF  (第1,2図) 図面について本発明構成の実施例を説明する。[Example IF (Figures 1 and 2) Embodiments of the configuration of the present invention will be described with reference to the drawings.

第1図は本発明方法を実施する流動床燃焼ボイラブラン
トの構成を示す概略図、第2図は同上斜視図、第3図は
フリーボード部を複数に分割した実施例の概略図、第4
図は同上斜視図である。
FIG. 1 is a schematic diagram showing the configuration of a fluidized bed combustion boiler blunt for carrying out the method of the present invention, FIG. 2 is a perspective view of the same, FIG.
The figure is a perspective view of the same as above.

先ず、第1図及び第2図に示す実施例について説明する
と、1は流動層2を有する流動床燃焼ボイラ(ボイラと
略称)、4はフリーボード部である。該フリーボード4
の上部には、複数の排ガスグク+−5a、5bを介して
高温、サイクロン6a、 6bが連結され、この冬高温
サイクロン6a、 6bの下部に設けた粒子排出口と、
上記フリーボード部4とを循環路7a、7bにて接続す
る。そして、上記フリーボード部4の周壁の全て、また
は、一部を築炉構造8など吸熱しない断熱構造となすと
ともに、フリーボード部4の下手側に続く高温サイクロ
ン6i、 6bまでの接触伝熱部の全て、また′は、一
部に断熱材9を内張すする。また、上記循環路7m、 
7bにも上述のような断熱構造を施す。
First, the embodiment shown in FIGS. 1 and 2 will be described. 1 is a fluidized bed combustion boiler (abbreviated as boiler) having a fluidized bed 2, and 4 is a freeboard section. The free board 4
High-temperature cyclones 6a, 6b are connected to the upper part of the exhaust gas pipes 5a, 5b.
It is connected to the freeboard section 4 through circulation paths 7a and 7b. All or part of the peripheral wall of the freeboard section 4 is made of an insulating structure that does not absorb heat, such as the furnace construction structure 8, and a contact heat transfer section is provided to the high temperature cyclones 6i and 6b continuing on the lower side of the freeboard section 4. All or ' are partially lined with a heat insulating material 9. In addition, the above circulation path 7m,
7b is also provided with a heat insulating structure as described above.

上記各高温サイクロン6a、 6bの下手側には、断熱
構造をもつ排ガスダクト10a、 10bを介してエコ
ノマイザ−、エアヒータなどのボイラの後部伝熱面11
a、11bを接続し、この各後部伝熱面11a、11b
の下手側に連なる低温状態の排ガス流路12m、 12
bに夫々流量制御ダンパ13a、 13bを設けたもの
である。
On the downstream side of each of the high-temperature cyclones 6a and 6b, a rear heat transfer surface 11 of a boiler such as an economizer and an air heater is connected via exhaust gas ducts 10a and 10b having a heat insulating structure.
a, 11b, and each rear heat transfer surface 11a, 11b
12 m of low-temperature exhaust gas flow path connected to the lower side of the 12
Flow rate control dampers 13a and 13b are respectively provided at 13b.

この排ガス流#12a、12bを流れる排ガスは、図示
してないが第2マルチサイクロン、エアヒータ。
The exhaust gases flowing in the exhaust gas streams #12a and 12b pass through a second multi-cyclone and an air heater (not shown).

集塵器などを経て煙突に至る。尚上記流量制御ダンパ1
3a、 13bは、負荷の変動を検知し、この制御信号
により開度が自動制御されろように構成することば当然
のことである。
It reaches the chimney through a dust collector, etc. In addition, the above flow rate control damper 1
It goes without saying that 3a and 13b are configured so that fluctuations in the load are detected and the opening degree is automatically controlled based on this control signal.

〔作  用〕[For production]

上記ボイラブラントに基づいて、本発明による流動床燃
焼ボイラの未燃分制御方法について述べる。
A method for controlling unburned content in a fluidized bed combustion boiler according to the present invention will be described based on the boiler blunt described above.

ボイラ1を運転し、流vh層燃焼を開始すると、流動層
2から未燃灰を含む微粒子がフリーボード部4方向に向
は飛散した微粒子は、7リ一ボード部4の周壁の全てま
たは一部が築炉構造8であるため、温度降下することな
く7リ一ボード部4で一部が燃焼したのら、排ガスとと
6に、排ガスダクl−5a、5bを通って高温サイクロ
ン6a、 6bに入り、ここで比較的粒径の大きい粒子
のみが捕捉されろ。
When the boiler 1 is operated and flowing VH bed combustion is started, fine particles containing unburned ash from the fluidized bed 2 are scattered in the direction of the free board section 4, and the fine particles are scattered on all or part of the peripheral wall of the 7 re-board section 4. Since the part has a furnace construction structure 8, after a part of the combustion occurs in the re-board part 4 without a temperature drop, the exhaust gas passes through the exhaust gas ducts 1-5a and 5b to the high-temperature cyclone 6a, 6b, where only relatively large particles are captured.

この際、7リ一ボード部4に連なる排ガスダクト5m、
 5bおよび高温サイクロン(ia、 Ohには断熱材
9が内張すされているので、排ガス中の飛散粒子の高温
降下は少ない。
At this time, a 5 m exhaust gas duct connected to the 7 re-board part 4,
5b and the high-temperature cyclones (ia, Oh) are lined with a heat insulating material 9, so that the drop in temperature of the particles scattered in the exhaust gas is small.

高温サイクロン6a、 6bで捕捉された粒子は、80
0〜1000℃の高温を保って高温サイクロンOa、6
b#)ら垂力で循環!87a、7bを通ってフリーボー
ド部4の下部に戻され、フリーボード部4で再燃焼され
る。以後この行程が繰り返され、流動jlil 2から
とび出した未燃分は、フリーボード部4において燃焼さ
れ、また高温サイクロン6a、 6bに送られ捕捉され
た未燃分は、再びフリーボード部に戻されてほぼ完全に
燃焼せしめられ、上述した築炉構造8゜断熱材9による
断熱作用と併せて、フリーボード部4を高温状態に保持
し、脱硫、脱硝反応を有効に行わせ、排ガス中のSOX
、 Noχ排出値を大巾に低減させる。
The particles captured by the high temperature cyclones 6a and 6b are 80
Maintaining a high temperature of 0 to 1000℃, high temperature cyclone Oa, 6
b #) Circulate with vertical force! It passes through 87a and 7b and is returned to the lower part of the freeboard section 4, where it is reburned. Thereafter, this process is repeated, and the unburned matter that has flowed out from the fluid 2 is burned in the freeboard section 4, and the unburned matter that has been sent to and captured by the high-temperature cyclones 6a and 6b is returned to the freeboard section again. In addition to the heat insulating effect of the above-mentioned furnace structure 8° insulation material 9, the freeboard section 4 is maintained at a high temperature to effectively carry out desulfurization and denitrification reactions, and SOX in the exhaust gas is completely combusted.
, significantly reducing the Noχ emission value.

高温サイクロン6m、 6bで微粒子が捕捉された排ガ
スは、断熱構造をもつ排ガスダクトloa、 10bを
介してボイラの後部伝熱面11a、 Ilbに至り、こ
こで熱交換を行って低温仮(約300〜400℃)され
た排ガスは排ガス流路12a、 12bje経て公知の
如く処理され運転が続行される。
The exhaust gas with fine particles captured by the high-temperature cyclones 6m and 6b reaches the rear heat transfer surface 11a and Ilb of the boiler via exhaust gas ducts loa and 10b, which have an adiabatic structure, where they exchange heat and become low-temperature (approx. -400°C) passes through the exhaust gas channels 12a and 12bje and is treated in a known manner to continue operation.

このような運転中に、例えば負荷が50%低下したとす
ると、流a層温が低下するとともに、排ガスの流速、排
ガス量が半減し、高温サイクロン6a、6bによる循環
量が減少し、フリーボード部の温度降下を来し、燃焼量
と後部伝熱面とがバランスしなくなる。
During such operation, if the load decreases by 50%, for example, the temperature of the flow a layer decreases, the flow rate of exhaust gas and the amount of exhaust gas decrease by half, the amount of circulation by the high temperature cyclones 6a and 6b decreases, and the freeboard This causes a temperature drop in the rear part of the engine, causing an imbalance between the amount of combustion and the rear heat transfer surface.

そこで本発明は、負荷の検知信号により一方のダンパー
13aまたは13bを動作して、一方の排ガス流路12
aまたは12bを閉塞し、排ガスリ硫れを中断せしめる
Therefore, in the present invention, one of the dampers 13a or 13b is operated in response to a load detection signal, and one exhaust gas flow path 12
a or 12b to interrupt exhaust gas resulfurization.

この乙とにより、排ガスの流れはゆっくりになるが、フ
リーボード部4における吸熱構造が少ない場合にはあま
り影響をうけることなく、高温サイクロン6m、 6b
の捕集効率を確保した状態で温度制御がなしうる。
This slows down the flow of exhaust gas, but if there is little heat absorption structure in the freeboard section 4, it will not be affected much and the high temperature cyclone 6m, 6b
Temperature control can be performed while ensuring the collection efficiency of .

〔実施例■〕 (第3,4図) この実施例におけろ1ば、流rIJJ層2を有する流動
床燃焼ボイラ(ボイラと略称)で、該ボイラ1のフリー
ボードは、垂直状の隔壁3によって複数個のフリーボー
ド部4a、 4bに分割されており、以下の構造は第1
実施例と同じであるため詳細説明は省略する。
[Example ■] (Figures 3 and 4) In this example, 1 is a fluidized bed combustion boiler (abbreviated as boiler) having a flow rIJJ layer 2, and the freeboard of the boiler 1 is a vertical partition wall. 3 into a plurality of freeboard parts 4a, 4b, and the following structure is the first part.
Since this is the same as the embodiment, detailed explanation will be omitted.

〔作  用〕[For production]

上記ボイラブラントに基づいて、本発明による流動床燃
焼ボイラの未燃分制御方法について述べる。
A method for controlling unburned content in a fluidized bed combustion boiler according to the present invention will be described based on the boiler blunt described above.

ボイラ1を運転し、流111層燃焼を開始すると、流動
層2から未燃灰を含む微粒子がフリーボード部4a、 
4b方向に向は飛散した微粒子は、フリーボード部4a
、 4bの周壁の全てまたは一部が築炉構造8であるた
め、温度降下することなくフリーボード部4c、 4b
で一部が燃焼したのち、排ガスと共に排ガスダクl−5
a、 5bを通って高温サイクロン8m、 6bに入り
、ここで比較的粒径の大きい粒子のみが捕捉される。こ
の際、フリーボード部4a、 4bに連なる排ガスダク
ト5a、 5bおよび高温サイクロンOa、 6bには
断熱材9が内張すされているので、排ガス中の飛散粒子
の温度降下は少ない。
When the boiler 1 is operated and combustion starts in the flow 111 layer, fine particles containing unburned ash from the fluidized bed 2 flow into the freeboard section 4a,
The particles scattered in the direction 4b are in the freeboard section 4a.
Since all or part of the peripheral walls of , 4b are the furnace structure 8, the freeboard portions 4c, 4b can be heated without temperature drop.
After some combustion occurs in the exhaust gas duct 1-5 along with the exhaust gas,
It passes through a and 5b and enters high-temperature cyclones 8m and 6b, where only relatively large particles are captured. At this time, since the exhaust gas ducts 5a, 5b and the high-temperature cyclones Oa, 6b connected to the freeboard parts 4a, 4b are lined with a heat insulating material 9, the temperature drop of particles scattered in the exhaust gas is small.

高温サイクロン6’a、6bで捕捉された粒子は、80
0〜1000℃の高温を保って高温サイクロン6a、 
6bがら重力で循環路7a、 7bを通ってフリーボー
ド部4a。
The particles captured by the high temperature cyclones 6'a and 6b are 80
A high temperature cyclone 6a that maintains a high temperature of 0 to 1000°C,
6b passes through the circulation paths 7a and 7b by gravity to the freeboard section 4a.

4bの下部に戻され、フリーボード部4a、 4bで各
別に再燃焼される。以後この高低が繰り返され、流動層
2からとび出した未燃分は、フリーボード部4a、 4
bにおいて燃焼され、また高温サイクロン6a。
4b, and are reburned separately in freeboard sections 4a and 4b. Thereafter, this rise and fall is repeated, and the unburned matter that has jumped out of the fluidized bed 2 is transferred to the freeboard portions 4a, 4.
b, and a high temperature cyclone 6a.

6bに送られ捕捉された未燃分は、再びフリーボード部
に戻されてほぼ完全に燃焼せしめられ、上述した築炉構
造8.断熱材9による断熱作用とOトせて、フリーボー
ド部4a、 4bを高温状態に保持し、脱硫、脱硝反応
を有効に行わせ、排ガス中のSOに。
The unburned matter sent to and captured by 6b is returned to the freeboard section and is almost completely combusted, resulting in the above-mentioned furnace construction structure 8. In combination with the insulation effect of the heat insulating material 9, the freeboard parts 4a and 4b are maintained at a high temperature to effectively carry out desulfurization and denitrification reactions, thereby converting SO in the exhaust gas.

110x排出値を大巾に低減させる。110x emissions values are significantly reduced.

高温サイクロン6a、 6bで微粒子が捕捉された排ガ
スは、断熱構造をもつ排ガスダクl−10a、 10b
を介してボイラの後部伝熱面11a、11bに至り、こ
こで熱交換を行って低温化(約300〜400℃)され
た排ガスは排ガス流路12a、 12bを経て公知の如
く処理され運転が続行される。
The exhaust gas in which fine particles have been captured by the high-temperature cyclones 6a and 6b is transferred to exhaust gas ducts l-10a and 10b with a heat-insulating structure.
The exhaust gas reaches the rear heat transfer surfaces 11a and 11b of the boiler via the boiler, and the exhaust gas is lowered in temperature (approximately 300 to 400 degrees Celsius) by heat exchange there. Continued.

このような運転中に、例丸ば負荷が50%低下したとす
ると、流m層温が低下するとともに、排ガスの流速、排
ガス量が半減し、高温サイクロン6a、Obによる循環
量が減少し、フリーボード部の)温度降下を来し、燃焼
量と後部伝熱面とがバランスしなくなる。
During such operation, for example, if the round load decreases by 50%, the temperature of the flow m layer decreases, the flow rate of exhaust gas and the amount of exhaust gas decrease by half, and the amount of circulation by the high temperature cyclones 6a and Ob decreases. This causes a temperature drop (of the freeboard section), causing an imbalance between the amount of combustion and the rear heat transfer surface.

そこで本発明は、負荷の検知信号により一方のダンパー
13aまたは13bを動作して、一方の排ガス流路12
aまたは12bを閉塞し、排ガスの流れを中断せしめろ
Therefore, in the present invention, one of the dampers 13a or 13b is operated in response to a load detection signal, and one exhaust gas flow path 12
Block a or 12b to interrupt the flow of exhaust gas.

このことにより、排ガスの流れが中断された側のフリー
ボード部4aまたは4bの稼働は中断せしめられ、残り
のフリーボード部4aまたは4bのみが100%稼働を
続行する。このため、一方の使用が停止しても、他方が
通常使用を続け、ガス流速が維持されるので、フリーボ
ード部で過冷却されることがなく、高温サイクロン6a
または6bの捕集効率を確保した状態で温度制御がなし
うる。
As a result, the operation of the freeboard section 4a or 4b on the side where the flow of exhaust gas is interrupted is interrupted, and only the remaining freeboard section 4a or 4b continues to operate at 100%. Therefore, even if the use of one side is stopped, the other side continues to be used normally and the gas flow rate is maintained, so there is no overcooling in the freeboard section and the high temperature cyclone 6a
Alternatively, temperature control can be performed while ensuring the collection efficiency of 6b.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する流動床燃焼ボイラプラン
トの構成を示す概略図、第2図は同上斜視図、第3図は
フリーボードを隔壁で分割した構成を示す概略図、第4
図は同上斜視図である。 1・・流動床燃焼ボイラ、2・流動層、3・・隔壁。 4a、 4b−7リーボード部、 5a、5b−排ガス
ダクト。 6a、 6b・・高1品サイクロン、 7a、7b・・
・循環路、8・・・築炉構造、9・・断熱材、 10a
、]Ob・・・排ガスダクト。 11a、 Ilb  後部伝熱面、 12a、I2b・
排ガス流路。 13a、 13b  流量制御ダンパ。
FIG. 1 is a schematic diagram showing the configuration of a fluidized bed combustion boiler plant that implements the method of the present invention, FIG. 2 is a perspective view of the same as above, FIG. 3 is a schematic diagram showing a configuration in which a freeboard is divided by partition walls,
The figure is a perspective view of the same as above. 1. Fluidized bed combustion boiler, 2. Fluidized bed, 3. Partition wall. 4a, 4b-7 Lee board section, 5a, 5b-exhaust gas duct. 6a, 6b...high 1-item cyclone, 7a, 7b...
・Circulation path, 8...Furnace construction structure, 9...Insulation material, 10a
,]Ob...Exhaust gas duct. 11a, Ilb rear heat transfer surface, 12a, I2b・
Exhaust gas flow path. 13a, 13b flow rate control damper.

Claims (1)

【特許請求の範囲】 〔第1項〕 (a)流動床燃焼ボイラのサイクロンまでの接触伝熱部
を全てまたは一部をなくし、フリーボード周壁、排ガス
ダクトおよびこれに連なる火炉出口の高温サイクロンの
全て、または、その一部を断熱構造となして、流動層か
ら飛散した未燃灰などを含む粒子を、フリーボードから
排ガスダクトを通ってサイクロンに入るまで高温に保持
せしめ、サイクロンで捕捉した比較的粒径の大きな粒子
を、高温状態で循環路を介してフリーボードに戻すこと
を繰り返して、流動層からの飛散粒子中の未燃分を再燃
焼する手段、(b)上記フリーボードに複数の排ガスダ
クトを介して火炉出口の高温サイクロン、及び後部伝熱
面を各別に接続し、該サイクロン、後部伝熱面を通過す
るガス量を、該後部伝熱面の下手側に接続せる低温ガス
流路に設けた流量制御用のダンパーによって各別に通過
ガス量を制御する手段、 とにより、フリーボード部でのガス流速、サイクロンの
捕集効率を低負荷でも大巾な変化がないようにし、フリ
ーボード部の温度パターンを脱硫、脱硝に適した温度に
制御することを特徴とする流動床燃焼ボイラにおける未
燃分制御方法。 〔第2項〕 (a)流動床燃焼ボイラのサイクロンまでの接触伝熱部
を全てまたは一部をなくし、フリーボード周壁、排ガス
ダクトおよびこれに連なる火炉出口の高温サイクロンの
全て、または、その一部を断熱構造となして、流動層か
ら飛散した未燃灰などを含む粒子を、フリーボードから
排ガスダクトを通ってサイクロンに入るまで高温に保持
せしめ、サイクロンで捕捉した比較的粒径の大きな粒子
を、高温状態で循環路を介してフリーボードに戻すこと
を繰り返して、流動層からの飛散粒子中の未燃分を再燃
焼する手段、(b)上記フリーボードを複数に分割する
とともに、分割された各フリーボード部に、夫々上記排
ガスダクトを介して火炉出口の高温サイクロン、及び後
部伝熱面を各別に接続し、該サイクロン、後部伝熱面を
通過するガス量を、該後部伝熱面の下手側に接続せる低
温ガス流路に設けた流量制御用のダンパーによって各別
に通過ガス量を制御する手段、 とにより、フリーボード部でのガス流速、サイクロンの
捕集効率を低負荷でも大巾な変化がないようにし、フリ
ーボード部の温度パターンを脱硫、脱硝に適した温度に
制御することを特徴とする流動床燃焼ボイラにおける未
燃分制御方法。
[Claims] [Claim 1] (a) All or part of the contact heat transfer section up to the cyclone of the fluidized bed combustion boiler is eliminated, and the freeboard peripheral wall, the exhaust gas duct, and the high-temperature cyclone at the furnace outlet connected thereto are eliminated. A comparison in which all or part of the structure is made of an insulating structure, and the particles, including unburned ash, scattered from the fluidized bed are kept at high temperature until they enter the cyclone from the freeboard through the exhaust gas duct, and are captured by the cyclone. (b) means for re-burning the unburned components in the particles scattered from the fluidized bed by repeatedly returning particles with a large target particle size to the freeboard through a circulation path in a high temperature state; The high-temperature cyclone at the furnace outlet and the rear heat transfer surface are connected separately through the exhaust gas duct of the furnace, and the amount of gas passing through the cyclone and the rear heat transfer surface is connected to the lower side of the rear heat transfer surface. A means of controlling the amount of gas passing through each part using a damper for controlling the flow rate installed in the flow path, so that the gas flow velocity in the freeboard section and the collection efficiency of the cyclone do not change significantly even under low load, A method for controlling unburned content in a fluidized bed combustion boiler, characterized by controlling the temperature pattern of a freeboard section to a temperature suitable for desulfurization and denitrification. [Section 2] (a) Eliminate all or part of the contact heat transfer section up to the cyclone of the fluidized bed combustion boiler, and eliminate all or one of the freeboard peripheral wall, exhaust gas duct, and the high-temperature cyclone at the furnace outlet connected thereto. The part has an insulating structure to keep particles, including unburned ash, scattered from the fluidized bed at high temperature until they pass from the freeboard through the exhaust gas duct and enter the cyclone. (b) dividing the freeboard into a plurality of parts and dividing the freeboard into a plurality of parts; A high-temperature cyclone at the furnace outlet and a rear heat transfer surface are separately connected to each freeboard section via the exhaust gas duct, and the amount of gas passing through the cyclone and the rear heat transfer surface is determined by By means of controlling the amount of passing gas separately using flow rate control dampers installed in the low-temperature gas flow paths connected to the lower side of the surface, the gas flow velocity in the freeboard section and the collection efficiency of the cyclone can be adjusted even under low loads. A method for controlling unburned content in a fluidized bed combustion boiler, which is characterized by controlling the temperature pattern of the freeboard section to a temperature suitable for desulfurization and denitrification without causing wide changes.
JP26460285A 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler Expired - Lifetime JPH065125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26460285A JPH065125B2 (en) 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26460285A JPH065125B2 (en) 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler

Publications (2)

Publication Number Publication Date
JPS62123211A true JPS62123211A (en) 1987-06-04
JPH065125B2 JPH065125B2 (en) 1994-01-19

Family

ID=17405594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26460285A Expired - Lifetime JPH065125B2 (en) 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler

Country Status (1)

Country Link
JP (1) JPH065125B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579608A (en) * 1991-03-25 1993-03-30 Foster Wheeler Energy Corp Fluidized bed combustion device with large number of furnace areas and method thereof
JPH05223210A (en) * 1991-11-15 1993-08-31 Foster Wheeler Energy Corp Fluidized-bed steam reactor including two horizontal cyclone separator and internal recirculating heat exchanger
CN105541349A (en) * 2015-12-18 2016-05-04 山东耀华特耐科技有限公司 Lightweight insulation spray paint for circulating fluidized bed boiler, and production and construction technology thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579608A (en) * 1991-03-25 1993-03-30 Foster Wheeler Energy Corp Fluidized bed combustion device with large number of furnace areas and method thereof
JPH05223210A (en) * 1991-11-15 1993-08-31 Foster Wheeler Energy Corp Fluidized-bed steam reactor including two horizontal cyclone separator and internal recirculating heat exchanger
CN105541349A (en) * 2015-12-18 2016-05-04 山东耀华特耐科技有限公司 Lightweight insulation spray paint for circulating fluidized bed boiler, and production and construction technology thereof

Also Published As

Publication number Publication date
JPH065125B2 (en) 1994-01-19

Similar Documents

Publication Publication Date Title
KR0158763B1 (en) A method for optimizing the operating efficiency of a fossil-fired power generation system
JPS6321401A (en) Steam generator using separate fluid flow circuit and operating method thereof
CN104696951B (en) Boiler-in integrated coupled desulfurization and denitrification method for circulating fluidized bed boiler
US5784975A (en) Control scheme for large circulating fluid bed steam generators (CFB)
JPS62123211A (en) Control of unburnt constituent in fluidized bed combustion boiler
EP0851173B1 (en) A method of controlling nitrous oxide in circulating fluidized bed steam generators
CN106224948A (en) A kind of self adaptation CFBB control method
JP3095499B2 (en) Fluidized bed combustion boiler
EP0603262B1 (en) Method and device in the cooling of the circulating material in a fluidized-bed boiler
JPS62123212A (en) Control of temperature in fluidized red combustion boiler
CN204756912U (en) Fluidized bed boiler that high -efficient low NOx discharged
JPS61205708A (en) Re-burning method for unburnt residual in fluidized bed burning boiler
DeFusco et al. A comparison of fluid-bed technologies for renewable energy applications
CN103062776A (en) Circulating fluidized bed incinerator for heating wet sludge by incinerating dry sludge
CN104511234B (en) A kind of clean exhaust system for fluidized-bed combustion boiler and method
JPS61205710A (en) Re-burning method for unburnt residual in fluidized bed burning boiler
JPS6269008A (en) Method of controlling temperature in fluidized bed boiler
JP2667399B2 (en) Fluidized bed combustion boiler
JP7103781B2 (en) Fluidized bed furnace
CN218924311U (en) Biomass boiler flue gas ultralow emission integrated treatment system
JPH0517301U (en) Fluidized bed boiler primary combustion air temperature controller
JPH1089618A (en) Method of controlling fluidized bed boiler
JPH064172Y2 (en) Reactor pressure control device for fluidized bed combustor
JPS6341708A (en) Fluidized bed combustion method
JP3763656B2 (en) Circulating fluidized bed combustor