JPH0661010A - Manufacture of positive temperature coefficient thermistor - Google Patents

Manufacture of positive temperature coefficient thermistor

Info

Publication number
JPH0661010A
JPH0661010A JP4211275A JP21127592A JPH0661010A JP H0661010 A JPH0661010 A JP H0661010A JP 4211275 A JP4211275 A JP 4211275A JP 21127592 A JP21127592 A JP 21127592A JP H0661010 A JPH0661010 A JP H0661010A
Authority
JP
Japan
Prior art keywords
molded body
semiconductor
solution
raw material
semiconducting agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4211275A
Other languages
Japanese (ja)
Inventor
Keishin Ohara
佳信 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP4211275A priority Critical patent/JPH0661010A/en
Publication of JPH0661010A publication Critical patent/JPH0661010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain a sintered body having semiconductor characteristics, uniform and not irregular, by a method wherein a calcination-molded body is immersed in a solution wherein a soluble agent for turning into semiconductor is resolved in a solvent having the affinity to raw material powder. CONSTITUTION:Raw material powder having perovskite crystal forms are molded and calcinated to obtain a porous calcination-molded body 1. Next, a soluble agent for turning into semiconductor is resolved into a solvent having the affinity to the raw material powder to prepare a solution 2 of the soluble agent. Next, the calcination-molded body 1 is immersed in the solution 2 for making the solution 2 adhere to the surface of the calcination-molded body 1 as well as permeate in the pores thereof to be dried up for removing the solvent so that an immersion-molded body 4 may be formed. Later, the immersion-molded body 4 is finally baked to obtain a sintered body 5 turned into semiconductor. Through these procedures, the additive amount of the agent can be precisely controlled thereby enabling the semiconductor characteristics such as set up PTC property, etc., to be stably secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、所定温度を越えると正
の温度特性を有する正特性サーミスタの製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a positive temperature coefficient thermistor having a positive temperature characteristic when the temperature exceeds a predetermined temperature.

【0002】[0002]

【従来の技術】従来より、正特性サーミスタ(以下、P
TCサーミスタという)としては、ポリエチレン樹脂等
の高分子材料中にカーボンブラック等の導電性物質を混
入した高分子PTCサーミスタが開発されているが、半
導体化されたチタン酸バリウムセラミックスが主流であ
る。
2. Description of the Related Art Conventionally, a positive temperature coefficient thermistor (hereinafter referred to as P
As a TC thermistor), a polymer PTC thermistor in which a conductive material such as carbon black is mixed in a polymer material such as polyethylene resin has been developed, but semiconductor barium titanate ceramics is the mainstream.

【0003】上記のチタン酸バリウムセラミックスは、
例えば、数ミクロンに粉砕された炭酸バリウム(BaCO3)
粉末およびチタニア(TiO2)粉末に対して酸化アンチモン
等の半導体化剤を均一に混合し、焼成して製造されてい
る。なお、上記の半導体化剤の添加量には一定量の限度
( 0.5モル%程度)があり、それを越えると半導体化し
ない。
The above barium titanate ceramics are
For example, barium carbonate (BaCO 3 ) crushed to a few microns
It is manufactured by uniformly mixing a powder and a titania (TiO 2 ) powder with a semiconducting agent such as antimony oxide and firing. There is a fixed limit (about 0.5 mol%) to the amount of the above-mentioned semiconducting agent added, and if the amount exceeds the limit, no semiconductor is formed.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記の製造
方法では、添加量が微量である半導体化剤を炭酸バリウ
ム粉末およびチタニア粉末に混合する際、均一に分散さ
せることが困難であり、その上、半導体化剤の秤量誤差
によっても、PTC特性等の半導体特性が大きく変化し
て、得られた半導体特性が不安定になるという問題を生
じている。
However, in the above manufacturing method, it is difficult to uniformly disperse the semiconducting agent having a small amount of addition into the barium carbonate powder and the titania powder. Also, there is a problem in that the semiconductor characteristics such as the PTC characteristics greatly change due to the weighing error of the semiconducting agent, and the obtained semiconductor characteristics become unstable.

【0005】[0005]

【課題を解決するための手段】本発明の正特性サーミス
タの製造方法は、以上の課題を解決するために、ペロブ
スカイト形の結晶形を有する原料粉末を成形し仮焼きし
て多孔質の仮焼成形体を得た後、上記原料粉末に対して
親和性を有する溶媒に可溶性半導体化剤を溶解した溶液
を上記仮焼成形体に浸透させて上記可溶性半導体化剤を
有する浸漬成形体を得た後、上記浸漬成形体を本焼成し
て半導体化された焼結体を得ることを特徴としている。
In order to solve the above-mentioned problems, the method for producing a positive temperature coefficient thermistor of the present invention comprises forming a raw material powder having a perovskite type crystal form and calcining it to obtain a porous calcination. After obtaining the shaped body, a solution of a soluble semiconducting agent dissolved in a solvent having an affinity for the raw material powder is permeated into the calcined shaped body to obtain an immersion shaped body having the soluble semiconducting agent, The above-mentioned immersion molded body is subjected to main firing to obtain a semiconductorized sintered body.

【0006】上記の原料粉末としては、ABO3 (A,
Bは金属元素、Oは酸素)ペロブスカイト型の結晶形を
有する金属酸化物であり、かつ、微量な半導体化剤、例
えばアンチモンを添加することにより半導体化するもの
であれば特に限定されないが、例としてチタン酸バリウ
ム(BaTiO3)を挙げることができる。
As the above raw material powder, ABO 3 (A,
B is a metal element, O is oxygen) and is a metal oxide having a perovskite type crystal form, and is not particularly limited as long as it is converted into a semiconductor by adding a trace amount of a semiconducting agent, for example, antimony. Examples thereof include barium titanate (BaTiO 3 ).

【0007】さらに、温度を上昇させると正の温度特性
を示し始める変移温度であるキュリー温度を、所定の温
度に調整するためにペロブスカイト型の金属酸化物であ
るチタン酸ストロンチウム(SrTiO3)やチタン酸鉛(PbTiO
3)を添加してもよい。
Furthermore, in order to adjust the Curie temperature, which is a transition temperature at which positive temperature characteristics begin to rise when the temperature is raised, to a predetermined temperature, strontium titanate (SrTiO 3 ) or titanium which is a perovskite type metal oxide is used. Lead oxide (PbTiO
3 ) may be added.

【0008】また、上記の溶媒としては、原料粉末と親
和性があり、かつ、後述する可溶性半導体化剤を溶解す
るものであれば特に限定されないが、エタノール等のア
ルコール類を挙げることができる。
The above-mentioned solvent is not particularly limited as long as it has an affinity for the raw material powder and dissolves the soluble semiconducting agent described later, but alcohols such as ethanol can be mentioned.

【0009】上記の可溶性半導体化剤としては、上記溶
媒に溶解し、かつ、上記原料粉末を半導体化できるもの
であれば特に限定されないが、例えばトリフェニルアン
チモン〔Sb(C6H5)3 〕、トリフェニルビスマス〔Bi(C6H
5)3 〕を挙げることができる。なお、焼成時の焼結助剤
として、二酸化ケイ素(SiO2)や酸化マンガン(Mn
O)等を成形時に添加してもよい。
The soluble semiconducting agent is not particularly limited as long as it can be dissolved in the solvent and the raw material powder can be converted into a semiconductor. For example, triphenylantimony [Sb (C 6 H 5 ) 3 ] , Triphenylbismuth [Bi (C 6 H
5 ) 3 ] can be mentioned. In addition, as a sintering aid at the time of firing, silicon dioxide (SiO 2 ) or manganese oxide (Mn
O) and the like may be added at the time of molding.

【0010】[0010]

【作用】上記の方法によれば、均一な濃度となる溶液を
仮焼成形体に浸透させるから、可溶性半導体化剤を仮焼
成形体に均一に分布、添加できることにより、むらのな
い均一な半導体特性を有する焼結体を得ることができ、
その上、上記溶液の希釈により、可溶性半導体化剤濃度
を正確に、かつ迅速に調整でき、また、仮焼成形体の溶
液への浸漬回数を調節することにより、浸漬成形体に対
する可溶性半導体化剤の添加量を正確に制御できて安定
化できる。
According to the above method, the solution having a uniform concentration is infiltrated into the pre-baked form, so that the soluble semiconducting agent can be uniformly distributed and added to the pre-baked form, so that uniform semiconductor characteristics can be obtained. It is possible to obtain a sintered body having
Moreover, by diluting the above solution, the concentration of the soluble semiconducting agent can be accurately and quickly adjusted, and by adjusting the number of times the preliminarily fired body is immersed in the solution, the concentration of the soluble semiconducting agent in the dipping molded body can be adjusted. The added amount can be controlled accurately and can be stabilized.

【0011】[0011]

【実施例】本発明の各実施例について図1ないし図4に
基づいて説明すれば、以下の通りである。 〔実施例1〕ペロブスカイト形の結晶形を有する原料粉
末としてのチタン酸バリウム粉末(粒度2〜3μm)3
gを成形型に充填し、1トン/cm2 にて加圧して成形体
を得た。この成形体を1150℃、2時間仮焼きすることに
より、図1(a)に示すように、例えば、密度3.85g/
cm3 、直径12mm、厚み3mmの円盤状で、各原料粉末の当
接表面のみが密着してなり、連続気孔を有する多孔質の
仮焼成形体1が得られた。本明細書での密度は、重量
(g)÷計測寸法体積にて算出した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following will describe each embodiment of the present invention with reference to FIGS. Example 1 Barium titanate powder (particle size 2 to 3 μm) 3 as a raw material powder having a perovskite type crystal form 3
g was filled in a mold and pressed at 1 ton / cm 2 to obtain a molded body. By calcining this molded body at 1150 ° C. for 2 hours, as shown in FIG. 1 (a), for example, a density of 3.85 g /
A disk-like shape having a cm 3 diameter, a diameter of 12 mm, and a thickness of 3 mm, in which only the abutting surface of each raw material powder was adhered, and a porous pre-baked form 1 having continuous pores was obtained. The density in this specification was calculated by weight (g) / measured dimension volume.

【0012】次に、トリフェニルアンチモン〔Sb(C6H5)
3 〕(可溶性半導体化剤)を、濃度0.05g/リットルと
なるようにエタノール(溶媒)に溶解して半導体化剤溶
液2を調製し、その半導体化剤溶液2に上記仮焼成形体
1を1時間浸漬して、上記の半導体化剤溶液2を仮焼成
形体1の表面に付加および多孔質内部に浸透させた。
Next, triphenyl antimony [Sb (C 6 H 5 )
3 ] (Soluble semiconducting agent) is dissolved in ethanol (solvent) to a concentration of 0.05 g / liter to prepare a semiconducting agent solution 2, and the semiconducting agent solution 2 contains 1 part of the pre-baked form 1 By soaking for a period of time, the above-mentioned semiconducting agent solution 2 was added to the surface of the calcined shaped body 1 and permeated into the inside of the porous body.

【0013】その後、上記仮焼成形体1を半導体化剤溶
液2から引き上げた。なお、上記仮焼成形体1を引き上
げた後の半導体化剤溶液2の残存容量を測定し、その残
存容量から仮焼成形体1に付加されたトリフェニルアン
チモン量を算出した。
After that, the pre-fired shaped body 1 was pulled up from the semiconducting agent solution 2. The residual capacity of the semiconducting agent solution 2 after pulling up the calcinated body 1 was measured, and the amount of triphenylantimony added to the calcinated body 1 was calculated from the remaining capacity.

【0014】続いて、半導体化剤溶液2を浸透させた仮
焼成形体1を乾燥してエタノールを除去し、図1(b)
に示すように、前記のトリフェニルアンチモン層3を表
面および多孔質内部の気孔表面に均一に備えた浸漬成形
体4を形成した。
Subsequently, the calcined shaped body 1 in which the semiconducting agent solution 2 has been permeated is dried to remove ethanol, and then, as shown in FIG.
As shown in (1), a dip molded body 4 having the above-mentioned triphenylantimony layer 3 uniformly provided on the surface and the pore surface inside the porous body was formed.

【0015】その後、上記浸漬成形体4を1150℃で2時
間、大気中で焼成してトリフェニルアンチモンにおける
フェニル基を揮散させアンチモンを酸化して、浸漬成形
体4の表面および多孔質内の気孔表面(図示せず)に半
導体化剤としての酸化アンチモン層を形成して付加成形
体を得た。
Thereafter, the above-mentioned dipping molded body 4 is baked at 1150 ° C. for 2 hours in the atmosphere to volatilize the phenyl groups in triphenylantimony to oxidize antimony, and to swell the surface of the dipping molded body 4 and the pores in the porosity. An antimony oxide layer as a semiconducting agent was formed on the surface (not shown) to obtain an additional molded body.

【0016】続いて、上記の付加成形体を1360℃で15分
間加熱して本焼成し、図1(c)に示すように、半導体
化されたチタン酸バリウム系セラミックスであり、円盤
状の焼結体5を得た。なお、上記の焼結体5の密度は5.
88g/cm3 であり、付加されたアンチモン量は、チタン
酸バリウム100molに対するアンチモン(Sb)のモル量であ
るモル濃度(mol%)で示すと、0.04であった。なお、上
記アンチモン量は前述した付加トリフェニルアンチモン
量に基づいて算出した。
Subsequently, the above-mentioned additional molded body is heated at 1360 ° C. for 15 minutes for main firing, and as shown in FIG. 1 (c), it is a barium titanate-based ceramic which is semiconducting, and is disc-shaped. Consolidation 5 was obtained. The density of the above-mentioned sintered body 5 is 5.
It was 88 g / cm 3 , and the amount of added antimony was 0.04 in terms of molar concentration (mol%), which is the molar amount of antimony (Sb) per 100 mol of barium titanate. The amount of antimony was calculated based on the amount of added triphenylantimony described above.

【0017】なお、前記の仮焼きとは、後述する本焼成
より低く、各原料粉末の当接表面のみが密着して成形体
が多孔質体となる温度で加熱することであり、本焼成と
は、原料粉末の融点以下であるが、多孔質の成形体の各
原料粉末が成長して、気孔の殆どない緻密体となる温度
で加熱することである。
The term "calcining" refers to heating at a temperature lower than that in the main calcination described later and at which only the abutting surface of each raw material powder adheres to form a porous body. That is, the heating is performed at a temperature which is not higher than the melting point of the raw material powder but is a temperature at which each raw material powder of the porous molded body grows and becomes a dense body with few pores.

【0018】次に、得られた焼結体5の両面に、以下、
図示しないが、銀ペースト(デュポン社製)をそれぞれ
塗布し、 560℃にて焼き付けて各電極を形成した。この
ようにして得られた焼結体は、温度を変えて比抵抗値を
それぞれ測定された。その結果を図2に示した(図中〇
で示した)。上記の焼結体は、室温(25℃)にて導電
性、つまり、室温での比抵抗率である室温抵抗率が7.58
kΩcmを示し、温度を上昇に伴って抵抗値が上昇するP
TC特性を有していた。
Next, on both surfaces of the obtained sintered body 5,
Although not shown, silver paste (manufactured by DuPont) was applied to each and baked at 560 ° C. to form each electrode. The specific resistance values of the thus-obtained sintered bodies were measured at different temperatures. The result is shown in FIG. 2 (indicated by ◯ in the figure). The above-mentioned sintered body is electrically conductive at room temperature (25 ° C), that is, the room temperature resistivity which is the resistivity at room temperature is 7.58.
It shows kΩcm, and the resistance value increases with increasing temperature P
It had TC characteristics.

【0019】〔実施例2〕前記の仮焼成形体1を、前記
の半導体化剤溶液2に1時間浸漬し、乾燥した後、1150
℃で2時間焼成する工程を2回繰り返し、アンチモン付
加量を増加させた付加成形体を得た。なお、1150℃で2
時間焼成する工程により生成する酸化アンチモンは、前
記の半導体化剤溶液2に不溶である。
Example 2 The pre-baked shaped body 1 was immersed in the semiconducting agent solution 2 for 1 hour and dried, and then 1150.
The step of baking at 2 ° C. for 2 hours was repeated twice to obtain an additional molded body with an increased amount of added antimony. 2 at 1150 ℃
Antimony oxide produced by the step of firing for a period of time is insoluble in the above-mentioned semiconductor agent solution 2.

【0020】このようにして得られた付加成形体を、以
下、実施例1と同様にして焼結体を得た後、その焼結体
の両面に電極を形成して温度に対する比抵抗値を測定
し、その結果を図2に合わせて示した(図中□で示し
た)。上記焼結体は、その密度が5.65g/cm3 、そのア
ンチモン量(mol%)が0.08、その室温抵抗率が51Ωcmを
示し、温度を上昇に伴って抵抗値が上昇するPTC特性
を有していた。
The additional molded body thus obtained was sintered in the same manner as in Example 1, and electrodes were formed on both surfaces of the sintered body to obtain a specific resistance value with respect to temperature. The measurement was performed, and the results are also shown in FIG. 2 (indicated by □ in the figure). The above sintered body has a density of 5.65 g / cm 3 , an antimony amount (mol%) of 0.08, and a room temperature resistivity of 51 Ωcm, and has a PTC characteristic in which the resistance value increases with increasing temperature. Was there.

【0021】〔実施例3〕前記の仮焼成形体1を前記の
半導体化剤溶液2に1時間浸漬し、乾燥した後、1150℃
で2時間焼成する工程を3回繰り返して、付加成形体で
のアンチモン量を増加させ、以下、実施例1と同様にし
て焼結体を得た。その焼結体に実施例1と同様に電極を
形成し、温度変化に対する比抵抗値を測定し、その結果
を図2に合わせて示した(図中△で示した)。上記焼結
体は、その密度が5.55g/cm3 であり、そのアンチモン
量(mol%)が0.12、その室温抵抗率が34Ωcmを示し、温
度を上昇に伴って抵抗値が上昇するPTC特性を有して
いた。
[Example 3] The pre-sintered shaped body 1 was dipped in the semiconducting agent solution 2 for 1 hour, dried and then heated to 1150 ° C.
The step of firing for 2 hours was repeated three times to increase the amount of antimony in the additional molded body, and thereafter, a sintered body was obtained in the same manner as in Example 1. An electrode was formed on the sintered body in the same manner as in Example 1, and the specific resistance value with respect to temperature change was measured. The result is also shown in FIG. 2 (indicated by Δ in the figure). The sintered body has a density of 5.55 g / cm 3 , an antimony amount (mol%) of 0.12, and a room temperature resistivity of 34 Ωcm, and exhibits a PTC characteristic in which the resistance value increases with increasing temperature. Had.

【0022】〔実施例4〕前記の仮焼成形体1を前記の
半導体化剤溶液2に1時間浸漬し、乾燥した後、1150℃
で2時間焼成する工程を4回繰り返して、付加成形体で
のアンチモン量を増加させ、以下、実施例1と同様にし
て焼結体を得た。その焼結体に実施例1と同様に電極を
形成し、温度変化に対する比抵抗値を測定し、その結果
を図2に合わせて示した(図中□で示した)。なお、上
記結果を示す曲線は、その結果が前記実施例2の結果と
ほぼ同様となったため、上記実施例2の結果を示す曲線
と重ねて示した。また、上記焼結体は、その密度が5.50
g/cm3 であり、そのアンチモン量(mol%)が0.16、そ
の室温抵抗率が52Ωcmを示し、温度を上昇に伴って抵抗
値が上昇するPTC特性を有していた。
Example 4 The pre-baked shaped body 1 was dipped in the semiconducting agent solution 2 for 1 hour, dried and then heated to 1150 ° C.
The step of firing for 2 hours was repeated four times to increase the amount of antimony in the additional molded body, and thereafter, a sintered body was obtained in the same manner as in Example 1. An electrode was formed on the sintered body in the same manner as in Example 1, and the specific resistance value with respect to the temperature change was measured. The result is also shown in FIG. 2 (indicated by □ in the figure). The curve showing the above result was almost the same as the result of the above-mentioned Example 2, so that it was shown overlaid with the curve showing the result of the above Example 2. The density of the sintered body is 5.50.
g / cm 3 , its antimony amount (mol%) was 0.16, its room temperature resistivity was 52 Ωcm, and it had a PTC characteristic in which its resistance value increased with increasing temperature.

【0023】〔実施例5〕前記の仮焼成形体1を前記の
半導体化剤溶液2に1時間浸漬し、乾燥した後、1150℃
で2時間焼成する工程を5回繰り返して、付加成形体で
のアンチモン量を増加させ、以下、実施例1と同様にし
て焼結体を得た。その焼結体に実施例1と同様に電極を
形成し、温度変化に対する比抵抗値を測定し、その結果
を図2に合わせて示した(図中◇で示した)。上記焼結
体は、その密度が5.16g/cm3 であり、そのアンチモン
量(mol%)が0.19、その室温抵抗率が 178Ωcmを示し、
温度を上昇に伴って抵抗値が上昇するPTC特性を有し
ていた。
[Embodiment 5] The pre-sintered shaped body 1 is immersed in the semiconducting agent solution 2 for 1 hour and dried, and then at 1150 ° C.
The step of firing for 2 hours was repeated 5 times to increase the amount of antimony in the additional molded body, and thereafter, a sintered body was obtained in the same manner as in Example 1. An electrode was formed on the sintered body in the same manner as in Example 1, the specific resistance value with respect to the temperature change was measured, and the result is also shown in FIG. 2 (indicated by ⋄ in the figure). The above sintered body has a density of 5.16 g / cm 3 , an antimony amount (mol%) of 0.19, and a room temperature resistivity of 178 Ωcm.
It had a PTC characteristic in which the resistance value increased with increasing temperature.

【0024】このように上記各実施例1〜5の製造方法
における焼結体は、所定温度を越えると正の温度特性を
示すPTC特性を備えており、例えばPTCサーミスタ
として好適に用いることができる。
As described above, the sintered bodies in the manufacturing methods of Examples 1 to 5 have PTC characteristics that show positive temperature characteristics when the temperature exceeds a predetermined temperature, and can be suitably used as, for example, PTC thermistors. .

【0025】その上、上記各実施例の方法では、仮焼成
形体1を半導体化剤溶液2に浸漬するため、半導体化剤
の添加に際し、秤量誤差の小さな秤量単位で秤量した
後、希釈すればよいから、従来のように微量な秤量では
なく秤量誤差を小さくできることにより、半導体化剤の
添加量を正確に制御できて想定されたPTC特性等の半
導体特性を有する正特性サーミスタを安定に製造するこ
とができる。
In addition, in the method of each of the above-mentioned embodiments, since the pre-baked form 1 is immersed in the semiconducting agent solution 2, when the semiconducting agent is added, it is weighed in a weighing unit having a small weighing error and then diluted. Since it is good, it is possible to accurately control the amount of addition of the semiconducting agent and to stably manufacture a positive temperature coefficient thermistor having expected semiconductor characteristics such as PTC characteristics by reducing the weighing error instead of the minute amount as in the past. be able to.

【0026】また、上記の各方法では、均一な半導体化
剤濃度を備える半導体化剤溶液2に仮焼成形体1に浸漬
するため、半導体化剤を均一に浸漬成形体4に分散させ
ることができて、得られた焼結体は均一なPTC特性等
のバラツキの低減された優れた半導体特性を備えること
が可能となる。また、成形後において半導体化できるた
め、室温抵抗値やPTC特性等の変更が迅速にできる。
In each of the above methods, the semiconducting agent 1 is immersed in the semiconducting agent solution 2 having a uniform concentration of the semiconducting agent, so that the semiconducting agent can be uniformly dispersed in the immersion molding 4. As a result, the obtained sintered body can have excellent semiconductor characteristics such as uniform PTC characteristics with reduced variations. Further, since it can be made into a semiconductor after molding, the room temperature resistance value, PTC characteristics, etc. can be changed quickly.

【0027】さらに、上記各方法では、半導体化剤溶液
2の濃度の微調整を、希釈等により正確に、かつ迅速に
できるため、設定したPTC特性を確実に得ることがで
きて、PTC特性の異なる正特性サーミスタを安定にか
つ迅速にそれぞれ得ることができる。
Further, in each of the above methods, fine adjustment of the concentration of the semiconducting agent solution 2 can be performed accurately and quickly by dilution or the like, so that the set PTC characteristic can be obtained with certainty and the PTC characteristic Different positive temperature coefficient thermistors can be stably and quickly obtained.

【0028】なお、上記の各実施例における焼結体の密
度を、図3に示すように、グラフに示すと、アンチモン
濃度の増加に伴って密度が若干低下傾向を示した。これ
は、アンチモン濃度の増加に伴う焼結体内の気孔減少率
の低下に起因するとものと考えられた。
When the density of the sintered body in each of the above-mentioned examples is shown in a graph as shown in FIG. 3, the density showed a tendency to decrease slightly as the antimony concentration increased. It was considered that this was due to a decrease in the pore reduction rate in the sintered body as the antimony concentration increased.

【0029】一方、上記各実施例における焼結体の室温
抵抗率を、図4に示すように、グラフに示すと、アンチ
モン濃度が、ほぼ0.1mol%で極小値を示し、アンチモン
濃度の変化に応じた室温抵抗率を容易に設定できて、室
温抵抗率の調整が容易に可能なことが示された。
On the other hand, when the room temperature resistivity of the sintered body in each of the above-mentioned Examples is shown in a graph as shown in FIG. 4, the antimony concentration shows a minimum value at about 0.1 mol%, which shows a change in the antimony concentration. It was shown that the room temperature resistivity can be easily set and the room temperature resistivity can be easily adjusted.

【0030】なお、上記の方法は、チタン酸ジルコン酸
鉛〔Pb(Zr,Ti)O3 系の圧電セラミックスの製造におけ
る、使用目的に応じて改質するための微量成分の添加に
も適用することができる。
The above method is also applied to the addition of a trace amount of a component for modifying the lead zirconate titanate [Pb (Zr, Ti) O 3 type piezoelectric ceramics according to the purpose of use. be able to.

【0031】[0031]

【発明の効果】本発明の正特性サーミスタの製造方法
は、以上のように、ペロブスカイト形の結晶形を有する
原料粉末を成形し仮焼きして多孔質の仮焼成形体を得た
後、上記原料粉末に対して親和性を有する溶媒に可溶性
半導体化剤を溶解した溶液を上記仮焼成形体に浸透させ
て上記可溶性半導体化剤を有する浸漬成形体を得た後、
上記浸漬成形体を本焼成して半導体化された焼結体を得
る方法である。
As described above, the method for producing a positive temperature coefficient thermistor according to the present invention comprises the steps of forming a raw material powder having a perovskite type crystal form and calcining it to obtain a porous calcinated body, and After obtaining a dip molded body having the soluble semiconducting agent by infiltrating the solution obtained by dissolving the soluble semiconducting agent in a solvent having an affinity for powder into the calcined shaped body,
It is a method of obtaining a semiconductor-made sintered body by subjecting the above-mentioned immersion molded body to main firing.

【0032】それゆえ、上記方法は、可溶性半導体化剤
を仮焼成形体に均一に分散して半導体化でき、その上、
溶液の可溶性半導体化剤濃度や仮焼成形体の溶液への浸
漬回数の調整により、浸漬成形体における可溶性半導体
化剤の添加量を正確に制御可能であるから、設定された
PTC特性等の半導体特性を安定に得ることができると
いう効果を奏する。
Therefore, according to the above method, the soluble semiconducting agent can be uniformly dispersed in the pre-sintered form to form a semiconductor.
By adjusting the concentration of the soluble semiconducting agent in the solution and the number of times the pre-baked article is immersed in the solution, the amount of the soluble semiconducting agent added in the immersion molded article can be accurately controlled. The effect of being able to obtain is stable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の正特性サーミスタの製造方法における
概略工程図である。
FIG. 1 is a schematic process diagram in a method of manufacturing a positive temperature coefficient thermistor of the present invention.

【図2】上記各実施例で得られた各正特性サーミスタに
おける温度と抵抗値との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between temperature and resistance value in each positive temperature coefficient thermistor obtained in each of the above examples.

【図3】上記の各正特性サーミスタの密度を示すグラフ
である。
FIG. 3 is a graph showing the density of each PTC thermistor.

【図4】上記の各正特性サーミスタの室温抵抗値を示す
グラフである。
FIG. 4 is a graph showing a room temperature resistance value of each of the positive temperature coefficient thermistors.

【符号の説明】[Explanation of symbols]

1 仮焼成形体 2 半導体化剤溶液(溶液) 4 浸漬成形体 5 焼結体 1 Preliminary Firing Form 2 Semiconductor Agent Solution (Solution) 4 Immersion Formed Body 5 Sintered Body

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ペロブスカイト形の結晶形を有する原料粉
末を成形し仮焼きして多孔質の仮焼成形体を得た後、上
記原料粉末に対して親和性を有する溶媒に可溶性半導体
化剤を溶解した溶液を上記仮焼成形体に浸透させて上記
可溶性半導体化剤を有する浸漬成形体を得た後、上記浸
漬成形体を本焼成して半導体化された焼結体を得ること
を特徴とする正特性サーミスタの製造方法。
1. A raw material powder having a perovskite crystal form is molded and calcined to obtain a porous calcined body, and then a soluble semiconducting agent is dissolved in a solvent having an affinity for the raw material powder. The obtained solution is permeated into the preliminarily fired form to obtain an immersion molded body having the soluble semiconducting agent, and then the immersion molded body is subjected to main firing to obtain a semiconductorized sintered body. Method of manufacturing characteristic thermistor.
JP4211275A 1992-08-07 1992-08-07 Manufacture of positive temperature coefficient thermistor Pending JPH0661010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4211275A JPH0661010A (en) 1992-08-07 1992-08-07 Manufacture of positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4211275A JPH0661010A (en) 1992-08-07 1992-08-07 Manufacture of positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JPH0661010A true JPH0661010A (en) 1994-03-04

Family

ID=16603231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4211275A Pending JPH0661010A (en) 1992-08-07 1992-08-07 Manufacture of positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JPH0661010A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248201A (en) * 1986-04-22 1987-10-29 松下電器産業株式会社 Manufacture of positive characteristics thermistor
JPS63115302A (en) * 1986-10-31 1988-05-19 ティーディーケイ株式会社 Manufacture of positive characteristic thermistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248201A (en) * 1986-04-22 1987-10-29 松下電器産業株式会社 Manufacture of positive characteristics thermistor
JPS63115302A (en) * 1986-10-31 1988-05-19 ティーディーケイ株式会社 Manufacture of positive characteristic thermistor

Similar Documents

Publication Publication Date Title
JPH0524646B2 (en)
JPH0661010A (en) Manufacture of positive temperature coefficient thermistor
KR20010051354A (en) Semiconducting Ceramic Material, Process for Producing the Ceramic Material, and Thermistor
US4692289A (en) Method of manufacturing voltage-dependent resistor
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JP2689439B2 (en) Grain boundary insulation type semiconductor porcelain body
TWI740261B (en) Use of ceramic composition, use of ceramic sintered body, and thermistor
JPH0741363A (en) Piezoelectric ceramics composition
JP2853424B2 (en) Manufacturing method of lead titanate porcelain
JP3493591B2 (en) Manufacturing method of semiconductor porcelain
JP3125263B2 (en) Method for controlling particle size of calcined powder for semiconductor porcelain and method for manufacturing semiconductor porcelain
JPS5948521B2 (en) Method for manufacturing positive characteristic semiconductor porcelain
JPH02106903A (en) High-temperature ptc thermistor and manufacture thereof
JP2984115B2 (en) Manufacturing method of grain boundary insulated semiconductor porcelain capacitor
JPH10212161A (en) Thermistor material having positive characteristic and its production
TW202108545A (en) Ceramic composition, ceramic sintered body, laminated ceramic electronic component and method for manufacturing the same
JPH0664925A (en) Production of bismuth lamellar compound sintered compact
TW202136175A (en) Ceramic composition, ceramic sintered body and laminated ceramic electronic component having excellent performance of high temperature coefficient of resistance and low room temperature resistance value
JPH08273905A (en) Manufacture of voltage nonlinear resistor
JPH0745401A (en) Manufacture of positive temperature coefficient thermistor
JPH04299802A (en) Positive temperature coefficient thermistor
JPH06196305A (en) Manufacture of positive temperature coefficient thermistor
JPH08319157A (en) Barium titanate ceramic and its production
JPH11176613A (en) Manufacture of ceramic electronic part
JPS633442B2 (en)