JPH0658166B2 - Reburning method for unburned components in fluidized bed combustion boiler - Google Patents
Reburning method for unburned components in fluidized bed combustion boilerInfo
- Publication number
- JPH0658166B2 JPH0658166B2 JP60046046A JP4604685A JPH0658166B2 JP H0658166 B2 JPH0658166 B2 JP H0658166B2 JP 60046046 A JP60046046 A JP 60046046A JP 4604685 A JP4604685 A JP 4604685A JP H0658166 B2 JPH0658166 B2 JP H0658166B2
- Authority
- JP
- Japan
- Prior art keywords
- freeboard
- fluidized bed
- temperature
- cyclone
- unburned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C10/00—Fluidised bed combustion apparatus
- F23C10/18—Details; Accessories
- F23C10/22—Fuel feeders specially adapted for fluidised bed combustion apparatus
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、流動床燃焼ボイラの未燃分再燃焼方法に関す
る。TECHNICAL FIELD The present invention relates to a method for reburning unburned components of a fluidized bed combustion boiler.
[従来技術とその課題] 従来の流動床燃焼ボイラにおいて、総合燃焼効率を高め
るための未燃分燃焼方法には、未燃分燃焼装置を別置す
る未燃灰再燃焼方法と、未燃分を流動層に戻す未燃灰再
循環方式とがある。[Prior art and its problems] In a conventional fluidized bed combustion boiler, unburned ash re-combustion method in which an unburned content combustor is separately installed and unburned ash reburning method for increasing overall combustion efficiency. There is an unburnt ash recirculation system that returns the fluid to the fluidized bed.
前者の未燃灰再燃焼方式は、第2図に示すように、流動
床燃焼ボイラ1内で燃焼中の流動層2からとび出した微
粒子が、フリーボード3で一部燃焼したのち、接触伝熱
部4を経て排ガスと共にダクト5を通って第1マルチサ
イクロン6に入り、ここで比較的粒径の大きいもののみ
が捕捉され、これが未燃灰再燃焼炉7で再燃焼せしめる
ものである。この未燃灰再燃焼炉7の排ガスは、第2マ
ルチサイクロン8に入り、ここでできるだけ多くの粒子
を捕捉させ、第2マルチサイクロン8を出た排ガスは、
第1マルチサイクロン6を出た排ガスと共にエアヒータ
9に入り、ここで上記流動床燃焼ボイラ1、および、未
燃灰燃焼炉7に供給する燃焼用空気を加熱して温度降下
されたのち集塵器10に入り、除塵されたのち煙突11より
大気中に放散せしめられる。In the former unburnt ash reburning method, as shown in FIG. 2, the fine particles that have flown out of the fluidized bed 2 in the fluidized bed combustion boiler 1 are partially burned by the freeboard 3 and then contact heat transfer is performed. After passing through the section 4, the exhaust gas and the exhaust gas pass through the duct 5 and enter the first multi-cyclone 6, where only those having a relatively large particle size are trapped and reburned in the unburned ash reburning furnace 7. The exhaust gas from the unburned ash reburning furnace 7 enters the second multi-cyclone 8, where as many particles as possible are captured, and the exhaust gas from the second multi-cyclone 8 is
After entering the air heater 9 together with the exhaust gas from the first multi-cyclone 6, the combustion air supplied to the fluidized bed combustion boiler 1 and the unburned ash combustion furnace 7 is heated to lower the temperature and then the dust collector. After entering 10 and being dust-removed, it is diffused into the atmosphere through the chimney 11.
しかしながらこの未燃灰燃焼方法は、未燃灰燃焼炉7が
必要となり、プラントの設置費が嵩むばかりでなく、プ
ラント全体の制御システムが複雑となり、特にNOx排出
値を抑えるために造粒したりするときは、未燃灰再燃焼
炉7への未燃灰の供給がきわめて複雑である。However, this unburned ash combustion method requires the unburned ash combustion furnace 7, which not only increases the installation cost of the plant but also complicates the control system of the entire plant, and particularly granulates to suppress the NOx emission value. When doing so, the supply of unburned ash to the unburned ash reburning furnace 7 is extremely complicated.
また、後者の未燃分再循環方式は、第3図に示すよう
に、流動燃焼ボイラ1内で燃焼中の流動層2からとび出
した微粒子が、フリーボード3で一部燃焼したのち、接
触伝熱部4を経て排ガスと共にダクト5を通って第1マ
ルチサイクロン6に入り、ここで比較的粒径の大きいも
ののみが捕捉され、この未燃灰が循環路12を通して流動
層2内に送り込まれ、再燃焼されることが繰り返される
ものである。また、第1マルチサイクロン6を出た排ガ
スはエアヒータ9に入り、ここで前記流動床燃焼ボイラ
1に送給する燃焼用空気を加熱して温度降下されたのち
集塵器10に入り、除塵されたのち煙突11より大気中に放
散せしめられる。Further, in the latter unburned matter recirculation method, as shown in FIG. 3, the fine particles protruding from the fluidized bed 2 in combustion in the fluidized combustion boiler 1 are partially burned in the freeboard 3 and then contact-transferred. After passing through the heat section 4, the exhaust gas and the exhaust gas enter the first multi-cyclone 6 through the duct 5, where only those having a relatively large particle size are captured, and the unburned ash is sent into the fluidized bed 2 through the circulation path 12. The re-combustion is repeated. Further, the exhaust gas from the first multi-cyclone 6 enters the air heater 9, where the combustion air sent to the fluidized bed combustion boiler 1 is heated and the temperature thereof is lowered, and then the dust collector 10 is entered to remove dust. After that, it is released into the atmosphere from the chimney 11.
この未燃分再循環方式は、未燃灰が接触伝熱部4で吸熱
されて300〜360℃以下に温度せしめられ、更に、ハンド
リングしやすいように、アッシュクーラーで150℃程度
以下まで温度降下せしめられるので、この未燃灰が流動
層2内に炭送り込まれても温度上昇に時間がかかり、十
分燃える前に流動層2から再飛散してしまい、フリーボ
ード3ではその未燃灰が急速に冷えるので、大巾な燃焼
効率の向上は期待できない。しかも、流動層2内での他
の流動媒体を冷やすことになって、流動層2内の燃焼効
率が低下し、脱硫,脱硝反応効率が十分に上がらないな
どの問題点がある。In this unburned matter recirculation method, unburned ash is absorbed by the contact heat transfer section 4 and is heated to a temperature of 300 to 360 ° C or less, and further, the temperature is lowered to about 150 ° C or less with an ash cooler for easy handling. Since the unburnt ash is sent to the fluidized bed 2, it takes a long time for the temperature to rise, and the unburned ash is re-scattered from the fluidized bed 2 before it is sufficiently burned. Since it cools down to a large extent, a drastic improvement in combustion efficiency cannot be expected. In addition, there is a problem in that the other fluid medium in the fluidized bed 2 is cooled, the combustion efficiency in the fluidized bed 2 is lowered, and the desulfurization and denitration reaction efficiency is not sufficiently increased.
[発明の技術的背景] 従来技術の問題点を解消するため本件発明者らは、未燃
分の温度を降下させることなく、温度状態を保持したま
までこの未燃分を第1マルチサイクロンからフリーボー
ドに循環させ、このフリーボード部で未燃分をほぼ完全
に燃焼させ、流動床燃焼ボイラにおける燃焼効率を大巾
に向上するとともに、フリーボード部における脱硫,脱
硝反応を促進させ、脱硫剤の所要量の節減を図り、更
に、NOxの発生を制御する目的で、流動床燃焼ボイラの
第1マルチサイクロンまでの接触伝熱部を殆んどなく
し、フリーボード周壁,排ガスダクト、および、これに
連なる第1マルチサイクロンの殆んどを断熱構造とし
て、流動層からとび出した未燃灰を含む粒子を、フリー
ボードから排ガスダクトを介して第1マルチサイクロン
に至まで高温に保持し、第1マルチサイクロンで捕捉し
た比較的粒径の大きな粒子を高温状態で循環路を通して
フリーボードに戻すことを繰り返して、流動層からの飛
散粒子中の未燃灰を再燃焼させ、フリーボード中の温度
を脱硫,脱硝反応に適した温度(800〜1,000℃)に制御
する手段を、特願昭59-174262号として提案している
が、この手段では、常に脱硫,脱硝反応に適した温度条
件に保持せしめるには、循環される未燃灰分の燃焼だけ
では有効に制御し得ないことがある。[Technical Background of the Invention] In order to solve the problems of the prior art, the inventors of the present invention can remove the unburned component from the first multi-cyclone while maintaining the temperature state without lowering the temperature. It circulates in the freeboard and burns the unburned matter almost completely in this freeboard part, greatly improving the combustion efficiency in the fluidized bed combustion boiler, and promoting desulfurization and denitration reaction in the freeboard part, and desulfurizing agent. In order to reduce the required amount of NOx and to control the generation of NOx, the contact heat transfer section up to the first multi-cyclone of the fluidized bed combustion boiler is almost eliminated, and the freeboard peripheral wall, exhaust gas duct, and this Most of the first multi-cyclone connected to the above has an adiabatic structure, and particles containing unburned ash protruding from the fluidized bed reach the first multi-cyclone from the freeboard through the exhaust gas duct. Retain the unburned ash in the particles scattered from the fluidized bed by repeatedly holding the particles at a high temperature until the first multi-cyclone and returning the relatively large particles captured in the first multi-cyclone to the freeboard through a circulation path in a high temperature state. As a means for controlling the temperature in the freeboard to a temperature (800 to 1,000 ° C) suitable for desulfurization and denitration reactions, Japanese Patent Application No. 59-174262 has been proposed. In order to keep the temperature conditions suitable for the reaction, it may not be possible to effectively control the combustion by circulating unburned ash.
本発明の目的は、供給炭の一部を粉砕し、この微粉炭を
供給炭と共に投入し、この微粉炭を直ちに燃焼反応させ
ることにより、フリーボードの温度条件が、常に脱硫,
脱硝反応に適応しうる未燃分の再燃焼方法を提供せんと
するものである。The object of the present invention is to pulverize a part of the supplied coal, to introduce the pulverized coal together with the supplied coal, and to cause the pulverized coal to immediately undergo a combustion reaction so that the temperature condition of the freeboard is always desulfurized,
An object of the present invention is to provide a method for reburning unburned components that can be applied to the denitration reaction.
[課題を解決するための手段] 従来技術の課題を解決する本発明の構成は、流動床燃焼
ボイラのフリーボード部から第1マルチサイクロンまで
の接触伝熱部を殆んどなくし、フリーボード周壁,排ガ
スダクト、および、これに連る第1マルチサイクロンの
殆んどを断熱構造となして、流動層から飛散した未燃灰
などを含む粒子を、フリーボードから排ガスダクトを通
って第1マルチサイクロンに入るまで高温に保持せしめ
るとともに、該第1マルチサイクロンで捕捉した比較的
粒径の大きな粒子を、高温状態で断熱構造とした循環路
を介してフリーボードの下部に戻すことを繰り返して行
わせ、フリーボード中の脱硫剤であるCaO,還元剤であ
る未燃カーボンの濃度を高めて、流動層からの飛散粒子
中の未燃分を再燃焼するとともに、上記流動層の上方に
供給炭の一部を粉砕して得られ、かつ、フリーボード内
において直ちに燃焼反応する微粉炭を混入させて粒径分
布をあらかじめ調整した供給炭を流動層に投入し、流動
層に到達することなくフリーボードに飛び出した微粉炭
を上記循環未燃灰などと共に燃焼せしめ、更に、フリー
ボード内の温度を検知し、該温度検知信号により供給炭
を微粉砕する石炭量を制御することにより、フリーボー
ド部の温度を、常に脱硫,脱硝反応が行える800〜1,000
℃の温度条件に制御維持し、未燃灰が燃焼し還元剤とて
働きうる800℃以上の温度とすると同時に、脱硫剤であ
るCaOがSOxと反応しCaSO4となり再分解しない範囲の温
度に保つものである。[Means for Solving the Problems] According to the configuration of the present invention for solving the problems of the prior art, the contact heat transfer section from the freeboard section to the first multi-cyclone of the fluidized bed combustion boiler is almost eliminated, and the freeboard peripheral wall is eliminated. The exhaust gas duct and most of the first multi-cyclone connected to the exhaust gas duct have a heat insulating structure so that particles including unburned ash scattered from the fluidized bed are passed from the freeboard to the first multi-cycle through the exhaust gas duct. It is kept at a high temperature until it enters the cyclone, and the particles with a relatively large particle size captured by the first multi-cyclone are returned to the lower part of the freeboard through a circulation path having an adiabatic structure in a high temperature state. By increasing the concentration of CaO, which is the desulfurizing agent, and unburned carbon, which is the reducing agent, in the freeboard, the unburned components in the particles scattered from the fluidized bed are recombusted and Pulverized coal obtained by crushing a part of the fed coal above the bed and having a particle size distribution adjusted beforehand by mixing pulverized coal that immediately burns in the freeboard is fed into the fluidized bed. The pulverized coal that has jumped out to the freeboard without reaching the temperature is burned with the circulating unburned ash, etc., and the temperature inside the freeboard is detected, and the amount of coal that pulverizes the supplied coal is controlled by the temperature detection signal. By doing so, the temperature of the freeboard section can be always 800-1,000 for desulfurization and denitration reaction.
° C. Controls maintained at a temperature of, at the same time non-combusted ash is a combustion by reducing agent and to be worked 800 ° C. or higher, the temperature range is desulfurizing agent CaO does not react with CaSO 4 becomes re decomposes SOx To keep.
[実施例] 本発明の流動床燃焼ボイラにおける未燃分再燃焼方法胃
の施例について説明する。第1図は本発明を実施するた
めの流動床燃焼ボイラプラントの構成の概略を示してい
る。先ず、この図により、本発明方法を実施する流動床
燃焼ボイラプラントの構成を説明する。[Example] An example of the stomach of the method for reburning unburned components in the fluidized bed combustion boiler of the present invention will be described. FIG. 1 schematically shows the structure of a fluidized bed combustion boiler plant for carrying out the present invention. First, the configuration of a fluidized bed combustion boiler plant for carrying out the method of the present invention will be described with reference to this figure.
21は、流動層22及びフリーボード23などを有する流動床
燃焼ボイラである。上記フリーボード23の上部には、排
ガスダクト24を介して第1マルチサイクロン25が連結さ
れ、この第1マルチサイクロン25の下部に設けた粒子排
出口と、上記フリーボード23とを傾斜した循環路26にて
接続する。そして、少くとも、上記フリーボード23の周
壁を、築炉構造27など吸熱しない断熱構造となすととも
に、フリーボード23の下流側に続く第1マルチサイクロ
ン25までの接触伝熱部を殆んどをなくして、フリーボー
ド23の上端部に、直接断熱材28を内張りした上記排ガス
ダクト24を連結する。そして、この排ガスダクト24に連
る上記第1マルチサイクロン25の内面に断熱材28を内張
りして吸熱しない構造とするとともに、上記循環路26も
上述のような断熱構造としたものである。Reference numeral 21 is a fluidized bed combustion boiler having a fluidized bed 22, a freeboard 23 and the like. A first multi-cyclone 25 is connected to an upper portion of the freeboard 23 via an exhaust gas duct 24, and a particle discharge port provided at a lower portion of the first multi-cyclone 25 and the freeboard 23 are provided with an inclined circulation path. Connect at 26. And, at least, the peripheral wall of the freeboard 23 is made a heat insulating structure that does not absorb heat such as the furnace construction structure 27, and most of the contact heat transfer parts to the first multi-cyclone 25 downstream of the freeboard 23 are provided. The exhaust gas duct 24 lined with a heat insulating material 28 is directly connected to the upper end of the freeboard 23. The heat insulating material 28 is lined on the inner surface of the first multi-cyclone 25 connected to the exhaust gas duct 24 so as not to absorb heat, and the circulation path 26 has the heat insulating structure as described above.
また、上記第1マルチサイクロン25から第2マルチサイ
クロン29への排ガスダクト30の途中には、接触伝熱部と
して、蒸発器,節炭器などのガス冷却器31を設ける。図
中32はエアヒータ,33は集塵器,34は煙突である。Further, a gas cooler 31 such as an evaporator or a economizer is provided as a contact heat transfer part in the middle of the exhaust gas duct 30 from the first multi-cyclone 25 to the second multi-cyclone 29. In the figure, 32 is an air heater, 33 is a dust collector, and 34 is a chimney.
そして本発明を実施するためのボイラプラントは、フリ
ーボード23の下部に接続された流動層22用の供給炭(例
えば最大32mm径)の主系統35に供給炭のバイパス系統36
を設け、このバイパス系統36の上流側に、上記フリーボ
ード23に設けた温度センサー37の温度検知信号により回
転数が調節されるロータリーバルブ38を配設するととも
に、このロータリーバルブ38の下流側にクラッシャー機
構39を設け、該クラッシャー機構39により供給炭の一部
を粉砕する。そして、上記バイパス系統36の下流側を上
記主系統35に連結し、流動層22内に到達することなくフ
リーボード23中に飛び出し直ちに燃焼反応することがで
きる粉砕された微粉炭が、流動層22中に供給されここで
燃焼される最大32mm径の供給炭と共にフリーボード23内
に投入せしめられるようにしたものである。Then, the boiler plant for carrying out the present invention has a main system 35 of the supplied coal (for example, a maximum diameter of 32 mm) for the fluidized bed 22 connected to the lower part of the freeboard 23, and a bypass system 36 of the supplied coal.
A rotary valve 38 whose rotation speed is adjusted by a temperature detection signal of a temperature sensor 37 provided on the freeboard 23 is provided on the upstream side of the bypass system 36, and on the downstream side of the rotary valve 38. A crusher mechanism 39 is provided, and a part of the supplied coal is crushed by the crusher mechanism 39. Then, the downstream side of the bypass system 36 is connected to the main system 35, and the pulverized pulverized coal that can jump out into the freeboard 23 and immediately undergo a combustion reaction without reaching the inside of the fluidized bed 22 is the fluidized bed 22. It is designed such that it can be thrown into the freeboard 23 together with the supply coal having a maximum diameter of 32 mm which is supplied inside and burned here.
上記ボイラプラントに基づいて、本発明による流動床燃
焼ボイラの未燃分再燃焼方法について述べる。Based on the above-mentioned boiler plant, a method for reburning unburned components of a fluidized bed combustion boiler according to the present invention will be described.
流動床燃焼ボイラ21を運転し、流動層燃焼を開始する
と、流動層22から未燃灰を含む微粒子がフリーボード23
方向に向け飛散する。この飛散した微粒子は、フリーボ
ード23の周壁が築炉構造27であるため、温度降下するこ
となくフリーボード23で一部が燃焼したのち、排ガスと
共に排ガスダクト24を通って第1マルチサイクロン25に
入り、ここで比較的粒径の大きい粒子のみ捕捉される。
この際、流動床燃焼ボイラ21には、フリーボード23に連
る接触伝熱部が、全て、または、殆んどなく、排ガスダ
クト24、および、第1マルチサイクロン25には断熱材2
8,28が内張りされているので、排ガス中の飛散粒子は温
度降下が少ない。When the fluidized bed combustion boiler 21 is operated and the fluidized bed combustion is started, the particles containing unburned ash are freeboarded from the fluidized bed 23.
Scatter in the direction. Since the peripheral wall of the freeboard 23 has the furnace construction structure 27, a part of the scattered fine particles is burned in the freeboard 23 without a temperature drop, and then passes through the exhaust gas duct 24 together with the exhaust gas to the first multi-cyclone 25. Incoming, where only particles of relatively large size are captured.
At this time, the fluidized bed combustion boiler 21 has no or almost no contact heat transfer section connected to the freeboard 23, and the exhaust gas duct 24 and the first multi-cyclone 25 have a heat insulating material 2.
Since 8 and 28 are lined, the temperature of scattered particles in exhaust gas does not drop.
そして、この第1マルチサイクロン25で捕捉された粒子
は、800〜1,000℃の高温を保って第1マルチサイクロン
25から重力で循環路26を通ってフリーボード23の下部に
戻され、フリーボード23で再び燃焼される。以後この行
程が繰り返し行われ、上記流動層22内からとび出した未
燃灰は、フリーボード23において燃焼され、また、第1
マルチサイクロン25に送られ捕捉された未燃灰は再びフ
リーボード23に戻され、ほぼ完全に燃焼される。そし
て、上述した築炉構造27,断熱構造28による作用と併せ
て、フリーボード23を高温状態に保持し、脱硫、脱硝反
応を有効に行わせ、排ガス中のSOx,NOx排出値を大巾に
低下させる。Then, the particles captured by the first multi-cyclone 25 are kept at a high temperature of 800 to 1,000 ° C.
It is returned from 25 to the lower part of the freeboard 23 by gravity through the circulation path 26, and is burned again in the freeboard 23. After that, this process is repeated, and the unburned ash that has jumped out of the fluidized bed 22 is burned in the freeboard 23, and
The unburned ash sent to the multi-cyclone 25 and captured is returned to the freeboard 23 again and is almost completely burned. Then, in addition to the actions of the furnace construction structure 27 and the heat insulation structure 28 described above, the freeboard 23 is kept at a high temperature to effectively perform desulfurization and denitration reactions, and the SOx and NOx emission values in the exhaust gas are greatly increased. Lower.
一方フリーボード23には、主系統35から投入される供給
炭に混入されている微粉炭が、流動層22中に介入して燃
焼されることなく、そのまま供給される結果となり、微
粉炭はフリーボード23において直ちに燃焼反応し、フリ
ーボード23内の温度を800〜1,000℃の高温に保持せしめ
る。このことは、負荷の低下、あるいは、フリーボード
23での燃焼割合の少ない燃料を使用したとき、フリーボ
ード23の温度が低下し、脱硫、脱硝反応に必要な800〜
1,000℃の温度条件が得られなくなる場合に、あくまで
も、フリーボード23の温度を800〜1,000℃に保ち、未燃
灰が燃焼し還元剤として働きうる800℃以上の温度とす
ると同時に、脱硫剤であるCaOがSOxと反応しCaSO4とな
り再分解しない範囲の温度を保つものである。On the other hand, the pulverized coal mixed in the feed coal fed from the main system 35 is supplied to the freeboard 23 as it is without being intervened in the fluidized bed 22 and burned, and the pulverized coal is free. The board 23 immediately undergoes a combustion reaction to keep the temperature in the free board 23 at a high temperature of 800 to 1,000 ° C. This can be due to reduced load or freeboard
When a fuel with a low combustion ratio in 23 is used, the temperature of the freeboard 23 drops, and 800 to 800 required for desulfurization and denitration reactions
When the temperature condition of 1,000 ℃ cannot be obtained, keep the temperature of the freeboard 23 at 800 to 1,000 ℃ and keep it at 800 ℃ or higher where unburned ash can burn and work as a reducing agent. A certain CaO reacts with SOx to become CaSO 4 and keeps the temperature within the range where it does not decompose again.
フリーボード23への微粉炭の供給には次のような手段が
ある。There are the following means for supplying pulverized coal to the freeboard 23.
(a)供給炭の主系統35に接続したバイパス系統36に、供
給炭の一部を導き、これを該バイパス系統36に設けたク
ラッシャー機構39によって粉砕し、粉砕された微粉炭を
再び上記主系統35の下手側に供給混合して石炭の粒径分
布を変え、混合された供給炭を図のようにフリーボード
23の下方、即ち、流動層22の上方に投入し、粒径の大き
な石炭を流動層22内に、微粉炭を流動層22に到達させる
ことなく浮遊状態でフリーボード23に投入供給する。(a) A part of the supplied coal is guided to a bypass system 36 connected to the main system 35 of the supplied coal, which is crushed by a crusher mechanism 39 provided in the bypass system 36, and the pulverized pulverized coal is again used as the above-mentioned main Supply and mix to the lower side of system 35 to change the particle size distribution of coal and mix the supplied coal as a freeboard as shown in the figure.
Below 23, that is, above the fluidized bed 22, coal with a large particle size is fed into the fluidized bed 22 and pulverized coal is fed into the freeboard 23 in a floating state without reaching the fluidized bed 22.
(b)バイパス系統36に設けたロータリーバルブ38の回転
数を、、フリーボード23の温度検知信号によって調節
し、粉砕する供給炭の量を変えてこれを粉砕し、得られ
た微粉炭を上記(a)と同様に投入する。(b) The number of rotations of the rotary valve 38 provided in the bypass system 36 is adjusted by the temperature detection signal of the freeboard 23, the amount of the supplied coal to be crushed is changed to crush it, and the obtained pulverized coal is Input as in (a).
更に、上記第1マルチサイクロン25で粒径の大きい粒子
を捕捉した残りの微粒子類を含む排ガスは、第1マルチ
サイクロン25を出たあと、ガス冷却器(蒸発器,節炭器
など)31で冷却されたのち、第2マルチサイクロン29に
入り、ここでできるだけ多くの粒子を捕捉する。そし
て、この第2マルチサイクロン29を出た排ガスは、エア
ヒータ32に入り、ここで流動床燃焼ボイラ21の風箱に送
給する燃焼用空気と熱交換せしめられ、温度が低下した
排ガスは集塵器33に入り、除塵されたのち煙突24より大
気中に放散される。Further, the exhaust gas containing the remaining fine particles captured by the first multi-cyclone 25 having a large particle size is discharged from the first multi-cyclone 25 and then is fed to a gas cooler (evaporator, economizer, etc.) 31. After cooling, it enters the second multi-cyclone 29, where it traps as many particles as possible. Then, the exhaust gas discharged from the second multi-cyclone 29 enters the air heater 32, where it is heat-exchanged with the combustion air to be fed to the wind box of the fluidized bed combustion boiler 21, and the exhaust gas having a lowered temperature is collected. After entering the container 33 and being dedusted, it is emitted from the chimney 24 into the atmosphere.
[発明の効果] 上述のように本発明の構成によれば、次のような効果が
得られる。[Effects of the Invention] According to the configuration of the present invention as described above, the following effects can be obtained.
(a)フリーボード部に、流動層より飛散する未燃灰を高
温のまま捕集してフリーボードに循環させるシステムを
付加したことにより、未燃灰の有効燃焼が図れ、フリー
ボードを高温に保持し、脱硫,脱硝反応が促進され、脱
硫剤の節減が図れるとともに、NOxの発生値が著しく抑
制しうる。(a) By adding a system to the freeboard part, which collects unburned ash scattered from the fluidized bed at high temperature and circulates it to the freeboard, effective combustion of unburned ash is achieved and the freeboard is heated to a high temperature. It can be retained, the desulfurization and denitration reactions can be promoted, the desulfurization agent can be saved, and the NOx emission value can be significantly suppressed.
(b)投入される供給炭に意図的に混入した微粒炭が、フ
リーボードに供給されるとともに、該部において直ちに
燃焼反応し、フリーボードの温度を800〜1,000℃に確保
することができ、脱硫は勿論のこと、脱硝反応が有効に
行われる。(b) The fine coal, which is intentionally mixed in the supplied coal to be fed, is supplied to the freeboard and immediately undergoes a combustion reaction in the part, so that the temperature of the freeboard can be secured at 800 to 1,000 ° C., Not only desulfurization, but also denitration reaction is effectively performed.
第1図は本発明方法を実施するための流動床燃焼ボイラ
プラントの概略図,第2図および第3図は、夫々従来の
未燃分再燃焼方法を実施する流動床燃焼ボイラプラント
の概略図である。 21……流動床燃焼ボイラ,22……流動層,23……フリー
ボード,24……排ガスダクト,25……第1マルチサイク
ロン,26……循環路,27……築炉構造,28……断熱材,
35……主系統,36……バイパス系統,37……温度センサ
ー,38……ロータリーバルブ,39……クラッシャー機
構。FIG. 1 is a schematic diagram of a fluidized bed combustion boiler plant for carrying out the method of the present invention, and FIGS. 2 and 3 are schematic diagrams of a fluidized bed combustion boiler plant for carrying out a conventional unburned matter recombustion method, respectively. Is. 21 …… Fluidized bed combustion boiler, 22 …… Fluidized bed, 23 …… Freeboard, 24 …… Exhaust gas duct, 25 …… First multi-cyclone, 26 …… Circulation path, 27 …… Furnace construction structure, 28 …… Insulation,
35 …… Main system, 36 …… Bypass system, 37 …… Temperature sensor, 38 …… Rotary valve, 39 …… Crusher mechanism.
Claims (1)
1マルチサイクロンまでの接触伝熱部を殆んどなくし、
フリーボード周壁,排ガスダクト、および、これに連る
第1マルチサイクロンの殆んどを断熱構造となして、流
動層から飛散した未燃灰などを含む粒子を、フリーボー
ドから排ガスダクトを通って第1マルチサイクロンに入
るまで高温に保持せしめるとともに、該第1マルチサイ
クロンで捕捉した比較的粒径の大きな粒子を、高温状態
で断熱構造とした循環路を介してフリーボードの下部に
戻すことを繰り返して行わせ、フリーボード中の脱硫剤
であるCaO,還元剤である未燃カーボンの濃度を高め
て、流動層からの飛散粒子中の未燃分を再燃焼するとと
もに、上記流動層の上方に供給炭の一部を粉砕して得ら
れ、かつ、フリーボード内において直ちに燃焼反応する
微粉炭を混入させて粒径分布をあらかじめ調整した供給
炭を流動層に投入し、流動層に到達することなくフリー
ボードに飛び出した微粉炭を上記循環未燃灰などと共に
燃焼せしめ、更に、フリーボード内の温度を検知し、該
温度検知信号により供給炭を微粉砕する石炭量を制御す
ることにより、フリーボード部の温度を、常に脱硫,脱
硝反応が行える800〜1,000℃の温度条件に制御維持し、
未燃灰が燃焼し還元剤として働きうる800℃以上の温度
とすると同時に、脱硫剤であるCaOがSOxと反応しCaSO4
となり再分解しない範囲の温度に保つことを特徴とする
流動床燃焼ボイラにおける未燃分再燃焼方法。1. A contact heat transfer section from a freeboard section to a first multi-cyclone of a fluidized bed combustion boiler is almost eliminated.
The surrounding wall of the freeboard, the exhaust gas duct, and most of the first multi-cyclone connected to the freeboard are made into an insulating structure, and particles containing unburned ash scattered from the fluidized bed are passed from the freeboard through the exhaust gas duct. The temperature is kept high until it enters the first multi-cyclone, and the particles having a relatively large particle size captured by the first multi-cyclone are returned to the lower part of the freeboard through a circulation path having an adiabatic structure in a high temperature state. Repeatedly to increase the concentration of desulfurizing agent CaO and reducing agent unburned carbon in the freeboard to reburn the unburned components in the particles scattered from the fluidized bed and above the fluidized bed. Was obtained by crushing a part of the feed coal, and the pulverized coal that immediately burns in the freeboard was mixed to feed the feed coal with a particle size distribution adjusted in advance to the fluidized bed. Burn the pulverized coal that has jumped to the freeboard without reaching the moving bed together with the circulating unburned ash, etc., and further detect the temperature in the freeboard, and finely pulverize the supplied coal by the temperature detection signal. By controlling, the temperature of the freeboard part is controlled and maintained at a temperature condition of 800 to 1,000 ° C where desulfurization and denitration reactions can be performed at all times.
At a temperature of 800 ° C or higher where unburned ash burns and can act as a reducing agent, CaO, which is a desulfurizing agent, reacts with SOx and CaSO 4
A method for recombusting unburned components in a fluidized bed combustion boiler, characterized in that the temperature is maintained within a range that does not cause re-decomposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046046A JPH0658166B2 (en) | 1985-03-08 | 1985-03-08 | Reburning method for unburned components in fluidized bed combustion boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60046046A JPH0658166B2 (en) | 1985-03-08 | 1985-03-08 | Reburning method for unburned components in fluidized bed combustion boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61205709A JPS61205709A (en) | 1986-09-11 |
JPH0658166B2 true JPH0658166B2 (en) | 1994-08-03 |
Family
ID=12736086
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60046046A Expired - Lifetime JPH0658166B2 (en) | 1985-03-08 | 1985-03-08 | Reburning method for unburned components in fluidized bed combustion boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0658166B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01295704A (en) * | 1988-05-23 | 1989-11-29 | Mizoguchi Tekkosho:Kk | Collet for cutting tool holder |
JP3321678B2 (en) * | 1993-03-30 | 2002-09-03 | エヌティーツール株式会社 | Collet for refueling |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5374762A (en) * | 1976-12-16 | 1978-07-03 | Ishikawajima Harima Heavy Ind Co Ltd | Method of burning out waste by fluidized bed type incinerator |
JPS5642004A (en) * | 1979-09-17 | 1981-04-20 | Babcock Hitachi Kk | Fluidized layer type boiler |
JPS606908U (en) * | 1983-06-22 | 1985-01-18 | バブコツク日立株式会社 | boiler equipment |
-
1985
- 1985-03-08 JP JP60046046A patent/JPH0658166B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61205709A (en) | 1986-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU1732821A3 (en) | Hybrid system of burning coal and coal dust in fluidized- bed | |
CA1245830A (en) | Method of introducing dry sulfur oxide absorbent material into a furnace | |
US5156099A (en) | Composite recycling type fluidized bed boiler | |
US4843981A (en) | Fines recirculating fluid bed combustor method and apparatus | |
US5103773A (en) | Fluid bed furnace | |
EP0431163B1 (en) | Composite circulation fluidized bed boiler | |
CN101024142A (en) | Fly ash beneficiation systems with sulfur removal and methods thereof | |
JPH0658166B2 (en) | Reburning method for unburned components in fluidized bed combustion boiler | |
JPH07506179A (en) | Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant | |
JP2682848B2 (en) | Combustion apparatus and combustion method for fine particulate carbonaceous fuel containing sulfur | |
JPH0658165B2 (en) | Reburning method for unburned components in fluidized bed combustion boiler | |
KR100387732B1 (en) | Circulation Fluidized Bed Boiler System Mounted with Pelletizer for Anthracite | |
JPH0663613B2 (en) | Reburning method for unburned components in fluidized bed combustion boiler | |
CN103062776A (en) | Circulating fluidized bed incinerator for heating wet sludge by incinerating dry sludge | |
JPH01111107A (en) | Cyclone coal combustion furnace with unburnt char recombustion system | |
JPH0587722B2 (en) | ||
JPH04186001A (en) | Fluidized bed combustion device | |
JPS638361B2 (en) | ||
JPH0235892B2 (en) | ||
JP2519523B2 (en) | Method and apparatus for burning end-of-life dust of oil coke | |
JPH0660727B2 (en) | Temperature control method in fluidized bed combustion boiler | |
JPH0140968Y2 (en) | ||
JPS5833368Y2 (en) | Fluidized bed combustion equipment | |
JP2680714B2 (en) | Ash treatment method for coal-fired boiler | |
JPS6399490A (en) | Circulation fluidized bed combustion apparatus |