JPH065125B2 - Method for controlling unburned matter in fluidized bed combustion boiler - Google Patents

Method for controlling unburned matter in fluidized bed combustion boiler

Info

Publication number
JPH065125B2
JPH065125B2 JP26460285A JP26460285A JPH065125B2 JP H065125 B2 JPH065125 B2 JP H065125B2 JP 26460285 A JP26460285 A JP 26460285A JP 26460285 A JP26460285 A JP 26460285A JP H065125 B2 JPH065125 B2 JP H065125B2
Authority
JP
Japan
Prior art keywords
freeboard
cyclone
fluidized bed
high temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26460285A
Other languages
Japanese (ja)
Other versions
JPS62123211A (en
Inventor
友昭 高田
恂 舘林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP26460285A priority Critical patent/JPH065125B2/en
Publication of JPS62123211A publication Critical patent/JPS62123211A/en
Publication of JPH065125B2 publication Critical patent/JPH065125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流動床燃焼ボイラにおける未燃分制御方法に
関する。
The present invention relates to a method for controlling unburned components in a fluidized bed combustion boiler.

〔発明の背景〕[Background of the Invention]

一般にこの種流動床燃焼ボイラにおいては、負荷が低下
すると、流動層内温度が低下、ガス温度も低下し、さら
にフリーボードを通過するガス流量、即ち、流速が低下
し、ガス温度がさらに低下する現象が生じる。このこと
は低負荷時における未燃分のとび出し量の減少、及び低
負荷時では、流速によって支配されるサイクロンの効率
が悪くなり、捕集効率の確保ができなく、その循環量が
減少することにより、一層加速されることになる。
Generally, in this type of fluidized bed combustion boiler, when the load decreases, the temperature in the fluidized bed also decreases, the gas temperature also decreases, and the gas flow rate passing through the freeboard, that is, the flow velocity decreases, and the gas temperature further decreases. The phenomenon occurs. This means that the unburned amount of unburned material is reduced when the load is low, and when the load is low, the efficiency of the cyclone, which is governed by the flow velocity, deteriorates, and the collection efficiency cannot be secured, and the circulation amount decreases. By doing so, it will be further accelerated.

従って従来の流動床燃焼ボイラにおいては、負荷が変化
したときに、フリーボード部における燃焼量と伝熱面と
の熱交換作用とがバランスしなくなりフリーボード部の
温度が低下するという問題点があり、ボイラの総合燃焼
効率を低下させることになる。
Therefore, in the conventional fluidized bed combustion boiler, there is a problem that when the load changes, the amount of combustion in the freeboard portion and the heat exchange action with the heat transfer surface become unbalanced and the temperature of the freeboard portion decreases. , Which will reduce the overall combustion efficiency of the boiler.

〔発明の目的〕[Object of the Invention]

本発明は、このような実情に鑑みなされたもので、簡単
な而も合理的手段によって従来技術の問題点を解消せし
め、負荷の変動に応じてガス流量を制御し、常に一定し
た流速が得られるようになし、何れかのサイクロンの効
率を維持させ、負荷に対応してフリーボード部の温度を
脱硫,脱硝に最適な温度に維持するための制御方法を提
供せんとするものである。
The present invention has been made in view of the above circumstances, and solves the problems of the prior art by a simple and rational means, controls the gas flow rate according to the fluctuation of the load, and always obtains a constant flow velocity. Therefore, it is intended to provide a control method for maintaining the efficiency of any one of the cyclones and maintaining the temperature of the freeboard portion at the optimum temperature for desulfurization and denitration according to the load.

〔発明の構成〕[Structure of Invention]

従来技術の問題点を解決する本発明の構成は、流動床燃
焼ボイラのサイクロンまでの接触伝熱部を全てまたは一
部をなくし、フリーボード周壁,排ガスダクトおよびこ
れに連なる火炉出口の高温サイクロンの全て、または、
その一部を断熱構造となして、流動層から飛散した未燃
灰などを含む粒子を、フリーボードから排ガスダクトを
通ってサイクロンに入るまで高温に保持せしめ、サイク
ロンで捕捉した比較的粒径の大きな粒子を、高温状態で
循環路を介してフリーボードに戻すことを繰り返して、
流動層からの飛散粒子中の未燃分を再燃焼する手段、上
記フリーボードを複数の排ガスダクトを介して火炉出口
の高温サイクロン、及び後部伝熱面を各別に接続し、該
サイクロン,後部伝熱面を通過するガス量を、該後部伝
熱面の下手側に接続せる低温ガス流路に設けた流量制御
用のダンパーによって各別に通過ガス量を制御する手
段、とにより、フリーボード部でのガス流速,サイクロ
ンの捕集効率を低負荷でも大巾な変化がないようにし、
フリーボード部の温度パターンを脱硫,脱硝に適した温
度に制御することを特徴とする流動床燃焼ボイラにおけ
る未燃分制御方法、および、流動床燃焼ボイラのサイク
ロンまでの接触伝熱部を全てまたは一部をなくし、フリ
ーボード周壁,排ガスダクトおよびこれに連なる火炉出
口の高温サイクロンの全て、または、その一部を断熱構
造となして、流動層から飛散した未燃灰などを含む粒子
を、フリーボードから排ガスダクトを通ってサイクロン
に入るまで高温に保持せしめ、サイクロンで捕捉した比
較的粒径の大きな粒子を、高温状態で循環路を介してフ
リーボードに戻すことを繰り返して、流動層からの飛散
粒子中の未燃分を再燃焼する手段、上記フリーボードを
複数に分割するとともに、分割された各フリーボード部
に、夫々上記排ガスダクトを介して火炉出口の高温サイ
クロン、及び後部伝熱面を各別に接続し、該サイクロ
ン,後部伝熱面を通過するガス量を、該後部伝熱面の下
手側に接続せる低温ガス流路に設けた流量制御用のダン
パーによって各別に通過ガス量を制御する手段、とによ
り、フリーボード部でのガス流速,サイクロンの捕集効
率を低負荷でも大巾な変化がないようにし、フリーボー
ド部の温度パターンを脱硫,脱硝に適した温度に制御す
ることを特徴とするものである。
The configuration of the present invention that solves the problems of the prior art eliminates all or part of the contact heat transfer section to the cyclone of the fluidized bed combustion boiler, and eliminates the freeboard peripheral wall, the exhaust gas duct, and the high temperature cyclone at the furnace outlet connected to this. All or
Part of it has an adiabatic structure, and particles containing unburned ash scattered from the fluidized bed are kept at a high temperature until they enter the cyclone from the freeboard through the exhaust gas duct, and the particles of a relatively large size captured by the cyclone are retained. Repeatedly returning large particles to the freeboard via the circulation path at high temperature,
A means for reburning the unburned matter in the particles scattered from the fluidized bed, the high temperature cyclone at the furnace outlet and the rear heat transfer surface of the freeboard are connected to each other through a plurality of exhaust gas ducts, and the cyclone and rear transfer surfaces are connected to each other. The amount of gas passing through the hot surface is controlled by the damper for controlling the flow rate provided in the low temperature gas passage connected to the lower side of the rear heat transfer surface, and the amount of gas passing through is controlled by the freeboard section. Gas flow rate and cyclone collection efficiency should not change significantly even at low load,
A method for controlling unburned components in a fluidized bed combustion boiler characterized by controlling the temperature pattern of the freeboard part to a temperature suitable for desulfurization and denitration, and all or all of the contact heat transfer parts up to the cyclone of the fluidized bed combustion boiler. Part of the high temperature cyclone at the peripheral wall of the freeboard, exhaust gas duct and the furnace outlet connected to it, or part of it, has an adiabatic structure to free particles containing unburned ash scattered from the fluidized bed. It is kept at a high temperature from the board through the exhaust gas duct until it enters the cyclone, and the particles with a relatively large particle size captured by the cyclone are repeatedly returned to the freeboard through the circulation path in a high temperature state, and the fluidized bed A means for reburning the unburned components in the scattered particles, the freeboard is divided into a plurality of parts, and each of the divided freeboard parts has the exhaust gas A low temperature gas flow path for connecting a high temperature cyclone at the exit of the furnace and a rear heat transfer surface separately through a duct, and connecting the amount of gas passing through the cyclone and the rear heat transfer surface to the lower side of the rear heat transfer surface. By means of controlling the amount of passing gas for each by the damper for controlling the flow rate provided in the freeboard, it is possible to prevent the gas flow velocity in the freeboard part and the cyclone collection efficiency from changing significantly even under a low load. It is characterized by controlling the temperature pattern of the part to a temperature suitable for desulfurization and denitration.

〔発明の効果〕〔The invention's effect〕

本発明よれば、次のような効果が得られる。 According to the present invention, the following effects can be obtained.

(a)フリーボード部に、流動層より飛散する未燃灰を高
温のまま捕集してフリーボード部に循環させるシステム
を付加したことにより、未燃灰の有効燃焼が計れ、フリ
ーボード部を高温に保持し、脱硫,脱硝反応が促進さ
れ、NOxの発生値が著しく制御しうるとともに、脱硫剤
の節減が計れる。
(a) By adding a system to the freeboard part, which collects unburned ash scattered from the fluidized bed at high temperature and circulates it to the freeboard part, effective combustion of unburned ash can be measured, and the freeboard part is By keeping it at high temperature, desulfurization and denitration reactions are promoted, NOx emission value can be remarkably controlled, and desulfurization agent can be saved.

(b)部分負荷時には、使用するサイクロンの数を減らす
ことにより、ガス流速を適正範囲内に保持して捕集効率
の確保がなしうる。
(b) By reducing the number of cyclones used during partial load, the gas flow velocity can be maintained within an appropriate range and the collection efficiency can be secured.

(c)ダンパーは後部伝熱面の下手側である低温部に設置
されるため、流量制御の信頼度が高い。
(c) Since the damper is installed in the low temperature part on the lower side of the rear heat transfer surface, the reliability of flow rate control is high.

(d)負荷が変化したとき、燃焼量と伝熱面とのバランス
が崩れても、複数のダンパーのうち、何れかのダンパー
を閉塞することにより当該ダンパーに対応するフリーボ
ード部の使用を中断させ、残りのフリーボード部をその
まま使用させ、フリーボード部の温度パターンを脱硫,
脱硝に適した温度に制御しうる。
(d) When the load changes, even if the balance between the combustion amount and the heat transfer surface is disturbed, the use of the freeboard part corresponding to the damper is interrupted by closing one of the dampers. And use the remaining freeboard part as it is, desulfurize the temperature pattern of the freeboard part,
The temperature can be controlled to be suitable for denitration.

〔実施例I〕(第1,2図) 図面について本発明構成の実施例を説明する。第1図は
本発明方法を実施する流動床燃焼ボイラプラントの構成
を示す概略図,第2図は同上斜視図,第3図はフリーボ
ード部を複数に分割した実施例の概略図,第4図は同上
斜視図である。
[Embodiment I] (FIGS. 1 and 2) An embodiment of the configuration of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing the structure of a fluidized bed combustion boiler plant for carrying out the method of the present invention, FIG. 2 is a perspective view of the same as above, and FIG. 3 is a schematic view of an embodiment in which the freeboard portion is divided into a plurality of parts. The figure is a perspective view of the same as above.

先ず、第1図及び第2図に示す実施例について説明する
と、1は流動層2を有する流動床燃焼ボイラ(ボイラと
略称)、4はフリーボード部である。該フリーボード4
の上部には、複数の排ガスダクト5a,5bを介して高温サ
イクロン6a,6bが連結され、この各高温サイクロン6a,6b
の下部に設けた粒子排出口と、上記フリーボード部4と
を循環路7a,7bにて接続する。そして、上記フリーボー
ド部4の周壁の全て、または、一部を築炉構造8など吸
熱しない断熱構造となすとともに、フリーボード部4の
下手側に続く高温サイクロン6a,6bまでの接触伝熱部の
全て、または、一部に断熱材9を内張りする。また、上
記循環路7a,7bにも上述のような断熱構造を施す。
First, the embodiment shown in FIGS. 1 and 2 will be described. 1 is a fluidized bed combustion boiler having a fluidized bed 2 (abbreviated as boiler), and 4 is a freeboard section. The free board 4
High temperature cyclones 6a and 6b are connected to the upper part of the high temperature cyclones 6a and 6b through a plurality of exhaust gas ducts 5a and 5b.
The particle discharge port provided in the lower part of the above and the freeboard section 4 are connected by the circulation paths 7a and 7b. Then, all or a part of the peripheral wall of the freeboard portion 4 has a heat insulating structure such as a furnace construction 8 that does not absorb heat, and a contact heat transfer portion up to the high temperature cyclones 6a, 6b continuing to the lower side of the freeboard portion 4. The heat insulating material 9 is lined on all or a part of the above. In addition, the circulation paths 7a and 7b are also provided with the heat insulating structure as described above.

上記各高温サイクロン6a,6bの下手側には、断熱構造を
もつ排ガスダクト10a,10bを介してエコノマイザー,エ
アヒータなどのボイラの後部伝熱面11a,11bを接続し、
この各後部伝熱面11a,11bの下手側に連なる低温状態の
排ガス流路12a,12bに夫々流量制御ダンパ13a,13bを設け
たものである。この排ガス流路12a,12bを流れる排ガス
は、図示してないが第2マルチサイクロン,エアヒー
タ,集塵器などを経て煙突に至る。尚上記流量制御ダン
パ13a,13bは、負荷の変動を検知し、この制御信号によ
り開度が自動制御されるように構成することは当然のこ
とである。
On the lower side of each of the high temperature cyclones 6a, 6b, the rear heat transfer surfaces 11a, 11b of a boiler such as an economizer and an air heater are connected via exhaust gas ducts 10a, 10b having a heat insulating structure,
Flow rate control dampers 13a and 13b are respectively provided in the low temperature exhaust gas passages 12a and 12b connected to the lower side of the rear heat transfer surfaces 11a and 11b. The exhaust gas flowing through the exhaust gas passages 12a and 12b reaches a chimney through a second multi-cyclone, an air heater, a dust collector, etc. though not shown. Of course, the flow rate control dampers 13a and 13b are configured to detect load fluctuations and automatically control the opening degree by this control signal.

〔作用〕[Action]

上記ボイラプラントに基づいて、本発明による流動床燃
焼ボイラの未燃分制御方法について述べる。
Based on the above-mentioned boiler plant, the unburned-content control method of the fluidized bed combustion boiler according to the present invention will be described.

ボイラ1を運転し、流動層燃焼を開始すると、流動層2
から未燃灰を含む微粒子がフリーボード部4方向に向け
て飛散した微粒子は、フリーボード部4の周壁の全てま
たは一部が築炉構造8であるため、温度降下することな
くフリーボード部4で一部が燃焼したのち、排ガスとと
もに、排ガスダクト5a,5bを通って高温サイクロン6a,6b
に入り、ここで比較的粒径の大きい粒子のみが捕捉され
る。この際、フリーボード部4に連なる排ガスダクト5
a,5bおよび高温サイクロン6a,6bには断熱材9が内張り
されているので、排ガス中の飛散粒子の高温降下は少な
い。
When the boiler 1 is operated and the fluidized bed combustion is started, the fluidized bed 2
Particles including unburned ash scattered from the freeboard portion 4 toward the freeboard portion 4 have no temperature drop because the entire or part of the peripheral wall of the freeboard portion 4 has the furnace construction structure 8. After a part of it is burned, the high temperature cyclone 6a, 6b passes through the exhaust gas duct 5a, 5b together with the exhaust gas.
, Where only relatively large particles are trapped. At this time, the exhaust gas duct 5 connected to the freeboard section 4
Since the heat insulating material 9 is lined in the a, 5b and the high temperature cyclones 6a, 6b, the temperature drop of the scattered particles in the exhaust gas is small.

高温サイクロン6a,6bで捕捉された粒子は、800〜1000℃
の高温を保って高温サイクロン6a,6bから重力で循環路7
a,7bを通ってフリーボード部4の下部に戻され、フリー
ボード部4で再燃焼される。以後この行程が繰り返さ
れ、流動層2からとび出した未燃分は、フリーボード部
4において燃焼され、また高温サイクロン6a,6bに送ら
れ捕捉された未燃分は、再びフリーボード部に戻されて
ほぼ完全に燃焼せしめられ、上述した築炉構造8,断熱
材9による断熱作用と併せて、フリーボード部4を高温
状態に保持し、脱硫,脱硝反応を有効に行わせ、排ガス
中のSOz,NOx排出値を大巾に低減させる。
Particles captured by the high temperature cyclones 6a and 6b are 800-1000 ℃
Circulating path 7 by gravity from high temperature cyclones 6a and 6b
It is returned to the lower part of the freeboard section 4 through a and 7b, and is reburned in the freeboard section 4. After that, this process is repeated, and the unburned components that jump out of the fluidized bed 2 are burned in the freeboard unit 4, and the unburned components that are sent to the high temperature cyclones 6a and 6b and captured are returned to the freeboard unit again. Is almost completely burned, and in addition to the heat insulation effect of the furnace construction 8 and the heat insulating material 9 described above, the freeboard portion 4 is kept at a high temperature to effectively perform desulfurization and denitration reactions, and SOz in exhaust gas The NOx emission value is greatly reduced.

高温サイクロン6a,6bで微粒子が捕捉された排ガスは、
断熱構造をもつ排ガスダクト10a,10bを介してボイラの
後部伝熱面11a,11bに至り、ここで熱交換を行って低温
仮(約300〜400℃)された排ガスは排ガス流路12a,12b
を経て公知の如く処理され運転が続行される。
Exhaust gas with fine particles captured by the high temperature cyclones 6a and 6b is
Through the exhaust gas ducts 10a, 10b having a heat insulating structure, the exhaust gas that reaches the rear heat transfer surfaces 11a, 11b of the boiler and undergoes heat exchange at low temperature (about 300 to 400 ° C) is exhaust gas flow paths 12a, 12b.
After that, processing is carried out in a known manner and the operation is continued.

このような運転中に、例えば負荷が50%低下したとする
と、流動層温が低下するとともに、排ガスの流速,排ガ
ス量が半減し、高温サイクロン6a,6bによる循環量が減
少し、フリーボード部の温度降下を来し、燃焼量と後部
伝熱面とがバランスしなくなる。
If, for example, the load is reduced by 50% during such operation, the fluidized bed temperature is reduced, the exhaust gas flow velocity and the exhaust gas amount are halved, and the circulation amount by the high temperature cyclones 6a and 6b is decreased. As a result, the combustion amount and the rear heat transfer surface become unbalanced.

そこで本発明は、負荷の検知信号により一方のダンパー
13aまたは13bを動作して、一方の排ガス流路12aまたは1
2bを閉塞し、排ガスり硫れを中断せしめる。
Therefore, the present invention uses one of the dampers according to the load detection signal.
Operate 13a or 13b so that one exhaust gas flow path 12a or 1
Blocks 2b and interrupts exhaust gas resulfurization.

このことにより、排ガスの流れはゆっくりになるが、フ
リーボード部4における吸熱構造が少ない場合にはあま
り影響をうけることなく、高温サイクロン6a,6bの捕集
効率を確保した状態で温度制御がなしうる。
As a result, the flow of exhaust gas becomes slow, but if the endothermic structure in the freeboard section 4 is small, it will not be affected so much and temperature control will not be performed while ensuring the collection efficiency of the high temperature cyclones 6a, 6b. sell.

〔実施例II〕(第3,4図) この実施例における1は、流動層2を有する流動床燃焼
ボイラ(ボイラと略称)で、該ボイラ1のフリーボード
は、垂直状の隔壁3によって複数個のフリーボード部4
a,4bに分割されており、以下の構造は第1実施例と同じ
であるため詳細説明は省略する。
[Example II] (Figs. 3 and 4) Reference numeral 1 in this example is a fluidized bed combustion boiler (abbreviated as "boiler") having a fluidized bed 2, and the freeboard of the boiler 1 is composed of a plurality of vertical partition walls 3. 4 freeboard parts
It is divided into a and 4b, and the following structure is the same as that of the first embodiment, so detailed description will be omitted.

〔作用〕[Action]

上記ボイラプラントに基づいて、本発明による流動床燃
焼ボイラの未燃分制御方法について述べる。
Based on the above-mentioned boiler plant, the unburned-content control method of the fluidized bed combustion boiler according to the present invention will be described.

ボイラ1を運転し、流動層燃焼を開始すると、流動層2
から未燃灰を含む微粒子がフリーボード部4a,4b方向に
向け飛散した微粒子は、フリーボード部4a,4bの周壁の
全てまたは一部が築炉構造8であるため、温度降下する
ことなくフリーボード部4c,4dで一部が燃焼したのち、
排ガスと共に排ガスダクト5a,5bを通って高温サイクロ
ン6a,6bに入り、ここで比較的粒径の大きい粒子のみが
捕捉される。この際、フリーボード部4a,4bに連なる排
ガスダクト5a,5bおよび高温サイクロン6a,6bには断熱材
9が内張りされているので、排ガス中の飛散粒子の温度
降下は少ない。
When the boiler 1 is operated and the fluidized bed combustion is started, the fluidized bed 2
Particles containing unburned ash scattered from the freeboard parts 4a, 4b toward the freeboard parts 4a, 4b are free from the temperature drop because the whole or part of the peripheral wall of the freeboard parts 4a, 4b is the furnace construction structure 8. After a part of it burns in the board parts 4c and 4d,
Together with the exhaust gas, they enter the high temperature cyclones 6a, 6b through the exhaust gas ducts 5a, 5b, where only particles having a relatively large particle size are captured. At this time, since the heat insulating material 9 is lined in the exhaust gas ducts 5a, 5b and the high temperature cyclones 6a, 6b connected to the freeboard portions 4a, 4b, the temperature drop of the scattered particles in the exhaust gas is small.

高温サイクロン6a,6bで捕捉された粒子は、800〜1000℃
の高温を保って高温サイクロン6a,6bから重力で循環路7
a,7bを通ってフリーボード部4a,4bの下部に戻され、フ
リーボード部4a,4bで各別に再燃焼される。以後この高
低が繰り返され、流動層2からとび出した未燃分は、フ
リーボード部4a,4bにおいて燃焼され、また高温サイク
ロン6a,6bに送られ捕捉された未燃分は、再びフリーボ
ード部に戻されてほぼ完全に燃焼せしめられ、上述した
築炉構造8,断熱材9による断熱作用と併せて、フリー
ボード部4a,4bを高温状態に保持し、脱硫,脱硝反応を
有効に行わせ、排ガス中のSOx,NOx排出値を大巾に低減
させる。
Particles captured by the high temperature cyclones 6a and 6b are 800-1000 ℃
Circulating path 7 by gravity from high temperature cyclones 6a and 6b
It is returned to the lower part of the freeboard parts 4a and 4b through a and 7b, and re-burned separately in the freeboard parts 4a and 4b. After that, the high and low levels are repeated, and the unburned components that jump out from the fluidized bed 2 are burned in the freeboard units 4a and 4b, and the unburned components sent to the high temperature cyclones 6a and 6b are captured again in the freeboard unit. It is returned and burned almost completely, and in addition to the heat insulation effect by the furnace construction 8 and the heat insulating material 9 described above, the freeboard portions 4a and 4b are kept at a high temperature to effectively perform desulfurization and denitration reactions, SOx and NOx emission values in exhaust gas are greatly reduced.

高温サイクロン6a,6bで微粒子が捕捉された排ガスは、
断熱構造をもつ排ガスダクト10a,10bを介してボイラの
後部伝熱面11a,11bに至り、ここで熱交換を行って低温
化(約300〜400℃)された排ガスは排ガス流路12a,12b
を経て公知の如く処理され運転が続行される。
Exhaust gas with fine particles captured by the high temperature cyclones 6a and 6b is
Through the exhaust gas ducts 10a, 10b having a heat insulating structure, the exhaust gas flow paths 12a, 12b reach the rear heat transfer surfaces 11a, 11b of the boiler, where heat is exchanged to lower the temperature (about 300 to 400 ° C).
After that, processing is carried out in a known manner and the operation is continued.

このような運転中に、例えば負荷が50%低下したとする
と、流動層温度が低下するとともに、排ガスの流速,排
ガス量が半減し、高温サイクロン6a,6bによる循環量が
減少し、フリーボード部の温度降下を来し、燃焼量と後
部伝熱面とがバランスしなくなる。
If, for example, the load is reduced by 50% during such operation, the temperature of the fluidized bed is reduced, the flow velocity of exhaust gas and the amount of exhaust gas are halved, and the circulation amount by the high temperature cyclones 6a and 6b is reduced, so that the freeboard section is reduced. As a result, the combustion amount and the rear heat transfer surface become unbalanced.

そこで本発明は、負荷の検知信号により一方のダンパー
13aまたは13bを動作して、一方の排ガス流路12aまたは1
2bを閉塞し、排ガスの流れを中断せしめる。
Therefore, the present invention uses one of the dampers according to the load detection signal.
Operate 13a or 13b so that one exhaust gas flow path 12a or 1
Block 2b and interrupt the flow of exhaust gas.

このことにより、排ガスの流れが中断された側のフリー
ボード4aまたは4bの稼働は中断せしめられ、残りのフリ
ーボード部4aまたは4bのみが100%稼働を続行する。こ
のため、一方の使用が停止しても、他方が通常使用を続
け、ガス流速が維持されるので、フリーボード部で過冷
却されることがなく、高温サイクロン6aまたは6bの捕集
効率を確保した状態で温度制御がなしうる。
As a result, the operation of the freeboard 4a or 4b on the side where the flow of exhaust gas is interrupted is interrupted, and only the remaining freeboard unit 4a or 4b continues to operate 100%. Therefore, even if the use of one is stopped, the other continues to be used normally and the gas flow rate is maintained, so there is no overcooling in the freeboard section and the collection efficiency of the high temperature cyclone 6a or 6b is secured. The temperature can be controlled under the condition.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法を実施する流動床燃焼ボイラプラン
トの構成を示す概略図,第2図は同上斜視図,第3図は
他のフリーボードを隔壁で分割した構成を示す概略図,
第4図は同上斜視図である。 1…流動床燃焼ボイラ,2…流動層,3…隔壁,4a,4b
…フリーボード部,5a,5b…排ガスダクト,6a,6b…高温
サイクロン,7a,7b…循環路,8…築炉構造,9…断熱
材,10a,10b…排ガスダクト,11a,11b…後部伝熱面,12
a,12b…排ガス流路,13a,13b…流量制御ダンパ。
FIG. 1 is a schematic view showing the structure of a fluidized bed combustion boiler plant for carrying out the method of the present invention, FIG. 2 is a perspective view of the same as above, and FIG. 3 is a schematic view showing the structure of another freeboard divided by partition walls,
FIG. 4 is a perspective view of the same. DESCRIPTION OF SYMBOLS 1 ... Fluidized bed combustion boiler, 2 ... Fluidized bed, 3 ... Partition, 4a, 4b
Freeboard part, 5a, 5b ... Exhaust gas duct, 6a, 6b ... High temperature cyclone, 7a, 7b ... Circulation path, 8 ... Furnace construction, 9 ... Insulation material, 10a, 10b ... Exhaust gas duct, 11a, 11b ... Rear transmission Hot side, 12
a, 12b ... Exhaust gas flow path, 13a, 13b ... Flow control damper.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(a)流動床燃焼ボイラのサイクロンまでの
接触伝熱部を全てまたは一部をなくし、フリーボード周
壁,排ガスダクトおよびこれに連なる火炉出口の高温サ
イクロンの全て、または、その一部を断熱構造となし
て、流動層から飛散した未燃灰などを含む粒子を、フリ
ーボードから排ガスダクトを通ってサイクロンに入るま
で高温に保持せしめ、サイクロンで捕捉した比較的粒径
の大きな粒子を、高温状態で循環路を介してフリーボー
ドに戻すことを繰り返して、流動層からの飛散粒子中の
未燃分を再燃焼する手段、 (b)上記フリーボードに複数の排ガスダクトを介して火
炉出口の高温サイクロン、及び後部伝熱面を各別に接続
し、該サイクロン,後部伝熱面を通過するガス量を、該
後部伝熱面の下手側に接続せる低温ガス流路に設けた流
量制御用のダンパーによって各別に通過ガス量を制御す
る手段、 とにより、フリーボード部でのガス流速,サイクロンの
捕集効率を低負荷でも大巾な変化がないようにし、フリ
ーボード部の温度パターンを脱硫,脱硝に適した温度に
制御することを特徴とする流動床燃焼ボイラにおける未
燃分制御方法。
(A) All or part of a contact heat transfer part to a cyclone of a fluidized bed combustion boiler is eliminated, and all or one of a freeboard peripheral wall, an exhaust gas duct and a high temperature cyclone at a furnace outlet connected to the peripheral wall. The part has an adiabatic structure and particles containing unburned ash scattered from the fluidized bed are kept at high temperature until they enter the cyclone from the freeboard through the exhaust gas duct, and the particles with a relatively large particle size are captured by the cyclone. Is repeatedly returned to the freeboard through the circulation path in a high temperature state, a means for reburning the unburned components in the particles scattered from the fluidized bed, (b) via the plurality of exhaust gas ducts in the freeboard. A high temperature cyclone at the furnace outlet and a rear heat transfer surface were separately connected, and the amount of gas passing through the cyclone and the rear heat transfer surface was provided in a low temperature gas flow path that was connected to the lower side of the rear heat transfer surface. By means of controlling the amount of passing gas separately with a damper for controlling the flow rate, and so on, the gas flow velocity in the freeboard section and the cyclone collection efficiency do not change significantly even under low load, and the temperature of the freeboard section A method for controlling unburned components in a fluidized bed combustion boiler, which is characterized by controlling a pattern to a temperature suitable for desulfurization and denitration.
【請求項2】(a)流動床燃焼ボイラのサイクロンまでの
接触伝熱部を全てまたは一部をなくし、フリーボード周
壁,排ガスダクトおよびこれに連なる火炉出口の高温サ
イクロンの全て、または、その一部を断熱構造となし
て、流動層から飛散した未燃灰などを含む粒子を、フリ
ーボードから排ガスダクトを通ってサイクロンに入るま
で高温に保持せしめ、サイクロンで捕捉した比較的粒径
の大きな粒子を、高温状態で循環路を介してフリーボー
ドに戻すことを繰り返して、流動層からの飛散粒子中の
未燃分を再燃焼する手段、 (b)上記フリーボードを複数に分割するとともに、分割
された各フリーボード部に、夫々上記排ガスダクトを介
して火炉出口の高温サイクロン、及び後部伝熱面を各別
に接続し、該サイクロン,後部伝熱面を通過するガス量
を、該後部伝熱面の下手側に接続せる低温ガス流路に設
けた流量制御用のダンパーによって各別に通過ガス量を
制御する手段、 とにより、フリーボード部でのガス流速,サイクロンの
捕集効率を低負荷でも大巾な変化がないようにし、フリ
ーボード部の温度パターンを脱硫,脱硝に適した温度に
制御することを特徴とする流動床燃焼ボイラにおける未
燃分制御方法。
2. (a) All or part of the contact heat transfer part to the cyclone of the fluidized bed combustion boiler is eliminated, and all or one of the freeboard peripheral wall, the exhaust gas duct, and the high temperature cyclone at the furnace outlet connected to it. The part has an adiabatic structure and particles containing unburned ash scattered from the fluidized bed are kept at high temperature until they enter the cyclone from the freeboard through the exhaust gas duct, and the particles with a relatively large particle size are captured by the cyclone. Is repeatedly returned to the freeboard through the circulation path in a high temperature state to reburn the unburned matter in the particles scattered from the fluidized bed, (b) the freeboard is divided into a plurality of parts, and The high temperature cyclone at the furnace outlet and the rear heat transfer surface are separately connected to the freeboard portions, respectively, through the exhaust gas duct, and the gas passing through the cyclone and the rear heat transfer surface is separately connected. The amount of passing gas is controlled by a damper for controlling the flow rate, which is provided in the low temperature gas passage connected to the lower side of the rear heat transfer surface. A method for controlling unburned components in a fluidized bed combustion boiler, characterized in that the collection efficiency does not change significantly even under a low load, and the temperature pattern of the freeboard part is controlled to a temperature suitable for desulfurization and denitration.
JP26460285A 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler Expired - Lifetime JPH065125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26460285A JPH065125B2 (en) 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26460285A JPH065125B2 (en) 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler

Publications (2)

Publication Number Publication Date
JPS62123211A JPS62123211A (en) 1987-06-04
JPH065125B2 true JPH065125B2 (en) 1994-01-19

Family

ID=17405594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26460285A Expired - Lifetime JPH065125B2 (en) 1985-11-22 1985-11-22 Method for controlling unburned matter in fluidized bed combustion boiler

Country Status (1)

Country Link
JP (1) JPH065125B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181481A (en) * 1991-03-25 1993-01-26 Foster Wheeler Energy Corporation Fluidized bed combustion system and method having multiple furnace sections
US5218931A (en) * 1991-11-15 1993-06-15 Foster Wheeler Energy Corporation Fluidized bed steam reactor including two horizontal cyclone separators and an integral recycle heat exchanger
CN105541349A (en) * 2015-12-18 2016-05-04 山东耀华特耐科技有限公司 Lightweight insulation spray paint for circulating fluidized bed boiler, and production and construction technology thereof

Also Published As

Publication number Publication date
JPS62123211A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US4594967A (en) Circulating solids fluidized bed reactor and method of operating same
JPH0371601B2 (en)
EP0199283A2 (en) Steam boiler with rear flue
JPH065125B2 (en) Method for controlling unburned matter in fluidized bed combustion boiler
JPH065124B2 (en) Temperature control method in fluidized bed combustion boiler
EP0603262B1 (en) Method and device in the cooling of the circulating material in a fluidized-bed boiler
JPH0262777B2 (en)
JPS61205708A (en) Re-burning method for unburnt residual in fluidized bed burning boiler
JPS6269008A (en) Method of controlling temperature in fluidized bed boiler
CN211952740U (en) Boiler ash balancing device of circulating fluidized bed
JPH029202Y2 (en)
JPH0788510B2 (en) Coke dry fire extinguishing equipment
JPS6046325B2 (en) Fluidized bed combustion method
JP2667399B2 (en) Fluidized bed combustion boiler
JPH0399106A (en) Fuel supply for fluidized bed burner
JPS61205710A (en) Re-burning method for unburnt residual in fluidized bed burning boiler
JP3763656B2 (en) Circulating fluidized bed combustor
JPS6022242B2 (en) Fluidized bed combustion equipment
JPH068411B2 (en) Coke dry fire extinguishing equipment
JPS6152506A (en) Method of re-burning unburned component in fluidized-bed combustion boiler
JPS60235903A (en) Fluidized-layer combustion system
JPS60133288A (en) Fluidized bed furnace
JP2002122304A (en) Boiler apparatus
JPH0517301U (en) Fluidized bed boiler primary combustion air temperature controller
JPH0658166B2 (en) Reburning method for unburned components in fluidized bed combustion boiler