JPH0663536A - Device for removing organic matter dissolved in water - Google Patents

Device for removing organic matter dissolved in water

Info

Publication number
JPH0663536A
JPH0663536A JP21927992A JP21927992A JPH0663536A JP H0663536 A JPH0663536 A JP H0663536A JP 21927992 A JP21927992 A JP 21927992A JP 21927992 A JP21927992 A JP 21927992A JP H0663536 A JPH0663536 A JP H0663536A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
container
water
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21927992A
Other languages
Japanese (ja)
Other versions
JP3283068B2 (en
Inventor
Makoto Uchida
誠 内田
Hiroshi Tasaka
広 田阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP21927992A priority Critical patent/JP3283068B2/en
Publication of JPH0663536A publication Critical patent/JPH0663536A/en
Application granted granted Critical
Publication of JP3283068B2 publication Critical patent/JP3283068B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To stably remove volatile org. matter over a long period by substituting the org. matter for the external air when an aq. soln. contg. org. matter flows in the hollow part of a hollow-fiber membrane, sucking and discharging the org. gas leaving the membrane from an outlet port of an evacuating means. CONSTITUTION:A vessel 1 is provided with a suction port 2 and an exhaust port 3 on its side and the inlet 6 and outlet 7 for an aq. soln. contg. volatile matter on both ends. Many hollow-fiber membranes 4 are arranged in the vessel 1 at regular intervals, and both ends are supported and fixed with a potting agent 5. A partition wall 5 is formed by the potting agent 5 to isolate a space between the membranes from the inlet and outlet 6 and 7. When the device is used, a pressure reducing machine 8 such as a blower is connected to the exhaust port 3 and operated, the org. gas is substituted for the external air when an aq. soln. contg. org. matter flows in the hollow part of the membrane 4, and the org. gas leaving the membrane 4 is sucked and discharged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水道水や井戸水中に溶存
する揮発性の有機物(特にクロロホルム、ジクロロブロ
モホルム、クロロジブロモホルム、ブロロホルム等のト
リハロメタンや1,1,1−トリクロロエタン、1,2
−ジクロロエタン、トリクロロエチレン、テトラクロロ
エチレン等の揮発性の有機ハロゲン物質)を除去し、安
全な飲料水を提供する或いは純度の高い水を提供する装
置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to volatile organic substances dissolved in tap water or well water (particularly trihalomethanes such as chloroform, dichlorobromoform, chlorodibromoform and broloform, 1,1,1-trichloroethane, 1,2,1).
A volatile organic halogen substance such as dichloroethane, trichloroethylene, tetrachloroethylene, etc.) to provide safe drinking water or high-purity water.

【0002】[0002]

【従来の技術】近年、河川水中の有機物濃度の増加にと
もない殺菌あるいは浄化用の塩素を多量に用いる傾向に
あり、有機物と塩素が反応することにより生成される発
癌性あるいは変異原性のトリハロメタン(クロロホルム
等炭素にハロゲン物質が3つ結合した有機物)の濃度が
増大し水道水中に微量ながら溶存することが問題となっ
ている。
2. Description of the Related Art In recent years, there has been a tendency to use a large amount of chlorine for sterilization or purification as the concentration of organic substances in river water increases, and carcinogenic or mutagenic trihalomethanes produced by the reaction of organic substances with chlorine ( There is a problem that the concentration of organic substances in which three halogen substances are bound to carbon such as chloroform) increases and the trace amount is dissolved in tap water.

【0003】またドライクリーニングや機械類の脱脂剤
として1,1,1−トリクロロエタン、1,2−ジクロ
ロエタン、トリクロロエチレン、テトラクロロエチレン
等発癌性の有機ハロゲン物質が工場廃液として地下に浸
透し井戸水中に含まれる事も同時に問題となっている。
また食品や薬品関係の工業用水中にはこれらの有機ハロ
ゲン物質が微量でも存在する事は非常に危険であり、こ
の分野の業界では水中に溶存する微量の有機ハロゲン物
質を除去する技術が待望されている。
Further, carcinogenic organic halogen substances such as 1,1,1-trichloroethane, 1,2-dichloroethane, trichloroethylene, and tetrachloroethylene permeate underground as industrial waste liquid and are contained in well water as a degreasing agent for dry cleaning and machinery. Things are also a problem at the same time.
In addition, it is extremely dangerous that even trace amounts of these organic halogen substances are present in industrial water for foods and chemicals.In the industry in this field, a technology for removing the trace amount of organic halogen substances dissolved in water is desired. ing.

【0004】従来水中に溶存する揮発性の有機物(特に
有機ハロゲン物質)を除去する方法としては、(イ)活
性炭等に有機物を吸着させる吸着処理方法、(ロ)酸化
チタンのような半導体触媒を用いて光により分解する光
分解方法、(ハ)鉄などの金属粉が還元触媒となり例え
ばトリクロロエチレンを塩素イオンと化学的に安定なエ
チレンガスに変換する還元処理方法、(ニ)活性汚泥等
の生物により分解する生物処理方法また(ホ)水中に多
量のガスを送り込み液相中に溶存する揮発性の有機物を
気相側へガス分圧差より移動させガスとして追い出す曝
気方法あるいは、煮沸する事によって水中に溶存する揮
発性の有機物を気相側へ追い出す煮沸法が知られてい
る。
Conventionally, as a method for removing volatile organic substances (in particular, organic halogen substances) dissolved in water, (a) an adsorption treatment method of adsorbing an organic substance on activated carbon or the like, (b) a semiconductor catalyst such as titanium oxide is used. Photodecomposition method of using light to decompose, (c) Metal powder such as iron serves as a reduction catalyst, for example, reduction treatment method of converting trichlorethylene into chlorine ion and chemically stable ethylene gas, (d) organisms such as activated sludge (E) A large amount of gas is sent into the water and the volatile organic substances dissolved in the liquid phase are moved to the gas phase side from the gas partial pressure difference and expelled as gas, or by boiling the water. A boiling method is known in which volatile organic substances dissolved in the water are expelled to the gas phase side.

【0005】一方水溶液中に溶存する酸素を効率よく除
去する方法として(ヘ)チューブもしくは中空糸膜を用
いて脱気する方法が特開昭57−165007号、特開
昭60−25514号、特開平2−303587号、実
公平2−48003号、また(ト)複合膜を用いた脱気
方法及び装置が実開平3−7908号、特開平3−16
9303号各公報に提案されている。
On the other hand, as a method for efficiently removing oxygen dissolved in an aqueous solution, (f) a method of degassing by using a tube or a hollow fiber membrane is disclosed in JP-A-57-165007, JP-A-60-25514, and Kaihei 2-303587, Jitsuhei 2-48003, and (g) Degassing method and apparatus using composite membrane are Jaikaihei 3-7908 and JP-A-3-16.
It is proposed in each publication of 9303.

【0006】前記方法の内、(イ)の吸着処理方法は吸
着剤の吸着能力以上に吸着することができず、多量に用
いる必要性あるいは再賦活させる必要性がありコスト高
になるばかりでなく、目的とする除去物質よりも吸着能
力の高い物質が吸着剤近傍に存在するときは目的とする
除去物質を放出し、より吸着力の高い物質と吸着してし
まう危険性も考えられる。(ロ)の光分解方法は水中の
汚泥物質が光の透過を遮り揮発性有機物質に均一に光を
当て分解するためには長い反応時間を要する。(ハ)の
還元処理方法は触媒である金属粉の触媒活性を維持する
ことが困難であるばかりでなく水中に触媒である金属粉
が混入する危険性もある。また(ニ)の生物処理方法は
均一に分解し、処理後の物質も化学的に安定した物質と
なる利点はあるが処理速度が遅く実用的ではない。唯一
実用化に近い(ホ)の曝気方法も気相側へ追い出すため
のガスを大量に必要とするため装置が大型となってしま
うだけでなく、例えばテトラクロロエチレンなどの揮発
性の低い有機物を除去する事は困難である。
Of the above-mentioned methods, the adsorption treatment method (a) cannot adsorb more than the adsorption capacity of the adsorbent, and it is necessary to use a large amount or to reactivate it, which not only increases the cost. When a substance having a higher adsorption capacity than the target removal substance is present in the vicinity of the adsorbent, there is a risk that the target removal substance is released and may be adsorbed with a substance having a higher adsorption power. In the photodecomposition method (b), a long reaction time is required for the sludge substance in water to block the transmission of light and uniformly apply light to the volatile organic substance to decompose it. In the reduction treatment method of (c), it is difficult to maintain the catalytic activity of the metal powder which is the catalyst, and there is also a risk that the metal powder which is the catalyst is mixed in water. In addition, the biological treatment method (d) has the advantage that it is uniformly decomposed and the substance after treatment becomes a chemically stable substance, but the treatment speed is slow and it is not practical. The only practical (a) aeration method that requires a large amount of gas to drive to the gas phase side is not only large in size, but also removes low-volatile organic substances such as tetrachloroethylene. Things are difficult.

【0007】一方(ヘ)のチューブもしくは中空糸膜又
は(ト)の複合膜を用いた脱気方法及び装置のどの方法
にも容器あるいは中空糸中空部を減圧にする手法しか記
されておらず、この方法のまま通常の水封式真空ポンプ
などの減圧ポンプを用いてもトリハロメタンのような揮
発性が高く水溶液中の水との相互作用の強い有機物を除
去することは困難である。
On the other hand, in any of the degassing methods and devices using the tube (f) or hollow fiber membrane or the composite membrane (g), only the method of depressurizing the container or the hollow portion of the hollow fiber is described. However, it is difficult to remove an organic substance such as trihalomethane having a high volatility and a strong interaction with water in an aqueous solution, even if a vacuum pump such as an ordinary water-sealed vacuum pump is used in this method.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は水中に
溶存する有機ハロゲン物質を効率よく除き、長期間安定
に除去性能を発揮し、且つコンパクトな水中溶存有機物
を除去する装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a compact apparatus for removing organic halogenated substances dissolved in water efficiently, exhibiting stable removal performance for a long time, and removing dissolved organic substances in water. It is in.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は、(1)
容器と該容器内に位置する中空糸膜と、該中空糸膜の端
部を支持し、中空糸膜の中空部に連通する空間と中空糸
膜の外表面に連通する空間とを隔離する隔壁とを有し、
中空糸膜の中空部に揮発性の溶存有機物を含む水溶液を
流すための導入口と水の導出口及び中空糸膜の外表面と
容器の内壁面とで構成される空間内のガスを排気する排
気口と該空間内に外部空気を取り込む吸気口とが設けら
れてなる水中溶存有機物除去装置及び(2)容器と該容
器内に位置する中空糸膜と、該中空糸膜の端部を支持
し、中空糸膜の中空部に連通する空間と中空糸膜の外表
面に連通する空間とを隔離する隔壁とを有し、中空糸膜
の外表面と容器の内壁面とで構成される空間に揮発性の
溶存有機物を含む水溶液を流すための導入口と水の導出
口及び中空糸膜内ガスを排気する排気口と中空糸膜内に
空気を吸い込む吸気口とが設けられてなる水中溶存有機
物除去装置にある。好適には中空糸膜として、均質層を
その両側から多孔質層で挟み込んだ三層構造の複合中空
糸膜を用いて、水溶液と接する多孔質層と反対側の多孔
質層側のガスを中空糸膜面積あたり3Nl/min以上
の換気速度で容器外部の空気と交換することにより、水
溶液中の溶存有機物を除去する装置にある。
The gist of the present invention is (1)
A partition wall that separates a container, a hollow fiber membrane located in the container, an end portion of the hollow fiber membrane, and a space communicating with the hollow portion of the hollow fiber membrane and a space communicating with the outer surface of the hollow fiber membrane. Has and
Exhaust gas in a space formed by an inlet for flowing an aqueous solution containing a volatile dissolved organic substance into the hollow portion of the hollow fiber membrane, a water outlet, and an outer surface of the hollow fiber membrane and an inner wall surface of the container. An apparatus for removing dissolved organic matter in water, which is provided with an exhaust port and an intake port for taking in external air into the space, and (2) a container, a hollow fiber membrane positioned in the container, and an end portion of the hollow fiber membrane. A space having a partition wall that separates a space communicating with the hollow portion of the hollow fiber membrane and a space communicating with the outer surface of the hollow fiber membrane, the space including the outer surface of the hollow fiber membrane and the inner wall surface of the container Dissolved in water, which is provided with an inlet for flowing an aqueous solution containing volatile dissolved organic matter, an outlet for water, an outlet for exhausting gas in the hollow fiber membrane, and an inlet for sucking air into the hollow fiber membrane. It is in an organic matter removal device. Preferably, as the hollow fiber membrane, a composite hollow fiber membrane having a three-layer structure in which a homogeneous layer is sandwiched by porous layers from both sides thereof is used, and the gas on the porous layer side opposite to the porous layer in contact with the aqueous solution is hollow. This is an apparatus for removing dissolved organic matter in an aqueous solution by exchanging with air outside the container at a ventilation rate of 3 Nl / min or more per thread membrane area.

【0010】本発明によると水中溶存有機物の中でも、
気/液平衡における気相の濃度が高い揮発性の有機物を
効率的に除去できる。更に揮発性の有機物の中でも特に
極性の強い有機ハロゲン物質が複合中空糸膜の均質層に
用いられる高分子素材と親和性が高く効率的に除去でき
る。
According to the present invention, among dissolved organic matters in water,
It is possible to efficiently remove volatile organic substances having a high gas phase concentration in the gas / liquid equilibrium. Further, among volatile organic substances, particularly highly polar organic halogen substances have high affinity with the polymer material used for the homogeneous layer of the composite hollow fiber membrane and can be efficiently removed.

【0011】中空糸膜としては細孔径が0.05μm以
下の疎水性多孔質膜を用いることもできるが、長時間使
用すると水蒸気が漏れてしまい、その結果水が多孔質膜
から漏れてしまう危険性がある。従って8μm以下の膜
厚の均質膜(A)及び補強機能を受け持つ多孔質膜
(B)からなる多層複合中空糸膜であって、均質膜
(A)と多孔質膜(B)は交互に積層され、該多層複合
中空糸膜の水溶液と接する側の層が均質膜(A)或いは
多孔質膜(B)であり、水溶液と接しない側の層が多孔
質膜(B)である構造を有し且つ複合中空糸膜のクロロ
ホルム透過速度が1×10-3(cm3 (STP)/cm
2 /sec/cmHg)以上の透過性能を有する中空糸
膜であることが好ましい。クロロホルム透過速度が1×
10-3(cm3 (STP)/cm2 /sec/cmH
g)未満では水中に溶存する有機物の複合膜を透過する
透過速度が遅く効率的に有機物を除去することができな
い。このような複合膜の多孔質層を形成する素材として
は、ポリエチレン、ポリプロピレン、ポリ3−メチルブ
テン−1、ポリ4−メチルペンテン−1等のポリオレフ
ィンやフッ化ビニリデン、ポリテトラフロロエチレン等
のフッ素系ポリマー、ポリスルホンやポリエーテルケト
ン、ポリエーテルエーテルケトン等のポリマーを用いる
ことができるが、好ましくは容易に多孔質形成が可能な
結晶性のポリマーであるポリオレフィンが好ましい。ま
た該複合膜の均質層に用いられる素材としてはセグメン
ト化ポリウレタン、シリコン系ポリマー、低密度ポリエ
チレンやポリ4−メチルペンテン−1等のポリオレフィ
ンや、ポリアクリルアミド等が考えられるが、有機ハロ
ゲンと親和性の高いポリマーが好ましい。
As the hollow fiber membrane, a hydrophobic porous membrane having a pore size of 0.05 μm or less can be used, but if it is used for a long time, water vapor leaks, and as a result, water may leak from the porous membrane. There is a nature. Therefore, a multilayer composite hollow fiber membrane comprising a homogeneous membrane (A) having a thickness of 8 μm or less and a porous membrane (B) having a reinforcing function, wherein the homogeneous membrane (A) and the porous membrane (B) are alternately laminated. The multilayer composite hollow fiber membrane has a structure in which the layer in contact with the aqueous solution is a homogeneous membrane (A) or a porous membrane (B), and the layer in the side not in contact with the aqueous solution is a porous membrane (B). In addition, the chloroform permeation rate of the composite hollow fiber membrane was 1 × 10 −3 (cm 3 (STP) / cm
It is preferably a hollow fiber membrane having a permeation performance of 2 / sec / cmHg) or more. Chloroform transmission rate is 1 ×
10 -3 (cm 3 (STP) / cm 2 / sec / cmH
If it is less than g), the permeation speed of permeation through the composite film of the organic substance dissolved in water is slow and the organic substance cannot be efficiently removed. As a material for forming the porous layer of such a composite film, a polyolefin such as polyethylene, polypropylene, poly-3-methylbutene-1, poly-4-methylpentene-1 or a vinyl fluoride such as vinylidene fluoride or polytetrafluoroethylene is used. Polymers such as polysulfone, polyetherketone, and polyetheretherketone can be used, but polyolefins, which are crystalline polymers capable of easily forming a porous structure, are preferable. The material used for the homogeneous layer of the composite film may be segmented polyurethane, silicone polymer, low density polyethylene, polyolefin such as poly-4-methylpentene-1, polyacrylamide, etc. Higher polymers are preferred.

【0012】このような複合膜は例えば特公平3−44
811号公報等に記載された方法により、多重円筒形の
紡糸ノズルを用いて均質膜Aを形成するポリマーと多孔
質膜Bを形成するポリマーとを交互に配置し溶融紡糸
し、次いで均質膜Aを多孔質化することなく多孔質膜B
だけを多孔質化する条件で延伸する方法により製造され
る。
Such a composite membrane is disclosed, for example, in Japanese Patent Publication No. 3-44.
According to the method described in Japanese Patent No. 811 and the like, a polymer forming a homogeneous film A and a polymer forming a porous film B are alternately arranged by using a multi-cylindrical spinning nozzle, and melt-spun, and then the homogeneous film A. Porous Membrane B Without Making Porous
It is produced by a method of stretching under the condition that only the material is made porous.

【0013】また、該装置に組み込む吸気装置は該複合
中空糸膜の水と接する側と反対側の多孔質層のガスを中
空糸膜面積あたり3Nl/min/m2 以上(好ましく
は4Nl/min/m2 以上)の換気速度で容器外部の
空気と交換することが可能な装置であることが必要条件
である。中空糸膜面積あたり3Nl/min/m2 未満
の排気速度では中空糸膜を透過する有機ガスと排気され
る有機ガスのモル量差が小さく有機ガス除去性能が大き
く低下する。3Nl/min/m2 以上の排気量で排気
する方法としては、高真空下で大きな排気量を有するル
ーツ型真空ポンプを用いるなど排気量の大きい減圧機を
用いることもできるが、装置が大型化し好ましくない。
該容器空隙内のガスを排気するにあたり外気を取り込む
吸気口を設置することにより、低真空下で排気すること
が可能となりトルクの小さな小型の減圧機で容易に3N
l/min/m2 以上を排気することができる。また外
気と空気を交換する方法として、外気を吸い込むのでは
なく例えばコンプレッサーのような装置で外気を加圧し
送り込む方法もあるが、該複合中空糸膜のガス側の表面
の境膜抵抗が大きくなること、また中空糸が束状になっ
て、空気のチャンネリングが起こる危険性があることな
どから、外気を吸い込む方式が好ましい。
Further, in the air intake device incorporated in the device, the gas in the porous layer on the side opposite to the side in contact with water of the composite hollow fiber membrane is 3 Nl / min / m 2 or more (preferably 4 Nl / min) per hollow fiber membrane area. It is a necessary condition that the device be capable of exchanging with the air outside the container at a ventilation rate of / m 2 or more). At an exhaust rate of less than 3 Nl / min / m 2 per hollow fiber membrane area, the difference in molar amount between the organic gas that permeates the hollow fiber membrane and the exhausted organic gas is small, and the organic gas removal performance is greatly reduced. As a method of evacuating with a displacement of 3 Nl / min / m 2 or more, a Roots-type vacuum pump having a large displacement under high vacuum can be used, but a decompressor with a large displacement can be used, but the device becomes larger. Not preferable.
By installing an intake port for taking in outside air when exhausting the gas in the container void, it is possible to exhaust under a low vacuum, and a small pressure reducer with a small torque can easily generate 3N.
It is possible to exhaust 1 / min / m 2 or more. Also, as a method of exchanging air with the outside air, there is a method of pressurizing the outside air with a device such as a compressor instead of sucking the outside air and sending it in, but the membrane resistance of the gas side surface of the composite hollow fiber membrane increases. In addition, since the hollow fibers are bundled and there is a risk that channeling of air may occur, the method of sucking the outside air is preferable.

【0014】図1は本発明の水中溶存有機物除去装置の
好適な一態様を示すものである。1は外気を吸い込む吸
気口2及び揮発性有機物及び水蒸気を含むガス排気口3
を有する容器であり、該容器の内部には多数本の中空糸
膜4が所定の間隔をおいてその両端部がポッティング剤
5により支持固定されるように配設されている。また容
器1の両端には前記ポッティング剤により支持固定され
た中空糸膜4と容器1の内壁間に形成される空間部にそ
れぞれ連通する揮発性有機物を含む水溶液の導入口6及
び導出口7が設けてある。前記ポッティング剤により、
前記多数本の中空糸膜4,4,・・・・,4間に形成さ
れる空間と前記揮発性有機物を含む水溶液の導入口6及
び導出口7とを遮断する隔壁5を形成する。更に容器1
の周面の一部には、前記中空糸膜4,4,・・・・,4
間に形成される空間に存在する揮発性有機物及び水蒸気
を含むガスを排気する排気口3は減圧機(吸気ブロア
ー)8と接続されている。
FIG. 1 shows a preferred embodiment of the apparatus for removing dissolved organic matter in water according to the present invention. Reference numeral 1 is an intake port 2 for sucking outside air and a gas exhaust port 3 containing volatile organic substances and water vapor
A plurality of hollow fiber membranes 4 are arranged at predetermined intervals inside the container so that both ends thereof are supported and fixed by the potting agent 5. Further, at both ends of the container 1, there are provided an inlet port 6 and an outlet port 7 for an aqueous solution containing a volatile organic substance, which communicate with the hollow fiber membrane 4 supported and fixed by the potting agent and the space formed between the inner walls of the container 1, respectively. It is provided. By the potting agent,
A partition wall 5 for blocking the space formed between the large number of hollow fiber membranes 4, 4, ..., 4 from the inlet 6 and outlet 7 of the aqueous solution containing the volatile organic substance is formed. Further container 1
The hollow fiber membranes 4, 4, ...
An exhaust port 3 for exhausting a gas containing volatile organic substances and water vapor existing in a space formed therebetween is connected to a decompressor (intake blower) 8.

【0015】本発明は、水中の溶存有機物除去装置を用
いて鋭意検討を行った結果、驚くべきことに該複合中空
糸膜の水と接する側と反対側の多孔質層と容器で囲まれ
た空間内のガスを該複合中空糸膜面積あたり3Nl/m
in/m2 以上の速度で装置外部の空気と交換するよう
制御することにより除去効率が極端に向上することを更
に見出したものである。
As a result of intensive studies using a device for removing dissolved organic matter in water, the present invention was surprisingly surrounded by a porous layer and a container on the side opposite to the side in contact with water of the composite hollow fiber membrane. The gas in the space is 3 Nl / m per area of the composite hollow fiber membrane.
It was further found that the removal efficiency is remarkably improved by controlling to exchange with the air outside the apparatus at a speed of in / m 2 or more.

【0016】[0016]

【作用】本発明によれば揮発性有機物を含む水溶液は中
空糸膜の中空部(または外表面)を流れると同時に、中
空糸膜の外表面(または中空部)で有機ガスはほとんど
外気の空気と交換されているため前記水中溶存揮発性有
機物はガスとなって中空糸膜を透過し外部に排気され
る。従って本発明の有機物除去装置を流れる水には外気
の侵入や薬品の投入がないので空気中の細菌や薬物が混
入することがない。また曝気法のように大量のガスを送
り込む必要がないために省エネルギーであり、更に中空
糸膜を用いるために水のガス側との接触面積が大きく装
置を小型化することが可能である。
According to the present invention, the aqueous solution containing a volatile organic substance flows through the hollow portion (or outer surface) of the hollow fiber membrane, and at the same time, the organic gas is almost outside air on the outer surface (or hollow portion) of the hollow fiber membrane. Since the volatile organic substances dissolved in water become gas, they permeate the hollow fiber membrane and are exhausted to the outside. Therefore, the water flowing through the organic substance removing apparatus of the present invention does not enter the outside air and is not charged with chemicals, so that bacteria and drugs in the air are not mixed. Further, unlike the aeration method, it is not necessary to send in a large amount of gas, which saves energy, and since a hollow fiber membrane is used, the contact area with the gas side of water is large and the apparatus can be downsized.

【0017】また長時間使用しても有機ハロゲン物質な
どの揮発性有機物の除去性能は活性炭吸着のように低下
せず安定して揮発性有機物濃度の低い水を供給できる。
Further, even if it is used for a long period of time, the removal performance of volatile organic substances such as organic halogen substances does not deteriorate as in the case of activated carbon adsorption, and water having a low concentration of volatile organic substances can be stably supplied.

【0018】[0018]

【実施例】以下、本発明を実施例に基づき更に具体的に
説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0019】参考例1 同心円状に配置された3つの吐出口を有する中空糸製造
用ノズルに対し、内層と外層に供給するポリマー素材と
して高密度ポリエチレン(三井石油化学(株)Hize
x2200J)を、中間層に供給するポリマー素材とし
てセグメント化ポリウレタン(Thermedics
Inc.製 TecoflexEG80A)を用い、吐
出温度165℃、巻き取り速度180m/minで紡糸
した。得られた中空未延伸糸を100℃で1時間アニー
ル処理をした。次いでアニール処理糸を室温下で80%
延伸し、引き続き105℃に加熱された加熱炉中で熱延
伸倍率が130%になるまで熱延伸を行って、複合中空
糸膜を得た。
Reference Example 1 A high-density polyethylene (Mitsui Petrochemical Co., Ltd. Hize) as a polymer material to be supplied to an inner layer and an outer layer of a hollow fiber manufacturing nozzle having three discharge ports arranged concentrically.
x2200J) is used as a polymer material for supplying the intermediate layer to the segmented polyurethane (Thermedics).
Inc. Tecoflex EG80A manufactured by Kogyo Co., Ltd. was used for spinning at a discharge temperature of 165 ° C. and a winding speed of 180 m / min. The obtained hollow undrawn yarn was annealed at 100 ° C. for 1 hour. Next, the annealed yarn is 80% at room temperature.
The composite hollow fiber membrane was obtained by stretching and then hot stretching in a heating furnace heated to 105 ° C. until the thermal stretch ratio reached 130%.

【0020】得られた複合中空糸膜は、図3に示すよう
な最内層から順次多孔質層、均質層、多孔質層の三層構
造であり、内径が200μmで最内層から各々25μ
m、1μm、30μmの厚さを有する同心円状に配され
ていた。該複合中空糸膜2の多孔質層表面を走査型電子
顕微鏡により観察した結果、幅0.06〜0.09μ
m、長さ0.1〜0.5μmのスリット状の孔が形成さ
れていた。この中空糸膜2のクロロホルム透過速度は、
2×10-3(cm3 (STP)/cm2 ・sec・cm
Hg)であった。
The obtained composite hollow fiber membrane has a three-layer structure of a porous layer, a homogeneous layer, and a porous layer in this order from the innermost layer as shown in FIG. 3. The inner diameter is 200 μm and each 25 μm from the innermost layer.
m, 1 μm, and 30 μm in a concentric pattern. As a result of observing the surface of the porous layer of the composite hollow fiber membrane 2 with a scanning electron microscope, the width was 0.06 to 0.09 μm.
m, and a slit-shaped hole having a length of 0.1 to 0.5 μm was formed. The chloroform permeation rate of this hollow fiber membrane 2 is
2 × 10 -3 (cm 3 (STP) / cm 2 · sec · cm
Hg).

【0021】参考例2 同心円状に配置された3つの吐出口を有する中空糸製造
用ノズルに対し、内層と外層に供給するポリマー素材と
して高結晶性ポリ4−メチルペンテン−1(三井石油化
学(株)製 TPX RT18)を、中間層に供給する
ポリマー素材として低結晶性ポリ4−メチルペンテン−
1(三井石油化学(株)製 TPX MX001)を用
い、吐出温度265℃、巻き取り速度100m/min
で紡糸した。得られた中空糸膜を150℃で1時間アニ
ール処理をした。次いでアニール処理糸を室温下で30
%延伸し、引き続き150℃に加熱された加熱炉中で熱
延伸倍率が150%になるまで熱延伸を行って、複合中
空糸膜を得た。
Reference Example 2 For a hollow fiber manufacturing nozzle having three discharge ports arranged concentrically, highly crystalline poly-4-methylpentene-1 (Mitsui Petrochemical ( Co., Ltd. TPX RT18) is a low crystalline poly-4-methylpentene-polymer material for supplying the intermediate layer.
1 (TPX MX001 manufactured by Mitsui Petrochemical Co., Ltd.), discharge temperature 265 ° C., winding speed 100 m / min
Spun in. The obtained hollow fiber membrane was annealed at 150 ° C. for 1 hour. Then, the annealed yarn is kept at room temperature for 30
% Stretched, and then hot stretched in a heating furnace heated to 150 ° C. until the heat stretch ratio reached 150% to obtain a composite hollow fiber membrane.

【0022】得られた複合中空糸膜は、図3に示すよう
な最内層から順次多孔質層、均質層、多孔質層の三層構
造であり、内径が220μmで最内層から各々25μ
m、0.2μm、25μmの厚さを有する同心円状に配
されていた。該複合中空糸膜2の多孔質層表面を走査型
電子顕微鏡で観察した結果、幅0.03〜0.05μ
m、長さ0.05〜0.1μmのスリット状の孔が形成
されていた。この中空糸膜2のクロロホルム透過速度は
1×10-3(cm3 (STP)/cm2 ・sec・cm
Hg)であった。
The obtained composite hollow fiber membrane has a three-layer structure of a porous layer, a homogeneous layer and a porous layer in order from the innermost layer as shown in FIG. 3, the inner diameter is 220 μm and each 25 μm from the innermost layer.
They were arranged in concentric circles having a thickness of m, 0.2 μm, and 25 μm. As a result of observing the porous layer surface of the composite hollow fiber membrane 2 with a scanning electron microscope, the width was 0.03 to 0.05 μm.
m, and a slit-shaped hole having a length of 0.05 to 0.1 μm was formed. The chloroform permeation rate of this hollow fiber membrane 2 is 1 × 10 −3 (cm 3 (STP) / cm 2 · sec · cm
Hg).

【0023】参考例3 同心円状に配置された3つの吐出口を有する中空糸製造
用ノズルに対し、内層と外層に供給するポリマー素材と
して高密度ポリエチレン(三井石油化学(株)Hize
x2200J)を、中間層に供給するポリマー素材とし
てセグメント化ポリウレタン(Thermedics
Inc.製 TecoflexEG80A)を用い、吐
出温度165℃、巻き取り速度180m/minで紡糸
した。得られた中空未延伸糸を100℃で1時間アニー
ル処理をした。次いでアニール処理糸を室温下で80%
延伸し、引き続き105℃に加熱された加熱炉中で熱延
伸倍率が130%になるまで熱延伸を行って、複合中空
糸膜を得た。
Reference Example 3 High density polyethylene (Mitsui Petrochemical Co., Ltd. Hize) was used as a polymer material for supplying the inner layer and the outer layer to a hollow fiber manufacturing nozzle having three discharge ports arranged concentrically.
x2200J) is used as a polymer material for supplying the intermediate layer to the segmented polyurethane (Thermedics).
Inc. Tecoflex EG80A manufactured by Kogyo Co., Ltd. was used for spinning at a discharge temperature of 165 ° C. and a winding speed of 180 m / min. The obtained hollow undrawn yarn was annealed at 100 ° C. for 1 hour. Next, the annealed yarn is 80% at room temperature.
The composite hollow fiber membrane was obtained by stretching and then hot stretching in a heating furnace heated to 105 ° C. until the thermal stretch ratio reached 130%.

【0024】得られた複合中空糸膜は、図3に示すよう
な最内層から順次多孔質層、均質層、多孔質層の三層構
造であり、内径が200μmで最内層から各々25μ
m、20μm、30μmの厚さを有する同心円状に配さ
れていた。該複合中空糸膜2の多孔質層表面を走査型電
子顕微鏡により観察した結果、幅0.06〜0.09μ
m、長さ0.1〜0.5μmのスリット状の孔が形成さ
れていた。この中空糸膜2のクロロホルム透過速度は、
1×10-5(cm3 (STP)/cm2 ・sec・cm
Hg)であった。
The obtained composite hollow fiber membrane has a three-layer structure of a porous layer, a homogeneous layer and a porous layer in order from the innermost layer as shown in FIG. 3, the inner diameter is 200 μm and each 25 μm from the innermost layer.
They were arranged in concentric circles having a thickness of m, 20 μm, and 30 μm. As a result of observing the surface of the porous layer of the composite hollow fiber membrane 2 with a scanning electron microscope, the width was 0.06 to 0.09 μm.
m, and a slit-shaped hole having a length of 0.1 to 0.5 μm was formed. The chloroform permeation rate of this hollow fiber membrane 2 is
1 × 10 -5 (cm 3 (STP) / cm 2 · sec · cm
Hg).

【0025】参考例4 同心円状に配置された吐出口を有する中空糸膜製造用ノ
ズルに対し、供給するポリマー素材としてポリ4メチル
ペンテン−1(三井石油化学(株)製 TPXRT1
8)を用い、吐出温度265℃、巻き取り速度100m
/minで紡糸した。得られた中空糸膜を150℃で1
時間アニール処理をした。次いでアニール処理糸を室温
下で30%延伸し、引き続き150℃に加熱された加熱
炉中で熱延伸倍率が150%になるまで熱延伸を行っ
て、中空糸膜を得た。
Reference Example 4 Poly 4 methyl pentene-1 (TPXRT1 manufactured by Mitsui Petrochemical Co., Ltd.) as a polymer material to be supplied to a hollow fiber membrane manufacturing nozzle having concentrically arranged discharge ports.
8), discharge temperature 265 ° C, winding speed 100m
Spinning was performed at a speed of / min. The obtained hollow fiber membrane was subjected to 1 at 150 ° C.
A time annealing process was performed. Next, the annealed yarn was stretched by 30% at room temperature, and subsequently, was thermally stretched in a heating furnace heated to 150 ° C. until the thermal stretch ratio reached 150%, to obtain a hollow fiber membrane.

【0026】得られた中空糸膜は、内径が220μm
で、50μmの厚さを有する同心円状に構成されてい
た。該中空糸膜の多孔質層表面を走査型電子顕微鏡で観
察した結果、幅0.03〜0.05μm、長さ0.05
〜0.1μmのスリット状の孔が形成されていた。この
中空糸膜のクロロホルム透過速度は2×10-3(cm3
(STP)/cm2 ・sec・cmHg)であった。
The hollow fiber membrane obtained had an inner diameter of 220 μm.
Then, it was configured as a concentric circle having a thickness of 50 μm. As a result of observing the porous layer surface of the hollow fiber membrane with a scanning electron microscope, a width of 0.03 to 0.05 μm and a length of 0.05
Slit-shaped holes of ˜0.1 μm were formed. The chloroform permeation rate of this hollow fiber membrane was 2 × 10 −3 (cm 3
(STP) / cm 2 · sec · cmHg).

【0027】実施例1 図1の有機ハロン除去装置を使用して、有機ハロゲン物
質としてクロロホルムを100ppb、テトラクロロエ
チレン、トリクロロエチレン、1,1,1−トリクロロ
エチレンを各々50ppb含んだ水を0.5l/min
/m2 の流速で流し、参考例1〜4で得られた中空糸膜
を用いた装置を各々の中空糸を用いて作製し水中に溶存
する各有機ハロンの除去率を1式より計算し評価した。
Example 1 Using the organic halon remover shown in FIG. 1, 0.5 liter / min of water containing 100 ppb of chloroform and 50 ppb of each of tetrachloroethylene, trichloroethylene, and 1,1,1-trichloroethylene as organic halogen substances.
Flow rate of / m 2 and the apparatus using the hollow fiber membranes obtained in Reference Examples 1 to 4 was prepared using each hollow fiber, and the removal rate of each organic halon dissolved in water was calculated from the formula 1. evaluated.

【0028】有機ハロン除去率(%)=[1−(Ci−
Co)/Ci]×100 Ci;装置に入る水の中に含まれる各有機ハロン濃度 Co;装置から出る水の中に含まれる各有機ハロン濃度 各種中空糸膜を用いた評価結果を表1に、また図4に参
考例1及び参考例2の中空糸膜を用いた系での各換気速
度における有機ハロゲン物質の除去率を示した。但し、
この評価を行ったときの水温は25℃であった。
Removal rate of organic halon (%) = [1- (Ci-
Co) / Ci] × 100 Ci; concentration of each organic halon contained in water entering the device Co; concentration of each organic halon contained in water exiting the device Table 1 shows the evaluation results using various hollow fiber membranes. Further, FIG. 4 shows the removal rate of the organic halogen substances at each ventilation rate in the system using the hollow fiber membranes of Reference Example 1 and Reference Example 2. However,
The water temperature at the time of this evaluation was 25 ° C.

【0029】[0029]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水中溶存有機物の除去装置の一例を示
す模式図である。
FIG. 1 is a schematic view showing an example of an apparatus for removing dissolved organic matter in water according to the present invention.

【図2】本発明の水中溶存有機物の除去装置の一例を示
す模式図である。
FIG. 2 is a schematic view showing an example of a device for removing dissolved organic matter in water according to the present invention.

【図3】多孔質層、均質層、多孔質層の三層構造からな
る複合中空糸膜の模式図である。
FIG. 3 is a schematic diagram of a composite hollow fiber membrane having a three-layer structure of a porous layer, a homogeneous layer, and a porous layer.

【図4】参考例1及び2の中空糸膜を用いた系での各排
気速度における有機ハロゲン物質除去率を示すグラフで
ある。
FIG. 4 is a graph showing the organic halogen substance removal rate at each exhaust rate in the system using the hollow fiber membranes of Reference Examples 1 and 2.

【符号の説明】[Explanation of symbols]

1,11 容器 2,12 外気を吸い込む吸気口 3,13 ガス排気口 4,14 中空糸膜 5,15 ポッティング剤からなる隔壁 6,16 水溶液の導入口 7,17 水溶液の導出口 8,18 減圧機(吸気ブロアー) 1,11 Container 2,12 Intake port for sucking in outside air 3,13 Gas exhaust port 4,14 Hollow fiber membrane 5,15 Partition wall consisting of potting agent 6,16 Aqueous solution inlet 7,17 Aqueous solution outlet 8,18 Decompression Machine (intake blower)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 容器と該容器内に位置する中空糸膜と、
該中空糸膜の端部を支持し、中空糸膜の中空部に連通す
る空間と中空糸膜の外表面に連通する空間とを隔離する
隔壁とを有し、 中空糸膜の中空部に揮発性の溶存有機物を含む水溶液を
流すための導入口と水の導出口及び中空糸膜の外表面と
容器の内壁面とで構成される空間内のガスを排気する排
気口と該空間内に外部空気を取り込む吸気口とが設けら
れてなる水中溶存有機物除去装置。
1. A container and a hollow fiber membrane located in the container,
The hollow fiber membrane has a partition wall that supports the end portion and separates a space communicating with the hollow portion of the hollow fiber membrane from a space communicating with the outer surface of the hollow fiber membrane, and volatilizes in the hollow portion of the hollow fiber membrane. With an inlet for flowing an aqueous solution containing a soluble organic substance, an outlet for water, and an exhaust port for exhausting gas in a space formed by the outer surface of the hollow fiber membrane and the inner wall surface of the container, and the outside of the space An in-water dissolved organic matter removing device provided with an intake port for taking in air.
【請求項2】 容器と該容器内に位置する中空糸膜と、
該中空糸膜の端部を支持し、中空糸膜の中空部に連通す
る空間と中空糸膜の外表面に連通する空間とを隔離する
隔壁とを有し、中空糸膜の外表面と容器の内壁面とで構
成される空間に揮発性の溶存有機物を含む水溶液を流す
ための導入口と水の導出口及び中空糸膜内ガスを排気す
る排気口と中空糸膜内に空気を吸い込む吸気口とが設け
られてなる水中溶存有機物除去装置。
2. A container and a hollow fiber membrane located in the container,
A container that supports the end of the hollow fiber membrane and has a partition wall that separates a space communicating with the hollow portion of the hollow fiber membrane and a space communicating with the outer surface of the hollow fiber membrane, and the outer surface of the hollow fiber membrane and the container. Inlet for introducing an aqueous solution containing volatile dissolved organic matter into the space formed by the inner wall surface of the inner wall, outlet of water, outlet for exhausting gas in the hollow fiber membrane, and intake for sucking air into the hollow fiber membrane A device for removing dissolved organic matter in water, which is provided with a mouth.
【請求項3】 揮発性の有機物が、有機ハロゲン物質で
あることを特徴とする請求項1又は2記載の除去装置。
3. The removing apparatus according to claim 1, wherein the volatile organic substance is an organic halogen substance.
【請求項4】 中空糸膜が均質層をその両側から多孔質
層で挟み込んだ三層構造の複合中空糸膜であり、水溶液
と接する多孔質層と反対側の多孔質層側のガスを中空糸
膜面積あたり3Nl/min/m2 以上の換気速度で容
器外部の空気と交換することを特徴とする請求項1又は
2記載の除去装置。
4. A hollow fiber membrane is a composite hollow fiber membrane having a three-layer structure in which a homogeneous layer is sandwiched by porous layers from both sides thereof, and the gas on the porous layer side opposite to the porous layer in contact with the aqueous solution is hollow. The removal device according to claim 1 or 2, wherein air is exchanged with air outside the container at a ventilation rate of 3 Nl / min / m 2 or more per yarn membrane area.
【請求項5】 複合中空糸膜のクロロホルム透過速度が
1×10-3(cm3(STP)/cm2 /sec/cm
Hg)以上の透過性能を有することを特徴とする請求項
4記載の除去装置。
5. The chloroform permeation rate of the composite hollow fiber membrane is 1 × 10 −3 (cm 3 (STP) / cm 2 / sec / cm.
The removal device according to claim 4, which has a permeation performance of Hg) or higher.
JP21927992A 1992-08-18 1992-08-18 Underwater dissolved organic matter removal equipment Expired - Lifetime JP3283068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21927992A JP3283068B2 (en) 1992-08-18 1992-08-18 Underwater dissolved organic matter removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21927992A JP3283068B2 (en) 1992-08-18 1992-08-18 Underwater dissolved organic matter removal equipment

Publications (2)

Publication Number Publication Date
JPH0663536A true JPH0663536A (en) 1994-03-08
JP3283068B2 JP3283068B2 (en) 2002-05-20

Family

ID=16733030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21927992A Expired - Lifetime JP3283068B2 (en) 1992-08-18 1992-08-18 Underwater dissolved organic matter removal equipment

Country Status (1)

Country Link
JP (1) JP3283068B2 (en)

Also Published As

Publication number Publication date
JP3283068B2 (en) 2002-05-20

Similar Documents

Publication Publication Date Title
JP5869038B2 (en) Degassing liquid with membrane contactor
JP5633576B2 (en) Method for producing porous hollow fiber membrane
JP3685289B2 (en) Liquid degassing module
KR20150093700A (en) Gas purification filter unit
JP6311342B2 (en) Wastewater treatment system
JP2001149918A (en) Treating apparatus of wastewater including volatile organic substance and treating method thereof
JP3540417B2 (en) Removal method of dissolved gas in liquid
JP3409863B2 (en) Removal device for dissolved organic matter in water
JPH0663536A (en) Device for removing organic matter dissolved in water
JPH0768103A (en) Membrane deaerating method
JPH07116405A (en) Module for removing organic matter dissolved in water
JP3283072B2 (en) Underwater dissolved organic matter removal equipment
JPH07116649A (en) System for removing dissolved organic matter in aqueous solution
JPH05169051A (en) Method and device for removing organic matter dissolved in aqueous solution
JP3540804B2 (en) Removal system for dissolved organic matter in water
JPH0760235A (en) Apparatus for removal of organic substance dissolved in water
JPH0760234A (en) Apparatus for removal of dissolved organic substance in aqueous solution
JPH08243545A (en) Device for eliminating volatile organic substance dissolved in water
JP3502402B2 (en) Removal system for dissolved organic matter in water
JPH0647370A (en) Apparatus for removing dissolved organic matter in water
JP2009207811A (en) Air-cleaning module and air-cleaning device using the same
JPH0760236A (en) Removal system of organic substance dissolved in water
JP2001137837A (en) Treating device for water containing volatile organic material, and non-polluting treating device for groundwater
JPH0929232A (en) Device for removing dissolved trihalomethane in bathtub water
JP3563515B2 (en) Water purifier

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080301

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110301

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120301

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130301

Year of fee payment: 11