JPH0661651B2 - Cutting method - Google Patents

Cutting method

Info

Publication number
JPH0661651B2
JPH0661651B2 JP2325875A JP32587590A JPH0661651B2 JP H0661651 B2 JPH0661651 B2 JP H0661651B2 JP 2325875 A JP2325875 A JP 2325875A JP 32587590 A JP32587590 A JP 32587590A JP H0661651 B2 JPH0661651 B2 JP H0661651B2
Authority
JP
Japan
Prior art keywords
cutting
axis
tool
shape
hail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2325875A
Other languages
Japanese (ja)
Other versions
JPH03228547A (en
Inventor
実 雪野
寿澄 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP2325875A priority Critical patent/JPH0661651B2/en
Publication of JPH03228547A publication Critical patent/JPH03228547A/en
Publication of JPH0661651B2 publication Critical patent/JPH0661651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヘールバイトを用いて、被加工物とそのヘール
バイトとを相対的に移動させて切削加工を行なう切削加
工方法に関し、特にそのヘールバイトは得るべき加工形
状の一横断面形状をした総形ヘールバイトを用いた切削
加工方法である。
Description: TECHNICAL FIELD The present invention relates to a cutting method that uses a hail bite to relatively move a workpiece and the hail bite to perform cutting, and particularly to the cutting tool. The cutting tool is a cutting method using a general-type hail tool having a cross-sectional shape to be obtained.

〔従来技術〕[Prior art]

従来、X、Y、Z軸の三次元方向に任意に変化している
溝等を加工する場合は、エンドミル、溝切りカッター等
の工具を用い、その工具に回転力を与えるとともに被加
工物との間で相対移動させて切削加工をしていた。しか
し、加工形状に合せて工具を造ることは困難であり、作
業能率もきわめて悪かった。例えば、第3図で示すよう
な得るべき加工形状の一横断面の形状が中央に凸部を有
する凹状の溝Aで、しかもX、Y平面では第6図に示す
ように任意に変化している溝を加工しようとする場合、
エンドミルでは底面が加工できず不便であった。他方、
溝底面B(第3図)を加工するときは細いエンドミルを
使用せねばならない。その結果、加工能率が悪く、しか
も溝底面の凸部Cの加工は非常に困難であった。
Conventionally, when machining a groove or the like that arbitrarily changes in the three-dimensional directions of the X, Y, and Z axes, a tool such as an end mill or a grooving cutter is used to apply a rotational force to the tool and The cutting process was performed by moving relative to each other. However, it is difficult to make a tool according to the machining shape, and the work efficiency is extremely poor. For example, the shape of one cross section to be obtained as shown in FIG. 3 is a concave groove A having a convex portion at the center, and in the X and Y planes, it can be arbitrarily changed as shown in FIG. If you are going to process the existing groove,
The end mill was inconvenient because the bottom surface could not be processed. On the other hand,
When machining the groove bottom surface B (Fig. 3), a fine end mill must be used. As a result, the processing efficiency was poor, and it was very difficult to process the convex portion C on the bottom surface of the groove.

他方、本出願人の先願に係る特開昭59−7527号公報に
は、単純形状電極あるいは標準形状電極を用いて、被加
工物と該電極とをX、Y、Z軸の三次元方向に相対的に
移動制御するとともに、必要に応じて該電極の縦軸を中
心とするC軸回りの回転角度を制御することによって、
該電極が移動した包絡面が、被加工物の得るべき所望の
形状となるように制御する放電創成加工方法が開示され
ている。
On the other hand, in Japanese Patent Application Laid-Open No. 59-7527 of the present applicant, a simple shape electrode or a standard shape electrode is used, and a workpiece and the electrode are connected in three-dimensional directions of X, Y and Z axes. By controlling the movement of the electrode relative to the C axis and the rotation angle of the electrode about the C axis about the vertical axis as necessary.
Disclosed is a method of electric discharge generation for controlling the envelope surface to which the electrode has moved so as to have a desired shape to be obtained from the workpiece.

更に、バイト等の切削工具を用いた切削加工において、
造るべき製品の概略形状に金属素材を粗削りするセーパ
ーの自動切込み装置が特開昭53−6608号公報に開
示されている。この場合の金属素材の粗削りに当たって
は、被加工物を搭載したテーブルの送りと関連させて徐
々に工具、素材間に切込みを与えて所望の深さ値になる
まで切削加工するものである。然しながら、このセーパ
ー切削加工方法は、第6図に示すような任意に変化して
いる溝を加工しようとするものではない。
Furthermore, in cutting using a cutting tool such as a bite,
Japanese Patent Application Laid-Open No. 53-6608 discloses an automatic cutting device of a saver for roughly cutting a metal material into a rough shape of a product to be manufactured. In the rough cutting of the metal material in this case, a cutting is gradually provided between the tool and the material in association with the feeding of the table on which the workpiece is mounted, and the metal material is cut to a desired depth value. However, this saver cutting method does not attempt to process an arbitrarily changing groove as shown in FIG.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した前者の公報に開示された放電創成加工方法は、
上述のようにX、Y、Z軸の三次元方向の移動制御に加
えてC軸回りの制御を行うが、その電極として単純形状
であるL形又はJ形の棒状電極を用いて、被加工物と該
電極とを相対的に移動制御しながら放電加工を行い、被
加工物から不要部分(切粉)を立体ブロック状に一括除
去することにより、能率良く被加工物に所望形状を創成
する放電現象を利用した放電加工方法であって、ヘール
バイトから成る切削工具の刃先により被加工物から切屑
を切り出して所望の加工形状を得る切削加工方法とは加
工原理上から異なる技術である。
The electric discharge generating method disclosed in the former publication mentioned above is
As described above, the movement around the C-axis is performed in addition to the movement control in the three-dimensional directions of the X, Y, and Z axes, and the L-shaped or J-shaped rod-shaped electrode having a simple shape is used as the electrode to be processed. Electric discharge machining is performed while controlling the relative movement of the object and the electrode, and unnecessary parts (chips) are collectively removed from the work piece in a three-dimensional block shape to efficiently create a desired shape on the work piece. This is an electric discharge machining method that utilizes an electric discharge phenomenon, and is a technology that differs from the machining principle in terms of the machining principle, which is different from the cutting machining method that obtains a desired machining shape by cutting out chips from the workpiece by the cutting edge of a cutting tool composed of a hail bite.

他方、後者の公報に開示されたセーパーによる切削加工
方法は、任意に変化する所望の加工形状に合わせた刃先
形状を有する総形ヘールバイトを用いて三次元加工を行
う切削加工方法とは、切削加工原理的に異なり、ただセ
ーパーに単純な形状のバイトを装着して直線的に切削加
工することしかできない。また、セーパーによる切削加
工方法には刃先を軸線回りに回転させながら、刃先の送
り方向を変更する加工作用をとることはなく、故に、例
えば、第6図のような断面形状が任意形状であると共に
切削軌跡方向にみて閉路形状を有したような溝加工を遂
行することは不可能である。
On the other hand, the cutting method using the saver disclosed in the latter publication is a cutting method for performing three-dimensional processing using a shaped hail bite having a cutting edge shape that matches a desired processing shape that changes arbitrarily. The processing principle is different, and it is only possible to attach a simple shape cutting tool to the saver and perform linear cutting. In addition, the cutting method using the saver does not have the processing action of changing the feed direction of the cutting edge while rotating the cutting edge around the axis, and therefore, for example, the cross-sectional shape as shown in FIG. 6 is an arbitrary shape. At the same time, it is impossible to perform groove machining having a closed circuit shape when viewed in the cutting trajectory direction.

また、上述前者と後者の公報に開示された技術を組み合
わせる、つまり、前者の電極の代わりに後者のバイトを
用いて、被加工物から不要部分を立体ブロック状に一括
除去するようにX,Y,Z軸およびC軸回りの送り制御
を行って切削加工をしようとすると、バイトを後退させ
たり、送りを与えずに回転のみさせたりすることにな
り、切削加工上、不都合が多々生じ、依然として任意の
三次元形状をした溝加工を行うことはできない。
In addition, by combining the techniques disclosed in the former and the latter publications, that is, by using the latter bite in place of the former electrode, it is possible to collectively remove unnecessary portions from the workpiece in a three-dimensional block shape by X, Y. , When trying to perform cutting by performing feed control around the Z-axis and C-axis, the cutting tool must be retracted or only be rotated without feeding, which often causes problems in cutting. Grooving with an arbitrary three-dimensional shape cannot be performed.

依って、本発明の目的は、上述したエンドミルを利用し
た加工方法、電極を用いた放電創成加工方法、単純なバ
イトを利用したセーパー加工等の諸加工方法では遂行が
困難であったX、Y、Z軸の三次元方向に任意に変化し
ている溝等の切削を能率良くきれいに切削加工する方法
を提供するものである。
Therefore, the object of the present invention is difficult to be achieved by various processing methods such as the above-described processing method using an end mill, electric discharge generation processing method using an electrode, and a sewer processing using a simple cutting tool. The present invention provides a method for efficiently and cleanly cutting a groove or the like that arbitrarily changes in the three-dimensional direction of the Z axis.

〔課題を解決するための手段〕[Means for Solving the Problems]

上述の発明の目的に鑑みて、本発明は、被加工物と総形
ヘールバイトとの間でX,Y,Z軸の三次元方向の相対
送りを与えて前記被加工物に所望の三次元加工形状の切
削加工を行う切削加工方法において、前記総形ヘールバ
イトの刃先形状に得るべき加工形状の一横断面形状に形
成し、前記総形ヘールバイトの刃先先端部の移動軌跡が
得るべき所望の三次元加工形状と一致するよう前記X,
Y軸の平面内の相対送りを与えると共に前記総形ヘール
バイトの刃先正面が前記相対送りの移動軌跡における前
進方向に対して常に直角を維持するように前記総形ヘー
ルバイトの刃先中心を通り軸線回りに回転させながら角
度を変化させ、かつZ軸の切込み送りを適宜与え、前記
総形ヘールバイトと被加工物との相対移動を制御し、被
加工物を切削加工するようにした切削加工方法を提供す
るものである。
In view of the above-mentioned object of the present invention, the present invention provides a relative feed in the three-dimensional directions of X, Y, and Z axes between a work piece and a general-purpose hail bite to give the work piece a desired three-dimensional shape. In a cutting method for performing cutting of a machined shape, it is desirable to form a machining shape having one cross-sectional shape to be obtained in the cutting edge shape of the general-purpose hail tool, and obtain a movement locus of the tip end portion of the general-shaped hail tool. X to match the three-dimensional processed shape of
An axis line is passed through the center of the cutting edge of the general-purpose hail tool so that the relative feed in the plane of the Y-axis is given and the front surface of the cutting edge of the general-shape hail tool always maintains a right angle with respect to the forward direction in the movement trajectory of the relative feed. A cutting method in which the angle is changed while being rotated around and the Z-axis cutting feed is appropriately applied to control the relative movement between the general-purpose hail bite and the work piece to cut the work piece. Is provided.

〔作用〕[Action]

上述の構成によれば、得るべき所望の三次元加工形状と
一致するような総形ヘールバイトの刃先先端部を、同三
次元加工形状によって決まる移動軌跡に沿い、X,Y軸
の平面内で相対送り動作させ、かつ、前記総形ヘールバ
イトの刃先正面が前記相対送りの移動軌跡における前進
方向に対して常に直角を維持するように総形ヘールバイ
トの刃先中心を通る軸線回りに回転させながら角度を変
化させ、かつZ軸の切込み送りを適宜与え、当該総形ヘ
ールバイトと被加工物との相対移動を制御し、被加工物
を切削加工する諸ステップを逐次実行するので、その被
加工物に得るべき三次元加工形状を切削加工することが
できる。
According to the above configuration, the tip end of the blade of the general-purpose hail bit that matches the desired three-dimensional machining shape to be obtained is moved along the movement locus determined by the three-dimensional machining shape in the plane of the X and Y axes. Relative feed operation, and while rotating around the axis passing through the center of the blade edge of the general-purpose hail tool so that the front surface of the blade edge of the general-shaped hail tool always maintains a right angle to the forward direction in the movement trajectory of the relative feed. Since the angle is changed and the Z-axis cutting feed is appropriately applied, the relative movement between the general-purpose hail bite and the workpiece is controlled, and the steps for cutting the workpiece are sequentially executed. It is possible to cut a three-dimensional processed shape to be obtained on an object.

〔実施例〕〔Example〕

以下、添付図面に基いて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、本発明に係る切削加工方法の実施に使用する
装置の一例の機構図である。
FIG. 1 is a mechanism diagram of an example of an apparatus used for carrying out the cutting method according to the present invention.

1は被加工物、2は切削工具である。コラム3の下部に
X軸およびY軸送り機構4が設けられている。その送り
機構4は被加工物をX軸およびY軸方向に送ることがで
きるようにX軸送りモータ5およびY軸の送りモータ6
が付いている。コラム3の上部にはZ軸送り機構7が設
けられており、このZ軸送り機構7は切削工具2をZ軸
方向に送ることができるような案内構造になっておりZ
軸送りモータ8が付いている。Z軸送り機構7の可動部
に主軸ヘッド9が付いており、その内部に工具主軸10が
設けられている。工具主軸10の下部に切削工具2が取付
けられ、工具主軸10の上部はC軸駆動モータ11に連結さ
れている。工具主軸10はその軸線回りに回転可能に軸承
されており、C軸駆動モータ11によって回転角度が制御
されるようになっている。この工具主軸10の中心軸線回
りの回転軸をC軸と称する。数値制御装置12は与えられ
た数値制御情報に基いてこれらのX軸送りモータ5、Y
軸送りモータ6、Z軸送りモータ8およびC軸駆動モー
タ11に適宜駆動信号を発して機械のX軸、Y軸、Z軸お
よびC軸を駆動して、被加工物1と切削工具2とを三次
元方向に相対的に移動させて切削化を行なうのである。
Reference numeral 1 is a workpiece, and 2 is a cutting tool. An X-axis and Y-axis feed mechanism 4 is provided below the column 3. The feed mechanism 4 has an X-axis feed motor 5 and a Y-axis feed motor 6 so that the workpiece can be fed in the X-axis and Y-axis directions.
Is attached. A Z-axis feed mechanism 7 is provided on the top of the column 3, and the Z-axis feed mechanism 7 has a guide structure that can feed the cutting tool 2 in the Z-axis direction.
A shaft feed motor 8 is attached. A spindle head 9 is attached to a movable portion of the Z-axis feed mechanism 7, and a tool spindle 10 is provided inside the spindle head 9. The cutting tool 2 is attached to the lower part of the tool spindle 10, and the upper part of the tool spindle 10 is connected to a C-axis drive motor 11. The tool spindle 10 is rotatably supported about its axis, and its rotation angle is controlled by a C-axis drive motor 11. The rotation axis around the central axis of the tool spindle 10 is called the C axis. The numerical controller 12 controls the X-axis feed motor 5 and Y based on the given numerical control information.
A drive signal is appropriately issued to the axis feed motor 6, the Z axis feed motor 8, and the C axis drive motor 11 to drive the X axis, Y axis, Z axis, and C axis of the machine, and the workpiece 1 and the cutting tool 2 Is relatively moved in the three-dimensional direction for cutting.

第2図は本発明において切削工具として用いる総形ヘー
ルバイトの1例であり、刃先21の中心部22が軸部23の中
心軸線とほぼ一致するように形成されている。切刃先21
の形状は得るべき加工形状の一横断面形状に形成されて
いる。
FIG. 2 shows an example of a general-purpose hail bite used as a cutting tool in the present invention. The center part 22 of the cutting edge 21 is formed so as to substantially coincide with the center axis of the shaft part 23. Cutting edge 21
Is formed in one cross-sectional shape of the processed shape to be obtained.

第3図は得るべき加工形状の溝の一横断面を例示したも
のであり、被加工物1に断面形状Aなる凹溝を示した図
であり、該凹溝は既述のように溝底面Bと凸部Cとを有
したものである。
FIG. 3 exemplifies one cross section of a groove having a machined shape to be obtained, and is a view showing a concave groove having a sectional shape A on the workpiece 1, and the concave groove has a groove bottom surface as described above. It has B and the convex part C.

第4図、第5図は本発明の切削加工方法の実施例に使用
する装置の別の実施例を示している。主軸ヘッド41は第
1図の主軸ヘッド9に相当するものであり、工具主軸42
をベアリング(図示せず)によって回転可能に軸承して
いる。総形ヘールバイト23の刃先部43は同軸部44に固定
され、同軸部44はスリーブ45を介して工具ホルダー46に
固定ねじ47で固定されている。ねじ48は工具長さを調節
するためのもので、総形ヘールバイト23の内奥に螺着さ
れ、端面に調節溝63を有し、またその端面が工具軸部44
のストッパーになっている。工具ホルダー46の上部は工
具主軸42を回転させるためのウォーム歯車49がキー結合
によって設けられている。更にその上部は工具ホルダー
46と工具主軸42とを連結するためのテーパシャンク50が
設けられ、伝動キー52を介して工具主軸42のコレット51
と結合されている。ハウジング53はウォーム歯車49およ
びウォーム軸54を収納するように形成され、ベアリング
55が装着され、工具ホルダー46が回転可能に軸承されて
いる。ウォーム軸54はベアリング56、ベアリングケース
57を介してハウジング53に回転可能に軸承されている。
C軸駆動モータ58はハウジング53に固定され、その出力
軸58aはウォーム軸54に連結されている。主軸ヘッド41
に取付けた固定台59は凹所62を有し、ハウジング53に取
付けた腕又はピン60と係合して、ハウジング53が主軸ヘ
ッド41に対して回転しないように連結されている。リミ
ットスイッチ61は工具の刃先方向をチェックするときに
使用するものである。64は押えナット、65はシールであ
る。本実施例は、C軸駆動モータ58が工具ホルダー46側
に具備され、ウォーム軸54とウォーム歯車49との歯車機
構を介して工具主軸42並びに総形ヘールバイト23を中心
軸線まわりに回転させ、所望の刃先向きを得るようにし
たものである。従って、加工における、X、Y、Z軸方
向の送りは第1図の実施例と同様であり、またC軸駆動
モータ58の制御は、X、Y、Z軸方向の送りモータと共
に第1図の実施例と同様に数値制御装置によって達成さ
れる。
4 and 5 show another embodiment of the apparatus used in the embodiment of the cutting method of the present invention. The spindle head 41 corresponds to the spindle head 9 in FIG.
Is rotatably supported by a bearing (not shown). The cutting edge portion 43 of the general-purpose hail bite 23 is fixed to a coaxial portion 44, and the coaxial portion 44 is fixed to a tool holder 46 via a sleeve 45 with a fixing screw 47. The screw 48 is for adjusting the tool length, is screwed into the inside of the general-purpose hail bite 23, has an adjustment groove 63 on the end face, and the end face has a tool shaft portion 44.
It is a stopper. A worm gear 49 for rotating the tool spindle 42 is provided on the upper part of the tool holder 46 by key connection. Furthermore, the upper part is a tool holder
A taper shank 50 for connecting 46 to the tool spindle 42 is provided, and a collet 51 of the tool spindle 42 is provided via a transmission key 52.
Is combined with. The housing 53 is formed to house the worm gear 49 and the worm shaft 54, and
55 is mounted and the tool holder 46 is rotatably supported. Worm shaft 54 is bearing 56, bearing case
It is rotatably supported by the housing 53 via 57.
The C-axis drive motor 58 is fixed to the housing 53, and its output shaft 58a is connected to the worm shaft 54. Spindle head 41
The fixed base 59 attached to the housing has a recess 62, and is engaged with an arm or a pin 60 mounted on the housing 53 so that the housing 53 is connected to the spindle head 41 so as not to rotate. The limit switch 61 is used when checking the cutting edge direction of the tool. 64 is a press nut, and 65 is a seal. In this embodiment, a C-axis drive motor 58 is provided on the tool holder 46 side, and the tool spindle 42 and the general-purpose hail bite 23 are rotated about the central axis through a gear mechanism of a worm shaft 54 and a worm gear 49. This is to obtain a desired blade edge orientation. Therefore, the feed in the X, Y, and Z-axis directions in machining is the same as that of the embodiment shown in FIG. 1, and the control of the C-axis drive motor 58 is performed together with the feed motors in the X, Y, and Z-axis directions in FIG. This is achieved by the numerical control device as in the above embodiment.

次に本発明の方法を用いて加工した例を説明する。第6
図は加工例の輪郭を示すX、Y平面図であり、Z軸方向
にはある値の深さを有した凹形状の溝を加工する場合の
例である。また後記した第一表は数値制御装置12(第1
図)に入力する指令データを示したものであり、X、Y
およびZ軸の最小指令単位はいずれも0.001 mm、C軸の
最小指令単位は0.001 度である。また、各軸の移動指令
データと各軸の移動方向との関係は指令データの値が正
のとき第1図に示すそれぞれ+X、+Y、+Zの矢印の
方向に移動するという関係にある。加工の順序を第一表
の指令データのブロックの順番に従って第6図と関連さ
せて説明する。初期設定として総形ヘールバイト23(第
2図)の刃先21の中心22を第6図のA点に置きワークに
対する進行方向を矢印の方向に設定する。いまZ軸の切
込み方向は考えずX、Y平面での移動について説明す
る。数値制御装置12を起動して第一表の指令データを実
行させると、ブロック(1)ではY軸のみが負の方向に
移動し、刃先の中心22がB点に達する。ブロック(2)
ではX、Yの2軸円弧補間とC軸の回転角度制御が行な
われ、刃先の中心22がC点に達する。ブロック(3)で
はX、Yの2軸間直線補間が行なわれ、刃先の中心22が
D点に達する。ブロック(4)ではX、Yの2軸の円弧
補間とC点の回転角度制御が行なわれ、刃先の中心22が
E点に達する。ブロック(5)ではY軸のみが正方向に
移動し、刃先の中心22がF点に達する。以下同様にし
て、ブロック(13)ではY軸のみが負方向に移動し、刃
先の中心22がM点からA点に達する。ブロック(14)は
プログラムの終了である。
Next, an example of processing using the method of the present invention will be described. Sixth
The drawing is an X, Y plan view showing the contour of a processing example, and is an example of processing a concave groove having a certain depth in the Z-axis direction. In addition, the following Table 1 shows the numerical control device 12 (first
Fig.) Shows the command data to be input, and X, Y
The minimum command unit for the Z axis is 0.001 mm, and the minimum command unit for the C axis is 0.001 degree. Further, the relationship between the movement command data of each axis and the movement direction of each axis is such that when the value of the command data is positive, the movement is in the directions of the + X, + Y, and + Z arrows shown in FIG. 1, respectively. The processing sequence will be described with reference to FIG. 6 in accordance with the sequence of command data blocks in Table 1. As an initial setting, the center 22 of the cutting edge 21 of the general-purpose hail bite 23 (Fig. 2) is placed at point A in Fig. 6 and the traveling direction with respect to the work is set in the direction of the arrow. Now, the movement in the X and Y planes will be described without considering the cutting direction of the Z axis. When the numerical controller 12 is activated to execute the command data in Table 1, only the Y axis moves in the negative direction in block (1), and the center 22 of the cutting edge reaches point B. Block (2)
Then, X- and Y-axis circular interpolation and C-axis rotation angle control are performed, and the center 22 of the cutting edge reaches point C. In the block (3), linear interpolation between the X and Y axes is performed, and the center 22 of the cutting edge reaches the point D. In the block (4), circular interpolation of two axes of X and Y and rotation angle control of the C point are performed, and the center 22 of the cutting edge reaches the E point. In the block (5), only the Y axis moves in the positive direction, and the center 22 of the cutting edge reaches the point F. Similarly, in the block (13), only the Y axis moves in the negative direction, and the center 22 of the cutting edge reaches the point A from the point M. Block (14) is the end of the program.

上記のX、Y平面の動作にZ軸の切込みの動作を関連さ
せて繰り返し切削を遂行すれば所望の深さ値を有した溝
加工が可能となる。尚、第6図において、矢印Nは総形
ヘールバイトの切刃幅を示し、軌跡Oは刃先の中心22の
軌跡を示し軌跡PおよびQは得るべき所望の溝を形成す
る輪郭の軌跡である。なお、上述の切削加工動作から明
らかなように、本発明の方法は総形ヘールバイト23を用
いて例えば第6図に図示のような所望形状の溝加工を行
うものであるが、特に、移動軌跡O上におけるB点→C
点、D点→E点、F点→G点、H点→I点、J点→K
点、L点→M点等の円弧軌跡では、総形ヘールバイト23
の刃先21の正面が、上述の軌跡Oに沿う工具進行方向
(矢印の方向)に対して常に直角になるように、上述し
たX、Yの2軸円弧補間とC軸の回転角度制御を同時に
行なわなければならない。つまり、ヘールバイトの場合
には削り加工作用はX、Y軸の移動で行うから、X又は
Y軸を移動させないでC軸を回転させると刃先21が欠け
て工具が使用不可能になってしまうからNCプログラム
の作成にあたっては、特に注意しなければならない。
If the cutting operation of the Z axis is associated with the operation of the X and Y planes and the cutting is repeatedly performed, it is possible to perform groove processing having a desired depth value. In FIG. 6, the arrow N indicates the cutting edge width of the general-purpose hail bite, the locus O indicates the locus of the center 22 of the cutting edge, and the loci P and Q are the loci of the contours forming the desired groove to be obtained. . As is clear from the above-described cutting operation, the method of the present invention is to form a groove having a desired shape as shown in FIG. Point B on locus O → C
Point, D point → E point, F point → G point, H point → I point, J point → K
For circular locus of point, L point → M point, etc.
The two-axis circular interpolation of X and Y described above and the rotation angle control of the C-axis are simultaneously performed so that the front surface of the blade edge 21 is always at a right angle to the tool traveling direction (direction of the arrow) along the above-described locus O. Must be done. That is, in the case of a hail bite, the shaving operation is performed by moving the X and Y axes. Therefore, if the C axis is rotated without moving the X or Y axis, the cutting edge 21 is chipped and the tool becomes unusable. Therefore, special attention must be paid when creating the NC program.

〔発明の効果〕〔The invention's effect〕

上述から明らかなように、本発明の効果は、回転切削形
の工具を用いず、得るべき加工形状の一横断面形状をし
た総形ヘールバイトを用いて溝切削加工を行なうため、
エンドミルを用いた切削加工やセーパーによる切削加工
では加工できなかった形状の溝や、狭い特殊形状の溝等
も切削加工可能となった。
As is apparent from the above, the effect of the present invention is that, without using a rotary cutting type tool, groove cutting is performed by using a general shape hail bite having one cross-sectional shape of the processing shape to be obtained,
It has become possible to cut grooves with shapes that could not be cut by cutting using an end mill or cutting with a saver, or grooves with a special narrow shape.

また、エンドミル加工に比較して加工能率が向上し、加
工面の制度が高くきれいな加工面が得られる。また、刃
先先端部を刃先中心を通る軸線回りに回動させて角度を
変更する方法は、工作機械のC軸の回転中心に上記刃先
中心を通る軸線を一致させて取付けてることで、実現す
ることが可能であり、工作機械にヘールバイトを装着し
て本発明の切削加工方法を実行するときには、制御プロ
グラム(NCプログラム)が簡単になる。
Further, the machining efficiency is improved as compared with the end mill machining, and the machined surface has a high precision and a clean machined surface can be obtained. Further, a method of rotating the tip of the cutting edge about an axis passing through the center of the cutting edge to change the angle is realized by mounting the C axis of the machine tool so that the axis passing through the center of the cutting edge is aligned with the center of rotation. The control program (NC program) is simplified when the machine tool is mounted with the hail bite and the cutting method of the present invention is executed.

また、X,Y軸方向の送りを与えながらC軸方向の送り
を与えるように駆動制御するので、総形ヘールバイトの
刃先に無理な力が作用せず、故に切刃の欠けが生じにく
い。更に、コンパクトなアタッチメント構造にすれば、
X、Y、Z軸送りを有する他用途の機械に取付けて本発
明を実施することもできるので機械の用途拡大にも寄与
することができる。
Further, since the drive control is performed so as to give the feed in the C-axis direction while giving the feed in the X- and Y-axis directions, an unreasonable force does not act on the blade tip of the general-purpose hail bite, and thus the cutting edge is less likely to be chipped. Furthermore, with a compact attachment structure,
Since the present invention can be carried out by being attached to a machine for other uses having X, Y, and Z axis feeds, it can contribute to expanding the uses of the machine.

第一表(指令データ) G91 G17G01 Y-150000 …(1) G02 X-56457 Y-36457 I-40000 C-112364 …(2) G01 X-96458 Y43542 …(3) G02 X-47085 Y72915 I32915 J72915 C-67635 …(4) G01 Y130000 …(5) G02 X30000 Y30000 I30000 C-90000 …(6) G01 X30000 …(7) G03 X20000 Y20000 J20000 C90000 …(8) G01 Y20000 …(9) G02 X13880 Y25301 I30000 C-40134 …(10) G01 X44626 Y28433 …(11) G02 X-61494 Y33734 I21494 J-33734 C-118251…(12) G01 Y-150000 …(13) MO2 …(14)Table 1 (Command data) G91 G17G01 Y-150000… (1) G02 X-56457 Y-36457 I-40000 C-112364… (2) G01 X-96458 Y43542… (3) G02 X-47085 Y72915 I32915 J72915 C -67635 (4) G01 Y130000 ... (5) G02 X30000 Y30000 I30000 C-90000 ... (6) G01 X30000 ... (7) G03 X20000 Y20000 J20000 C90000 ... (8) G01 Y20000 ... (9) G02 X13880 Y25301 I30000 C- 40134… (10) G01 X44626 Y28433… (11) G02 X-61494 Y33734 I21494 J-33734 C-118251… (12) G01 Y-150000… (13) MO2… (14)

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の切削加工方法の実施に当たって使用可
能な装置の一例の機構図、第2図は総形ヘールバイトの
1例を示す図、第3図は得るべき加工形状の一横断面を
示した図、第4図は本発明の方法の実施に使用可能な装
置の別例の正面断面図、第5図は第4図の右側面A−A
断面図、第6図は得るべき加工形状の加工例の輪郭を示
すX、Y平面図である。 1……被加工物 2……切削工具 4……X軸およびY軸送り機構、 7……Z軸送り機構 10,42……工具主軸 11,58……C軸駆動モータ 12……数値制御装置 43……総形ヘールバイトの刃先部 46……工具ホルダー 49……ウォーム歯車 50……テーパシャンク 53……ハウジング 54……ウォーム軸 59……固定台 60……ピン
FIG. 1 is a mechanical view of an example of an apparatus that can be used in carrying out the cutting method of the present invention, FIG. 2 is a view showing an example of a general-purpose hail bite, and FIG. 3 is a cross section of a processed shape to be obtained. FIG. 4 is a front sectional view of another example of an apparatus that can be used for carrying out the method of the present invention, and FIG. 5 is a right side view AA of FIG.
FIG. 6 is a cross-sectional view and FIG. 6 is an X, Y plan view showing a contour of a processing example of a processing shape to be obtained. 1 …… Workpiece 2 …… Cutting tool 4 …… X-axis and Y-axis feed mechanism, 7 …… Z-axis feed mechanism 10,42 …… Tool spindle 11,58 …… C-axis drive motor 12 …… Numerical control Device 43 …… Shape tip of the general-purpose hail tool 46 …… Tool holder 49 …… Worm gear 50 …… Taper shank 53 …… Housing 54 …… Worm shaft 59 …… Fixing base 60 …… Pin

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被加工物と総形ヘールバイトとの間でX,
Y,Z軸の三次元方向の相対送りを与えて前記被加工物
に所望の三次元加工形状の切削加工を行う切削加工方法
において、 前記総形ヘールバイトの刃先形状を得るべき加工形状の
一横断面形状に形成し、 前記総形ヘールバイトの刃先先端部の移動軌跡が得るべ
き所望の三次元加工形状と一致するよう前記X,Y軸の
平面内の相対送りを与えると共に前記総形ヘールバイト
の刃先正面が前記相対送りの移動軌跡における前進方向
に対して常に直角を維持するように前記総形ヘールバイ
トの刃先中心を通る軸線回りに回転させながら角度を変
化させ、かつZ軸の切込み送りを適宜与え、前記総形ヘ
ールバイトと被加工物との相対移動を制御し、被加工物
を切削加工することを特徴とする切削加工方法。
Claim: What is claimed is: 1. Between the work piece and the formed hail bite, X,
In a cutting method for performing relative cutting in a three-dimensional direction of Y and Z axes to perform cutting of a desired three-dimensional processing shape on the workpiece, one of the processing shapes to obtain the cutting edge shape of the general-purpose hail bite. Formed in a cross-sectional shape, giving relative feed within the planes of the X and Y axes so that the movement locus of the tip of the cutting edge of the general-purpose hail bite matches the desired three-dimensional machining shape to be obtained, and the general-purpose hail. The angle of the cutting tool is changed while rotating around the axis passing through the cutting edge center of the general-purpose hail tool so that the front surface of the cutting edge of the cutting tool always maintains a right angle with respect to the forward direction in the relative feed movement trajectory, and the Z-axis cutting is performed. A cutting method, characterized in that feed is appropriately applied to control relative movement between the general-purpose hail bite and a workpiece to cut the workpiece.
JP2325875A 1990-11-29 1990-11-29 Cutting method Expired - Lifetime JPH0661651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2325875A JPH0661651B2 (en) 1990-11-29 1990-11-29 Cutting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2325875A JPH0661651B2 (en) 1990-11-29 1990-11-29 Cutting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59009974A Division JPS60155310A (en) 1984-01-25 1984-01-25 Machining method and device thereof

Publications (2)

Publication Number Publication Date
JPH03228547A JPH03228547A (en) 1991-10-09
JPH0661651B2 true JPH0661651B2 (en) 1994-08-17

Family

ID=18181595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2325875A Expired - Lifetime JPH0661651B2 (en) 1990-11-29 1990-11-29 Cutting method

Country Status (1)

Country Link
JP (1) JPH0661651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418683C (en) * 2004-03-26 2008-09-17 株式会社牧野铣刀制作所 Cutting method and machine and rib electrode for electric discharge machining

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091093A1 (en) * 2004-03-18 2005-09-29 Mitsubishi Denki Kabushiki Kaisha Method and device for numerical control
JP6368292B2 (en) * 2015-10-21 2018-08-01 Jfeスチール株式会社 Membrane structure duct manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366089A (en) * 1976-11-25 1978-06-13 Togo Seisakusho Kk Automatic cutting device of shaper
JPS60155310A (en) * 1984-01-25 1985-08-15 Makino Milling Mach Co Ltd Machining method and device thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366089A (en) * 1976-11-25 1978-06-13 Togo Seisakusho Kk Automatic cutting device of shaper
JPS60155310A (en) * 1984-01-25 1985-08-15 Makino Milling Mach Co Ltd Machining method and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100418683C (en) * 2004-03-26 2008-09-17 株式会社牧野铣刀制作所 Cutting method and machine and rib electrode for electric discharge machining
JP4740842B2 (en) * 2004-03-26 2011-08-03 株式会社牧野フライス製作所 Cutting method and apparatus

Also Published As

Publication number Publication date
JPH03228547A (en) 1991-10-09

Similar Documents

Publication Publication Date Title
JP3884884B2 (en) In-corner cutting method and cutting tool
AU5247601A (en) Method of directing the movement of a tool as part of a process to remove material from a block of material
JPS6354485B2 (en)
JPWO2005092548A1 (en) Cutting method and apparatus, and rib electrode for electric discharge machining
WO2008079151A1 (en) Method and apparatus for non-rotary machining
JPH11207477A (en) Scraping device and scraping method
Moulton Wire EDM the fundamentals
JPH0661651B2 (en) Cutting method
JPH11239909A (en) Deburring method and device thereof
JP4094856B2 (en) Machining method of arc groove
US4691479A (en) Machine and process for cutting chipping-grooves into elongated peripheral milling cutters with hemispherical tips
JPH06711A (en) Cutting method
US8288675B2 (en) Method and apparatus for fabricating an orthopaedic prosthetic component
JPH0425301A (en) Cutting device
JPH09267219A (en) Device for working forming tool by numerical control
JP2828424B2 (en) Machining method of forming tool by numerical control
GB2205513A (en) Manufacture of form cutting tool tip
JP4144955B2 (en) Gear machining method
JPH07124813A (en) Forming method of fresnel shape
JPS6156805A (en) Curved surface machining method
CN218135015U (en) Multifunctional numerical control lathe
JPH08174335A (en) Method for chamfering gear-like workpiece
JP2576956Y2 (en) Spindle lathe
CN209716506U (en) Three numerically controlled drills
KR100227183B1 (en) Multiple piston processing machine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term