JPH0663033B2 - Manufacturing method of thin grain-oriented silicon steel sheet with little iron loss deterioration - Google Patents

Manufacturing method of thin grain-oriented silicon steel sheet with little iron loss deterioration

Info

Publication number
JPH0663033B2
JPH0663033B2 JP61308221A JP30822186A JPH0663033B2 JP H0663033 B2 JPH0663033 B2 JP H0663033B2 JP 61308221 A JP61308221 A JP 61308221A JP 30822186 A JP30822186 A JP 30822186A JP H0663033 B2 JPH0663033 B2 JP H0663033B2
Authority
JP
Japan
Prior art keywords
annealing
iron loss
silicon steel
steel sheet
oriented silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61308221A
Other languages
Japanese (ja)
Other versions
JPS63162814A (en
Inventor
雅之 坂口
勝生 岩本
嘉明 飯田
文二郎 福田
靖雄 横山
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP61308221A priority Critical patent/JPH0663033B2/en
Publication of JPS63162814A publication Critical patent/JPS63162814A/en
Publication of JPH0663033B2 publication Critical patent/JPH0663033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、板厚が0.10〜0.25mmの薄手方向性けい素鋼板
の製造方法に係り、特に焼鈍分離剤中のチタン化合物量
と最終仕上焼鈍時の冷却速度を制限することにより、鉄
損劣化の少ない薄手方向性けい素鋼板の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a method for producing a thin grain-oriented silicon steel sheet having a plate thickness of 0.10 to 0.25 mm, and particularly to the amount of titanium compound in the annealing separator and the final finish. The present invention relates to a method for manufacturing a thin grain-oriented silicon steel sheet with less iron loss deterioration by limiting the cooling rate during annealing.

〈従来の技術〉 従来から、方向性けい素鋼板は、主として変圧器その他
の電気機器の鉄芯材料として用いられ、その磁気特性が
優れていること、特にW17/50で代表される鉄損特性の低
いことが要求されている。この鉄損が大きいと、エネル
ギーの損失が大であり、熱として無駄に放散される。し
たがって、省エネルギーの観点から、この損失を少なく
した低鉄損の鉄芯材料への要求は、年々高まりつつあ
る。ところで、前記鉄損は、主として渦電流損と履歴損
からなるが、最近の高磁束密度一方向性けい素鋼板で
は、渦電流による損失が全体の7割を占めており、鉄損
の低減には渦電流損を減少させることが最も効果的であ
る。
< Prior Art> Conventionally, grain- oriented silicon steel sheets have been mainly used as iron core materials for transformers and other electrical equipment, and have excellent magnetic properties, especially iron loss represented by W 17/50. Low characteristics are required. If this iron loss is large, the energy loss is large, and it is wastefully dissipated as heat. Therefore, from the viewpoint of energy saving, the demand for an iron core material having a low iron loss in which the loss is reduced is increasing year by year. By the way, the iron loss mainly consists of eddy current loss and hysteresis loss, but in the recent high magnetic flux density unidirectional silicon steel sheet, the loss due to eddy current accounts for 70% of the whole, which is effective in reducing the iron loss. Is most effective in reducing eddy current loss.

この渦電流損を減少させる一つの方法として、けい素鋼
板中の電気抵抗を大きくすることが有効であり、現在の
製造工程においては、けい素鋼板を加工可能な範囲にま
でSi含有量を増加して電気抵抗を高めたり、成品板厚を
極めて薄く加工して(このような処理をした鋼板を、薄
手方向性けい素鋼板と呼ぶ。)、電気抵抗を高めるなど
の方法が工程的に採用されている。
As one method of reducing this eddy current loss, it is effective to increase the electrical resistance in the silicon steel sheet.In the current manufacturing process, the Si content is increased to the extent that the silicon steel sheet can be processed. To increase the electrical resistance, or to process the product sheet to a very thin thickness (a steel sheet treated in this way is called thin grain oriented silicon steel sheet) and then increase the electrical resistance. Has been done.

このうち、成品の板厚を薄くする方法は、鉄損低減の面
でも最も有利で簡単であると考えられており、事実、従
来0.35mmおよび0.30mm厚の成品が多く使用されてきた
が、今日では省エネルギーの見地から、0.23mm、0.20mm
厚の製品がさかんに使用されるようになっており、さら
に、0.18mm、0.15mmとより板厚の薄い鉄損の低い製品が
求められるようになってきている。
Of these, the method of reducing the plate thickness of the product is considered to be the most advantageous and simple in terms of iron loss reduction, and in fact, products with a thickness of 0.35 mm and 0.30 mm have been used in many cases. Today, from the viewpoint of energy saving, 0.23mm, 0.20mm
Thick products have been widely used, and further, products with a small iron loss of 0.18 mm and 0.15 mm and low iron loss have been demanded.

このような薄手方向性けい素鋼板は、鋼板のハンドリン
グと製造コストの制約から、多くは巻きコアと呼ばれる
小型の内鉄型鉄芯に用いられている。この巻きコアは、
製作途中の変形工程において機械的な外力を受けて歪を
生じ、磁気特性を劣化させるのでこの歪を回復する目的
で、通常800℃前後で歪取り焼鈍を行うことが不可避で
ある。
Such a thin grain-oriented silicon steel sheet is mostly used for a small inner iron type iron core called a wound core due to restrictions in handling the steel sheet and manufacturing costs. This wound core is
In the deformation process during manufacturing, strain is generated by receiving a mechanical external force, and the magnetic characteristics are deteriorated. Therefore, in order to recover this strain, it is generally inevitable to perform strain relief annealing at about 800 ° C.

〈発明が解決しようとする問題点〉 しかるに、この歪取り焼鈍を施した後も、鉄損が加工前
の素材の特性にまで回復しない事態がしばしば発生し
た。歪取り焼鈍中の鉄損劣化については、例えば特公昭
61-31164号公報に記載されるように、りん酸塩系皮膜で
コーティング処理された0.30mm厚の一方性けい素鋼板
は、最終仕上焼鈍の純化段階で鋼中から排除されたS,
Seが歪取り焼鈍中に鋼中に再析出することによって鉄損
を劣化させるため、このS,Se含有量に応じて歪取り焼
鈍温度を下げることによって鉄損劣化を最小限におさえ
るという方法が開示されている。
<Problems to be Solved by the Invention> However, even after the strain relief annealing, the iron loss often did not recover to the characteristics of the material before processing. Regarding iron loss deterioration during strain relief annealing, see
As described in JP-A-61-31164, a 0.30 mm-thick unidirectional silicon steel sheet coated with a phosphate-based coating is used to remove S, which has been removed from the steel in the purification step of final annealing.
Since Se reprecipitates in the steel during the stress relief annealing to deteriorate the iron loss, there is a method of minimizing the iron loss deterioration by lowering the stress relief annealing temperature according to the S and Se contents. It is disclosed.

しかし、板厚がさらに薄い0.10〜0.25mmの薄方向性けい
素鋼板においては、歪取り焼鈍における鉄損劣化幅が非
常に大きく、焼鈍温度を低下させても劣化が少しも改善
されないといった現象がみとめられており、この劣化が
変圧器としての素材特性を最大限に発揮できない原因で
あって、板厚の薄手化による鉄損向上のメリットを相殺
してしまうという大きな問題がある。
However, in the thin grain-oriented silicon steel sheet of 0.10 to 0.25 mm, which has a thinner sheet thickness, the iron loss deterioration width in the strain relief annealing is very large, and even if the annealing temperature is lowered, deterioration does not improve at all. This is the reason why this deterioration cannot maximize the material characteristics of the transformer, and there is a big problem that the advantage of improving the iron loss due to the thinner plate thickness is offset.

本発明は、上記のような事情に鑑みなされたものであっ
て、歪取り焼鈍による鉄損劣化の少ない薄手方向性けい
素鋼板の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a thin grain-oriented silicon steel sheet with less iron loss deterioration due to strain relief annealing.

〈問題点を解決するための手段〉 本発明は、1次再結晶の抑制剤として、MnS,MnSe,A
lN,BNのうち少なくとも1種を含有する方向性けい素
鋼板熱延板を、1回もしくは中間焼鈍をはさむ2回以上
の冷間圧延によって板厚を0.10〜0.25mmにした後、脱炭
焼鈍を施し、ついでチタン化合物を含有する焼鈍分離剤
を塗布してから最終仕上焼鈍を施すことによって、薄手
方向性けい素鋼板を製造するにあたり、前記焼鈍分離剤
を塗布するときのチタン化合物付着量と、前記最終仕上
焼鈍時における冷却速度との関係を、下記条件とするこ
とを特徴とする鉄損劣化の少ない薄手方向性けい素鋼板
の製造方法。
<Means for Solving Problems> The present invention uses MnS, MnSe, A as an inhibitor of primary recrystallization.
The hot-rolled grain-oriented silicon steel sheet containing at least one of 1N and BN is cold-rolled once or twice or more with intermediate annealing to a thickness of 0.10 to 0.25 mm, and then decarburized and annealed. By applying an annealing separator containing a titanium compound and then performing final finishing annealing, in producing a thin grain-oriented silicon steel sheet, and a titanium compound adhesion amount when applying the annealing separator and A method for manufacturing a thin grain-oriented silicon steel sheet with less iron loss deterioration, characterized in that the relationship with the cooling rate during the final finish annealing is set as follows.

X≧0.020 X・Y≦3.0 ただし、X;チタン化合物の鋼板1m2当たりの両面のTi
換算付着量(g/m2) Y;最終仕上焼鈍時における冷却速度(℃/h) である。
X ≧ 0.020 X ・ Y ≦ 3.0 where X: Ti on both sides per 1 m 2 of steel plate of titanium compound
Converted adhesion amount (g / m 2 ) Y: Cooling rate (° C / h) during final finish annealing.

〈作用〉 本発明者らは、加工歪を受けた薄手方向性けい素鋼板の
歪取り焼鈍による鉄損劣化の原因を究明するために、鋭
意検討し調査を行った。その結果、焼鈍分離剤中に添加
または混入している化合物のうち、特にTiO2などのTi化
合物が最終仕上焼鈍中に分解し鋼中に侵入後、純化焼鈍
後の冷却時にTiN,TiC等として、鋼中に微細に多数析出
していることを発見した。これら微細析出物は、転位の
移動を妨げるために歪取り焼鈍による加工歪の回復を困
難にし、また歪取り焼鈍時に鋼中にもどったインヒビタ
ーの好適な再析出サイトとして働くため、コアの鉄損特
性劣化を招いていることがわかった。
<Operation> The inventors of the present invention have made extensive studies and investigations in order to find out the cause of iron loss deterioration due to strain relief annealing of a thin grain-oriented silicon steel sheet subjected to work strain. As a result, among the compounds added or mixed in the annealing separator, Ti compounds such as TiO 2 decomposed during the final finish annealing and penetrated into the steel, and as TiN, TiC, etc. during cooling after the purification annealing. , It was discovered that a large number were finely precipitated in the steel. These fine precipitates impede the movement of dislocations, making it difficult to recover the work strain due to strain relief annealing, and also serve as suitable reprecipitation sites for the inhibitors returned to the steel during strain relief annealing, thus causing iron loss in the core. It was found that the characteristics were deteriorated.

ところで、これらチタン化合物は、特公昭25-2858号公
報、特公昭51-12451号公報、特開昭50-145315号公報も
しくは、特公昭59-185781号公報などに開示されるとお
り、従来から方向性けい素鋼板のフォルステライト絶縁
皮膜を安定的に生成させる目的で添加されているもので
ある。
By the way, these titanium compounds have been conventionally used as disclosed in Japanese Patent Publication No. 25-2858, Japanese Patent Publication No. 51-12451, Japanese Patent Publication No. 50-145315, or Japanese Patent Publication No. 59-185781. It is added for the purpose of stably forming a forsterite insulating film on a silicon carbide steel plate.

この焼鈍分離剤中のTi量を低減すれば、鉄損劣化が軽減
できるのは明らかであるが、本発明者らは、板厚が薄い
鋼板の場合、鋼板を湾曲させる際に絶縁皮膜に加わる応
力が小さいことに注目して検討した結果、板厚が0.25mm
以下の薄手方向性けい素鋼板の場合、焼鈍分離剤中に添
加するTi化合物量は、従来必要とされている量に対して
非常に少ない量でも皮膜特性が確保できることがわかっ
た。加えて、本発明者らは最終仕上焼鈍後半の純化焼鈍
からの冷却速度が、TiN,TiC等微細析出物の析出サイズ
に大きな影響を及ぼしていること、析出物をオストワル
ド成長させてその粒子数を減少させれば転位の移動に及
ぼす影響が急減することに注目して実験を行った。その
結果、チタン付着量と冷却速度の積が一定量以下である
とき、皮膜特性を確保しつつ、コアの鉄損劣化も無視で
きるレベルに抑えることができることを見出したのであ
る。
Although it is clear that iron loss deterioration can be reduced by reducing the amount of Ti in the annealing separator, the present inventors, in the case of a steel plate having a thin plate thickness, add to the insulating film when the steel plate is bent. As a result of studying that the stress is small, the plate thickness is 0.25 mm.
In the case of the following thin grain-oriented silicon steel sheets, it has been found that the Ti compound amount added to the annealing separator can secure the film characteristics even if it is much smaller than the amount conventionally required. In addition, the present inventors have found that the cooling rate from the purification annealing in the latter half of the final annealing has a great influence on the precipitation size of fine precipitates such as TiN and TiC, and the precipitates are grown by Ostwald and the number of particles is increased. Experiments were carried out paying attention to the fact that the effect on dislocation movement is drastically reduced by decreasing. As a result, they have found that when the product of the amount of titanium deposited and the cooling rate is a certain amount or less, it is possible to suppress the core loss of the core to a negligible level while securing the film characteristics.

以下に、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

この発明の出発素材には、従来公知の一方向性けい素鋼
素材成分を用いて、従来公知の製鋼方法、例えば転炉、
電気炉などによって製造し、さらに造塊−分塊法、また
は連続鋳造法などによってスラブとし、これを1270〜14
50℃に高温加熱してインヒビターを解離固溶させた後、
熱間圧延によって1.0〜3.5mm厚にした熱延板を用いれば
よい。この熱延板は、Siを2.0〜4.0%程度含有する組成
であるのが好ましい。この理由は、Siが2%未満では鉄
損の劣化が大きく、また4%を超えると、冷間加工性が
劣化するからである。その他の成分については、方向性
けい素鋼素材成分であればいずれも適用可能であるが、
ゴス方位に強く集積した2次再結晶を発達させるための
インヒビターとして、MnS,MnSe,AlNあるいはBNな
どから選ばれる1種以上を公知の範囲で鋼中に含ませる
ことが最適である。次に、この熱延板に1回もしくは中
間焼鈍をはさむ2回の冷間圧延を施し、板厚が0.22mm、
0.17mmおよび0.12mmの3水準の供試材を作成した。ここ
で、板厚としては、薄手方向性けい素鋼板用として0.10
〜0.25mmの範囲が対象である。ついで、これらの供試材
に750℃の脱炭可能な湿水素雰囲気による1次再結晶焼
鈍を施してから、焼鈍分離剤としてTiO2を添加したMgO
スラリーを塗布した。供試材の両面のTiの付着量は、1
m2当たりで5mg、10mg、20mg、30mg、50mg、100mg、200
mgおよび300mgの8水準に調整した。つづいて、仕上純
化焼鈍を施し、純化焼鈍後の冷却速度を20℃/h、30℃
/h、50℃/hおよび100℃/hの4水準として冷却し
た。その後、ガラスコーティング膜を被覆して供試材の
製品板厚をそれぞれ0.23mm、0.18mm、0.13mmとしたの
ち、絶縁皮膜の曲げ密着性を調べた。その調査結果を第
1図に示す。この図から明らかなように、Tiの1m2当た
りの付着量が、20mgより少ない領域では、曲げ密着性が
大幅に劣化しているが、冷却速度による差はないことが
わかる。
For the starting material of the present invention, a conventionally known steelmaking method, for example, a converter, using a conventionally known unidirectional silicon steel material component,
Manufactured in an electric furnace, etc., and further made into a slab by the ingot-segmentation method, continuous casting method, etc.
After heating at a high temperature of 50 ° C to dissociate and solidify the inhibitor,
A hot rolled sheet having a thickness of 1.0 to 3.5 mm by hot rolling may be used. This hot-rolled sheet preferably has a composition containing Si of about 2.0 to 4.0%. This is because if the Si content is less than 2%, the iron loss deteriorates significantly, and if it exceeds 4%, the cold workability deteriorates. Regarding the other components, any of the directional silicon steel material components can be applied,
As an inhibitor for developing the secondary recrystallization strongly integrated in the Goss orientation, it is optimal to include one or more selected from MnS, MnSe, AlN, BN, etc. in the steel within a known range. Next, this hot-rolled sheet was cold-rolled once or twice with intermediate annealing, and the sheet thickness was 0.22 mm.
Three levels of 0.17 mm and 0.12 mm test materials were prepared. Here, the plate thickness is 0.10 for thin grain-oriented silicon steel plates.
The range is ~ 0.25 mm. Then, these test materials were subjected to primary recrystallization annealing in a dehydrocarburizable wet hydrogen atmosphere at 750 ° C, and then MgO added with TiO 2 as an annealing separator.
The slurry was applied. The amount of Ti deposited on both sides of the test material is 1
5 mg, 10 mg, 20 mg, 30 mg, 50 mg, 100 mg, 200 per m 2
8 levels of mg and 300 mg were adjusted. Next, finish purification annealing, cooling rate after purification annealing is 20 ℃ / h, 30 ℃
/ H, 50 ° C / h and 100 ° C / h. After that, a glass coating film was coated to make the product plate thicknesses of the test materials 0.23 mm, 0.18 mm, and 0.13 mm, respectively, and then the bending adhesion of the insulating film was examined. The survey results are shown in FIG. As is clear from this figure, in the region where the amount of Ti deposited per 1 m 2 is less than 20 mg, the bending adhesion is significantly deteriorated, but there is no difference due to the cooling rate.

次に、板厚0.17mmの供試材について、上記と同様の処理
を施して製品板厚0.18mmとした後、800℃で5時間の窒
素気流中で歪取り焼鈍を施す前後の鉄損劣化量ΔW17/50
を調査した。その結果を第2図に示す。図において、歪
取り焼鈍によって鉄損が劣化する場合には、正の値をと
ることになる。また、図から明らかのように、歪取り焼
鈍による鉄損劣化を無視できる値(0.01W/kg程度)にす
るには、Tiの付着量が100mg/m2以下で、冷却速度が30℃
/h以下である必要があることがわかる。
Next, for the sample material with a plate thickness of 0.17 mm, after subjecting it to the product plate thickness of 0.18 mm by the same treatment as above, iron loss deterioration before and after strain relief annealing at 800 ° C for 5 hours in a nitrogen stream Quantity ΔW 17/50
investigated. The results are shown in FIG. In the figure, when the iron loss is deteriorated by the strain relief annealing, it takes a positive value. Also, as is clear from the figure, in order to make the iron loss deterioration due to strain relief annealing negligible (about 0.01 W / kg), the Ti deposition amount is 100 mg / m 2 or less and the cooling rate is 30 ° C.
It turns out that it is necessary to be less than / h.

第3図は、板厚0.17mmの供試材を用いた上記実験時にお
けるTi付着量に対する冷却速度の関係を調査した特性図
である。図中の記号で、○印は特性良好(鉄損劣化が0.
01W/kg以下)、●は鉄損劣化大、また は膜不良を表わす。この図から明らかなように、前記の
歪取り焼鈍による鉄損劣化の無視できる値(0.01W/kg程
度)にするには、Tiの付着量をX(g/m2)、冷却速度
をY(℃/h)とすると、X・Y≦3.0(第3図の直線
より左の領域)とする必要があることがわかる。また、
Ti付着量Xは、20mg以上必要であることもわかる。
FIG. 3 is a characteristic diagram in which the relationship between the amount of Ti deposited and the cooling rate during the above experiment using the test material having a plate thickness of 0.17 mm was investigated. In the figure, ○ indicates good characteristics (deterioration of iron loss is 0.
01W / kg or less), ● indicates large iron loss deterioration, Indicates a film defect. As is clear from this figure, in order to make the iron loss deterioration due to the strain relief annealing negligible (about 0.01 W / kg), the amount of Ti deposited is X (g / m 2 ) and the cooling rate is Y. It can be seen that it is necessary to satisfy X · Y ≦ 3.0 (region on the left side of the straight line in FIG. 3) when (° C./h). Also,
It is also understood that the Ti adhesion amount X needs to be 20 mg or more.

ここで、上記の特性を考察してみると、次のことがいえ
る。まず、Ti付着量Xの下限は、フォルステライト皮膜
の安定形成に必要であるためで、0.020未満では著しく
皮膜の密着性が損われると考えられる。一方、Ti付着量
Xと冷却速度Yとの積が、3.0を超す場合、つまりTi付
着量に対して冷却速度が大きい場合には、鋼中へ侵入し
純化焼鈍中は固溶しているTiが、冷却中にTiNやTiCとし
て析出した後成長できないため、微細な析出物が多数分
散する。これらは、不純物として磁気特性を劣化させる
ばかりでなく、転位の移動を妨げるために歪取り焼鈍に
よる加工歪の回復が困難になり、鉄損が劣化すると考え
られる。なお、XとYの積を3.0以下にするならば、Ti
付着量が増加しても磁性への影響はないが、冷却に長時
間を要するようになるため、経済的には好ましくない。
Now, considering the above characteristics, the following can be said. First, the lower limit of the Ti adhesion amount X is necessary for stable formation of the forsterite film, and it is considered that if the amount is less than 0.020, the adhesion of the film is significantly impaired. On the other hand, when the product of the Ti deposition amount X and the cooling rate Y exceeds 3.0, that is, when the cooling rate is higher than the Ti deposition amount, it penetrates into the steel and forms a solid solution during the purification annealing. However, since it cannot grow after being precipitated as TiN or TiC during cooling, many fine precipitates are dispersed. It is considered that these not only deteriorate the magnetic properties as impurities, but also hinder the movement of dislocations, which makes it difficult to recover the work strain by strain relief annealing, and the iron loss is considered to deteriorate. If the product of X and Y is 3.0 or less, Ti
Although the increase in the amount of adhesion does not affect the magnetism, it takes a long time for cooling, which is not economically preferable.

〈実施例〉 以下、本発明の実施例について説明する。<Examples> Examples of the present invention will be described below.

重量%で、C:0.073%、Si:3.25%、Mn:0.068%、A
l:0.030%、S:0.024%、N:0.0080%残部Feから
なるけい素鋼スラブを1300℃に加熱した後、板厚2.3mm
にまで熱間圧延した。この熱延板を1.35mmまで冷間圧延
した。次いで、1120℃で4分間の焼鈍を施した後、冷間
圧延を行って0.17mmの板厚に仕上げた。引き続き、840
℃で3分間湿水素雰囲気による脱炭焼鈍した後MgOを主
成分とする焼鈍分離剤を塗布する際、2等分しMgO中にT
iO2を添加し、MgO塗布後の鋼板1m2両面当たりのTi付着
量が、0mg、50mg、200mgとなるように調整した。乾燥
後、1200℃で20時間の仕上げ焼鈍を行った。1200℃の焼
鈍後、鋼板の冷却を2等分し30℃/hと100℃/hの2
水準をとった。こうして出来上がった鋼板にコロイド状
シリカ、りん酸アルミニウム、無水クロム酸系のコーテ
ィング処理液を片面2μmの膜厚となるように塗布し、
800℃で1分間N2中で焼き付けた。引き続き850℃で5時
間の歪取り焼鈍を行い、歪取り焼鈍の前後で鉄損W17/50
を測定し比較した。また、絶縁皮膜の曲げ密着性を測定
した。
% By weight, C: 0.073%, Si: 3.25%, Mn: 0.068%, A
l: 0.030%, S: 0.024%, N: 0.0080% After heating the silicon steel slab consisting of the balance Fe to 1300 ° C, the plate thickness is 2.3 mm.
It was hot rolled to. The hot rolled sheet was cold rolled to 1.35 mm. Then, after annealing at 1120 ° C. for 4 minutes, cold rolling was performed to finish the plate thickness to 0.17 mm. Continue to 840
After applying decarburization annealing in a wet hydrogen atmosphere at ℃ for 3 minutes and applying an annealing separator with MgO as the main component, divide into two equal parts in MgO.
After adding iO 2 , the amount of Ti adhered per 1 m 2 both sides of the steel sheet after applying MgO was adjusted to be 0 mg, 50 mg, and 200 mg. After drying, finish annealing was performed at 1200 ° C. for 20 hours. After annealing at 1200 ℃, cooling the steel plate is divided into two equal parts, 30 ℃ / h and 100 ℃ / h.
I took the standard. The steel sheet thus prepared is coated with colloidal silica, aluminum phosphate, and chromic anhydride-based coating treatment liquid so as to have a film thickness of 2 μm on one side.
Baking in N 2 at 800 ° C. for 1 minute. Subsequently, strain relief annealing was performed at 850 ° C for 5 hours, and iron loss W 17/50 was measured before and after the strain relief annealing.
Was measured and compared. In addition, the bending adhesion of the insulating film was measured.

歪取り焼鈍前後での鉄損劣化をΔWとして第1表に示
す。
Table 1 shows the iron loss deterioration before and after the stress relief annealing as ΔW.

この表から明らかなように、本発明の範囲に入る鋼板N
o.3は鉄損劣化量ΔW、曲げ密着性とも優れていること
がわかる。
As is clear from this table, steel plate N that falls within the scope of the present invention
It is understood that o.3 is excellent in iron loss deterioration amount ΔW and bending adhesion.

〈発明の効果〉 以上説明したように、本発明によれば、最終仕上焼鈍工
程前において塗布する焼鈍分離剤に含まれるチタン化合
物と、最終仕上焼鈍時における冷却速度との関係を規定
するようにしたので、歪取り焼鈍による鉄損劣化の少な
い薄手方向性けい素鋼板の製造が可能となり、省エネル
ギーの効果が大である。
<Effects of the Invention> As described above, according to the present invention, the relationship between the titanium compound contained in the annealing separator applied before the final finish annealing step and the cooling rate during the final finish annealing is defined. Therefore, it becomes possible to manufacture a thin grain-oriented silicon steel sheet with less iron loss deterioration due to strain relief annealing, and the effect of energy saving is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は、曲げ密着性に及ぼすTi付着量の影響を成品板
厚別に示した特性図、第2図は、0.18mm厚の製品板の歪
取り焼鈍による鉄損劣化に及ぼすTi付着量の影響を示し
た特性図、第3図は、0.18mm厚の製品板の純化焼鈍後の
冷却速度に及ぼすTi付着量の影響を示した特性図であ
る。
Fig. 1 is a characteristic diagram showing the influence of the Ti deposition amount on bending adhesion by product thickness, and Fig. 2 is the Ti deposition amount on iron loss deterioration of 0.18 mm thick product sheet due to stress relief annealing. FIG. 3 is a characteristic diagram showing the influence, and FIG. 3 is a characteristic diagram showing the influence of the Ti deposition amount on the cooling rate after the purification annealing of the 0.18 mm thick product plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福田 文二郎 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 横山 靖雄 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Bunjiro Fukuda 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Headquarters (72) Inventor Yasuo Yokoyama 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. Technical Research Division

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1次再結晶の抑制剤として、MnS,MnSe,
AN,BNのうち少なくとも1種を含有する方向性けい
素鋼熱延板を、1回もしくは中間焼鈍をはさむ2回以上
の冷間圧延によって板厚を0.10〜0.25mmにした後、脱炭
焼鈍を施し、ついでチタン化合物を含有する焼鈍分離剤
を塗布してから最終仕上焼鈍を施すことによって、薄手
方向性けい素鋼板を製造するにあたり、前記焼鈍分離剤
を塗布するときのチタン化合物付着量と、前記最終仕上
焼鈍時における冷却速度との関係を、下記条件とするこ
とを特徴とする鉄損劣化の少ない薄手方向性けい素鋼板
の製造方法。 X≧0.020 X・Y≦3.0 ただし、X;チタン化合物の鋼板1m2当たりの両面のTi
換算付着量(g/m2) Y;最終仕上焼鈍時における冷却速度(℃/h)
1. An inhibitor of primary recrystallization, which comprises MnS, MnSe,
Hot-rolled grain-oriented silicon steel containing at least one of AN and BN is cold-rolled once or twice or more with intermediate annealing to obtain a sheet thickness of 0.10 to 0.25 mm, and then decarburized and annealed. By applying an annealing separator containing a titanium compound and then performing final finishing annealing, in producing a thin grain-oriented silicon steel sheet, and a titanium compound adhesion amount when applying the annealing separator and A method for manufacturing a thin grain-oriented silicon steel sheet with less iron loss deterioration, characterized in that the relationship with the cooling rate during the final finish annealing is set as follows. X ≧ 0.020 X ・ Y ≦ 3.0 where X: Ti on both sides per 1 m 2 of steel plate of titanium compound
Converted adhesion amount (g / m 2 ) Y; Cooling rate (° C / h) during final finish annealing
JP61308221A 1986-12-26 1986-12-26 Manufacturing method of thin grain-oriented silicon steel sheet with little iron loss deterioration Expired - Fee Related JPH0663033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61308221A JPH0663033B2 (en) 1986-12-26 1986-12-26 Manufacturing method of thin grain-oriented silicon steel sheet with little iron loss deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61308221A JPH0663033B2 (en) 1986-12-26 1986-12-26 Manufacturing method of thin grain-oriented silicon steel sheet with little iron loss deterioration

Publications (2)

Publication Number Publication Date
JPS63162814A JPS63162814A (en) 1988-07-06
JPH0663033B2 true JPH0663033B2 (en) 1994-08-17

Family

ID=17978381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61308221A Expired - Fee Related JPH0663033B2 (en) 1986-12-26 1986-12-26 Manufacturing method of thin grain-oriented silicon steel sheet with little iron loss deterioration

Country Status (1)

Country Link
JP (1) JPH0663033B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5620533A (en) * 1995-06-28 1997-04-15 Kawasaki Steel Corporation Method for making grain-oriented silicon steel sheet having excellent magnetic properties
CN103278698B (en) * 2013-05-10 2015-08-19 东北大学 A kind of measurement mechanism of iron loss of oriented silicon steel by utilizing value and method

Also Published As

Publication number Publication date
JPS63162814A (en) 1988-07-06

Similar Documents

Publication Publication Date Title
JP3456862B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US20220081747A1 (en) Method for producing grain oriented electrical steel sheet
JPH10152724A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JP4119634B2 (en) Method for producing mirror-oriented electrical steel sheet with good iron loss
JPH0663033B2 (en) Manufacturing method of thin grain-oriented silicon steel sheet with little iron loss deterioration
EP0486707B1 (en) A Process for Producing an Ultrahigh Silicon, Grain-Oriented Electrical Steel Sheet and Steel Sheet obtainable with said Process
JP3743707B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP7486436B2 (en) Manufacturing method for grain-oriented electrical steel sheet
JPH0625747A (en) Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet
JPH08134660A (en) Grain oriented silicon steel sheet with extremely low iron loss
CN113272454B (en) Method for producing grain-oriented electromagnetic steel sheet
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH06212274A (en) Production of grain-oriented silicon steel sheet having extremely low iron loss
JP2724659B2 (en) High magnetic flux density unidirectional electrical steel sheet with excellent magnetic properties
JP3311021B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet with low iron loss
JP3455019B2 (en) Unidirectional electrical steel sheet for instruments with excellent low-field magnetic properties and manufacturing method
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH05195072A (en) Production of grain-oriented silicon steel sheet free from iron loss deterioration due to stress relief annealing and excellent in film characteristic
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JPH093541A (en) Production of grain oriented silicon steel sheet with extremely high magnetic flux density
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees