JPH0660937B2 - Liquid level measuring device - Google Patents

Liquid level measuring device

Info

Publication number
JPH0660937B2
JPH0660937B2 JP60001880A JP188085A JPH0660937B2 JP H0660937 B2 JPH0660937 B2 JP H0660937B2 JP 60001880 A JP60001880 A JP 60001880A JP 188085 A JP188085 A JP 188085A JP H0660937 B2 JPH0660937 B2 JP H0660937B2
Authority
JP
Japan
Prior art keywords
light
distance measuring
liquid level
objective optical
optical means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60001880A
Other languages
Japanese (ja)
Other versions
JPS61160076A (en
Inventor
義男 堀川
和昭 木村
博雄 菅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP60001880A priority Critical patent/JPH0660937B2/en
Publication of JPS61160076A publication Critical patent/JPS61160076A/en
Publication of JPH0660937B2 publication Critical patent/JPH0660937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、予め定められている変調信号で変調される
測距光を用いて被検液面の高さを計測させる液面高さ計
測装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to liquid level height measurement for measuring the height of a test liquid level by using distance measuring light modulated by a predetermined modulation signal. It relates to the device.

(従来の技術) この種の液面高さ計測装置は、例えば第6図に示した様
な原油タンク1内の被検液面S(以下単に液面Sと略
称)の高さHを測定するのに用いられている。
(Prior Art) This type of liquid level measuring device measures the height H of a test liquid surface S (hereinafter simply referred to as liquid level S) in the crude oil tank 1 as shown in FIG. 6, for example. It is used to

この第6図において、液面高さ計測装置は、予め定めら
れた変調信号で変調される測距光が発生させられる光波
測距部2と、測距光出入射用の対物光学手段3と、光波
測距部2からの測距光を対物光学手段3に伝送させる光
ファイバー4を備えている。そして、対物光学手段3
は、原油タンク1の上壁1a内にブラケット5を介して取
り付けられている。
In FIG. 6, the liquid level measuring device includes a light wave distance measuring unit 2 for generating distance measuring light modulated by a predetermined modulation signal, and an objective optical means 3 for emitting and entering the distance measuring light. An optical fiber 4 for transmitting the distance measuring light from the light wave distance measuring section 2 to the objective optical means 3 is provided. And the objective optical means 3
Is mounted in the upper wall 1a of the crude oil tank 1 via a bracket 5.

この様な液面高さ計測装置においては、所定波長の測距
光を光波測距部2で発生させると、この測距光が光ファ
イバー4を介して対物光学手段3まで伝送されて此れか
ら液面Sに向けて照射される。この照射された測距光が
液面Sで反射して反射光となり、この反射光が対物光学
手段3及び光ファイバー4を介して光波測距部2に戻さ
れる。この光波測距部2は、測距光の変調信号に対する
前記反射光の時間遅れを演算して、液面Sの高さHを表
示する。
In such a liquid level measuring device, when the distance measuring light of a predetermined wavelength is generated in the light wave distance measuring section 2, this distance measuring light is transmitted to the objective optical means 3 through the optical fiber 4 and thereafter. It is irradiated toward the liquid surface S. The irradiated distance measuring light is reflected by the liquid surface S to become reflected light, and the reflected light is returned to the light wave distance measuring unit 2 via the objective optical means 3 and the optical fiber 4. The light wave distance measuring unit 2 calculates the time delay of the reflected light with respect to the modulation signal of the distance measuring light and displays the height H of the liquid surface S.

(発明が解決しようとする問題点) ところで、上述した対物光学手段3は、此れの対物レン
ズ(図示せず)の光軸が液面Sに対して垂直になる様
に、原油タンク1の上壁1aに取り付けられる。この取付
けは原油タンク1内に原油6が入っていない状態で行な
われる。この様な原油タンク1は内部に原油6が貯蔵さ
れると変形し、その変形量は原油6の貯蔵量によって変
化する。そして、この変形量は原油タンク1の大きさに
よっても異なる。しかも、原油ランプ1が小さい場合に
は、原油6の貯蔵による原油タンク1の変形量が小さい
ので、この変形により対物光学手段3が傾く様なことは
ない。
(Problems to be Solved by the Invention) By the way, the above-mentioned objective optical means 3 of the crude oil tank 1 is so arranged that the optical axis of these objective lenses (not shown) is perpendicular to the liquid surface S. It is attached to the upper wall 1a. This mounting is performed in a state where the crude oil 6 is not contained in the crude oil tank 1. The crude oil tank 1 as described above is deformed when the crude oil 6 is stored therein, and the deformation amount changes depending on the storage amount of the crude oil 6. The amount of deformation also depends on the size of the crude oil tank 1. Moreover, when the crude oil lamp 1 is small, the deformation amount of the crude oil tank 1 due to the storage of the crude oil 6 is small, so that the objective optical means 3 does not tilt due to this deformation.

しかし、原油タンク1が大型化すると、原油タンク1の
側壁1bが内部に貯蔵される原油6によって第7図の如く
側方に大きく湾曲変形させられて、上壁1aが偏平化する
方向に比較的大きく変形させられる。しかも、この場合
には、対物光学手段3が第7図の如く大きく傾くことに
なる。この結果、測距光を対物光学手段3から液面Sに
向けて照射しても、液面Sからの反射光は対物光学手段
3側に向かわないため、この反射光を対物光学手段3の
対物レンズ(図示せず)で受光して、上述した液面Sの
高さHの計測をすることができないものであった。
However, when the crude oil tank 1 becomes larger, the side wall 1b of the crude oil tank 1 is largely curved and deformed laterally by the crude oil 6 stored therein, as shown in FIG. 7, and the upper wall 1a is flattened. Can be greatly deformed. Moreover, in this case, the objective optical means 3 is largely inclined as shown in FIG. As a result, even when the distance measuring light is irradiated from the objective optical means 3 toward the liquid surface S, the reflected light from the liquid surface S does not go to the objective optical means 3 side, and therefore this reflected light is reflected by the objective optical means 3. It was impossible to measure the height H of the liquid surface S by receiving light with an objective lens (not shown).

また、対物光学手段3と光伝送手段である光ファイバー
4を接続し、これらを原油タンク1内に支持させる場
合、光ファイバー4の配設状態や外部振動等によって
は、対物光学手段3の重心が光ファイバー4自体の重さ
によりズレることが考えられる。そして、この重心ズレ
が生じると、対物光学手段3が液面に対して正対せず、
すなわち、対物光学手段3の指向方向が液面Sに対して
垂直な(正常な)方向とならず、液面Sの高さHの計測
が不可能となる虞れもある。
When the objective optical means 3 and the optical fiber 4 which is the optical transmission means are connected and supported in the crude oil tank 1, the center of gravity of the objective optical means 3 may be the optical fiber depending on the arrangement state of the optical fiber 4 and external vibration. It is conceivable that the weight of 4 itself may cause a shift. When this displacement of the center of gravity occurs, the objective optical means 3 does not directly face the liquid surface,
That is, the directivity direction of the objective optical unit 3 is not perpendicular to the liquid surface S (normal), and the height H of the liquid surface S may not be measured.

そこで、この発明は、対物光学手段の支持部が種々の条
件によって変形又は変位しても、対物光手段が、常時、
被検液面に正対する液面高さ計測装置を提供することを
目的とするものである。
Therefore, according to the present invention, even if the support portion of the objective optical means is deformed or displaced under various conditions, the objective light means is always
It is an object of the present invention to provide a liquid level height measuring device that directly faces a test liquid surface.

(問題点を解決するための手段) この目的を達成するため、この発明は、予め定められた
変調信号で変調される測距光が発生させられる光波測距
部を設け、測距光出入射用の対物光学手段を被検液面に
対向させて此れの上方の支持部に支持させると共に、前
記光波測距部で発生する測距光を光伝達手段を介して前
記対物光学手段に伝送させることにより、前記測距光を
対物光学手段から被検液面に対し照射して反射させ、該
反射光を前記対物光学手段及び光伝送手段を介して前記
光波測距部に案内させ、該光波測距部内で前記変調信号
と反射光との時間遅れを演算して、此れから前記被検液
面高さを知る様にした液面高さ計測装置において、前記
対物光学手段はジンバル機構を介して前記支持部に支持
され、前記光伝送手段の一部が前記ジンバル機構の回転
軸と同軸に設けられている液面高さ計測装置としたこと
を特徴とするものである。
(Means for Solving the Problems) In order to achieve this object, the present invention is provided with an optical wave distance measuring section for generating distance measuring light modulated by a predetermined modulation signal, and the distance measuring light is emitted and incident. The objective optical means for use is opposed to the surface of the liquid to be tested and supported by the supporting portion above this, and the distance measuring light generated by the light wave distance measuring section is transmitted to the objective optical means via the light transmitting means. By doing so, the distance measuring light is irradiated from the objective optical means to the surface of the liquid to be tested and reflected, and the reflected light is guided to the light wave distance measuring section through the objective optical means and the light transmitting means. In the liquid level height measuring device in which the time delay between the modulated signal and the reflected light is calculated in the light wave distance measuring section and the height of the test liquid level is known from this, the objective optical means is a gimbal mechanism. Is supported by the supporting part via a part of the optical transmission means. The liquid level height measuring device is provided coaxially with the rotation axis of the valve mechanism.

(作用) この様な構成によれば、被検液面の上方の支持部が種々
の条件によって変形又は変位しても、支持部に支持され
る対物光学手段がジンバル機構を介して常に鉛直方向を
向くことになる。
(Operation) According to such a configuration, even if the support portion above the test liquid surface is deformed or displaced due to various conditions, the objective optical means supported by the support portion always moves in the vertical direction via the gimbal mechanism. Will turn to.

(実施例) 以下、この発明を第1図〜第5図に基づいて説明する。(Example) Hereinafter, the present invention will be described with reference to FIGS. 1 to 5.

第1図〜第3図はこの発明の第1実施例を示したもので
ある。第3図において、7は原油タンク用のベース、8
はベース7上の設置された原油タンク、8aは原油タンク
8の上壁(支持部)、8bは原油タンク8の側壁、9は原
油タンク8に隣接する管理搭である。また、10は原油タ
ンク8内に貯蔵された原油、Sは原油10の被検液面(以
下単に液面と略称)、Hは液面Sの高さである。
1 to 3 show a first embodiment of the present invention. In FIG. 3, 7 is a base for a crude oil tank, and 8 is
Is a crude oil tank installed on the base 7, 8a is an upper wall (support portion) of the crude oil tank 8, 8b is a side wall of the crude oil tank 8, and 9 is a management tower adjacent to the crude oil tank 8. Further, 10 is the crude oil stored in the crude oil tank 8, S is the test liquid level of the crude oil 10 (hereinafter simply referred to as liquid level), and H is the height of the liquid level S.

原油タンク8内に貯蔵した原油10の液面Sの高さHを測
定する液面高さ計測装置は、予め定められた変調信号で
変調される測距光を発生させる光波測距部11と、測距光
出入射用の対物光学手段12と、この光波測距部11と対物
光学手段12とを光学的に接続させる光伝送手段13を備え
ている。
The liquid level measuring device for measuring the height H of the liquid level S of the crude oil 10 stored in the crude oil tank 8 includes a light wave distance measuring unit 11 for generating distance measuring light modulated by a predetermined modulation signal. An objective optical means 12 for emitting and entering the distance measuring light and an optical transmission means 13 for optically connecting the light wave distance measuring section 11 and the objective optical means 12 are provided.

光波測距部11は、第2図に示した様に測距光を発光させ
る発光ダイオード14と、反射光を受光させる受光ダイオ
ード15と、発光ダイオード14に変調信号を出力し且つ受
光ダイオード15からの出力信号が入力する演算処理制御
回路16と、この演算処理制御回路16からの出力が入力さ
れる表示器17を備えている。この演算処理回路16は、予
め定められた変調信号を発光ダイオード14に入力すると
共に、受光ダイオード15からの出力信号と上述の変調信
号とから反射光の変調信号に対する時間遅れ(位相差)
を演算する。そして、この演算された時間遅れが表示器
17に入力されて、表示器17が液面Sの高さHを表示す
る。また、発光ダイオード14から出た測距光はプリズム
18とレンズ19を介してジョイント光学系20に案内され、
このジョイント光学系20からの反射光はレンズ19とプリ
ズム18を介して受光ダイオード15に入力される。
As shown in FIG. 2, the light wave distance measuring unit 11 outputs a modulated signal to the light emitting diode 14 that emits the distance measuring light, the light receiving diode 15 that receives the reflected light, and the light receiving diode 15 from the light receiving diode 15. The arithmetic processing control circuit 16 to which the output signal of 1 is input, and the display 17 to which the output from the arithmetic processing control circuit 16 is input. This arithmetic processing circuit 16 inputs a predetermined modulation signal to the light emitting diode 14, and at the same time delays the output signal from the light receiving diode 15 and the above-mentioned modulation signal with respect to the modulation signal of the reflected light (phase difference).
Is calculated. Then, this calculated time delay is displayed on the display.
It is input to 17, and the display 17 displays the height H of the liquid surface S. The distance measuring light emitted from the light emitting diode 14 is a prism.
Guided to the joint optical system 20 via 18 and lens 19,
The reflected light from the joint optical system 20 is input to the light receiving diode 15 via the lens 19 and the prism 18.

ジョイント光学系20は、レンズ19に対向するレンズ21と
プリズム22を備えている。また、光伝送手段13は、此の
ジョイント光学系20と一対の光ファイバー23,24から構
成され、光ファイバー23,24の各一端部23a,24aはプリズ
ム22の反射面22a,22bに夫々対向させられている。
The joint optical system 20 includes a lens 21 facing the lens 19 and a prism 22. The optical transmission means 13 is composed of this joint optical system 20 and a pair of optical fibers 23, 24, and one ends 23a, 24a of the optical fibers 23, 24 are made to face the reflecting surfaces 22a, 22b of the prism 22, respectively. ing.

対物光学手段12は、第1図、第2図に示した様に、鏡筒
25と、この鏡筒25の上部内に配設されたプリズム26と、
鏡筒25の下端開口部内に装着された対物レンズ27から構
成されている。この鏡筒25の上部には外周面の180°ず
れた部分から突出する支持筒部25a,25bが設けられてい
て、この各支持筒部25a,25bはプリズム26の反射面26a,2
6bに夫々対応させられていると共に同軸上に位置させら
れている。この様な対物光学手段12は、原油タンク8内
に配設されていると共に、原油タンク8の上壁8a側のブ
ラケット28にジンバル機構29を介して装着されている。
The objective optical means 12 has a lens barrel as shown in FIGS.
25, a prism 26 arranged in the upper portion of the lens barrel 25,
It is composed of an objective lens 27 mounted in the opening of the lower end of the lens barrel 25. At the upper part of the lens barrel 25, supporting cylinder portions 25a, 25b projecting from the outer peripheral surface shifted by 180 ° are provided, and each of the supporting cylinder portions 25a, 25b is a reflecting surface 26a, 2 of the prism 26.
It corresponds to 6b and is located coaxially. Such an objective optical means 12 is disposed in the crude oil tank 8 and is mounted on the bracket 28 on the upper wall 8a side of the crude oil tank 8 via the gimbal mechanism 29.

このジンバル機構29は、鏡筒25の上部外周に遊嵌された
インナーリング30と、此れの外周に遊嵌されたアウター
リング31を備えている。そして、インナーリング30に
は、180°ずれた位置で内方に突出する支持筒部30a,30b
と、此れから90°ずれた位置で外方に突出する支持筒部
30c,30dが一体に設けられている。また、アウターリン
グ31には180°ずれた位置で内方に突出する支持筒部31
a,31bが一体に設けられている。しかも、支持筒部30a,3
0bは鏡筒25の支持筒部25a,25b内にベアリング32,33を介
して回転自在に支持され、支持筒部30c,30dはアウター
リング31の支持筒部30a,31b内にベアリング34,35を介し
て回転自在に支持されている。なお、支持筒部30a,30b
同士および支持筒部30c,30d同士は夫々同軸上に設けら
れ、又、支持筒部31a,31b同士も同軸上に設けられてい
る。
The gimbal mechanism 29 includes an inner ring 30 loosely fitted to the outer periphery of the upper portion of the lens barrel 25, and an outer ring 31 loosely fitted to the outer periphery of the inner ring 30. Then, the inner ring 30 has support cylindrical portions 30a, 30b protruding inward at a position displaced by 180 °.
And the support cylinder that protrudes outward at a position that is 90 ° away from this
30c and 30d are integrally provided. In addition, the outer ring 31 has a support tube portion 31 protruding inward at a position displaced by 180 °.
a and 31b are integrally provided. Moreover, the support cylinders 30a, 3
0b is rotatably supported in the supporting tube portions 25a, 25b of the lens barrel 25 via bearings 32, 33, and the supporting tube portions 30c, 30d are bearings 34, 35 in the supporting tube portions 30a, 31b of the outer ring 31. It is rotatably supported via. In addition, the support cylinder portions 30a, 30b
The support cylinders 30c and 30d are provided coaxially with each other, and the support cylinders 31a and 31b are provided coaxially with each other.

そして、上述した光ファイバー23の他端部23b側は、ア
ウターリング31の支持筒部31a及びインナーリング30の
支持筒部30cに挿通され、インナーリング30の外周面に
沿わせられていると共に、インナーリング30の支持筒部
30aに挿通されている。これにより、光ファイバー23の
インナーリング30内方に向う部分23cは回転軸となる支
持筒部30aと同軸になり、光ファイバー23のアウターリ
ング31内方に向う部分23dは回転軸となる支持筒部30cと
同軸となる。しかも、光ファイバー23の他端部23b端面
はプリズム26の反射面26aに対応している。
Then, the other end 23b side of the optical fiber 23 described above is inserted through the support tubular portion 31a of the outer ring 31 and the support tubular portion 30c of the inner ring 30, and along the outer peripheral surface of the inner ring 30, the inner Support tube for ring 30
It is inserted through 30a. As a result, the portion 23c of the optical fiber 23 that faces inward of the inner ring 30 is coaxial with the support cylinder portion 30a that serves as a rotation axis, and the portion 23d of the optical fiber 23 that faces toward the inside of the outer ring 31 serves as a support cylinder portion 30c that serves as a rotation shaft. It becomes coaxial with. Moreover, the end surface of the other end 23b of the optical fiber 23 corresponds to the reflecting surface 26a of the prism 26.

また、光ファイバー24の他端部24b側は、アウターリン
グ31の支持筒部31b及びインナーリング30の支持筒部30d
に挿通され、インナーリング30の外周面に沿わせられて
いると共に、インナーリング30の支持筒部30b内に挿通
されている。これにより、光ファイバー24のインナーリ
ング30内方に向う部分24cは回転軸となる支持筒部30bと
同軸となり、光ファイバー24のアウターリング31内方に
向う部分24dは回転軸となる支持筒部30dと同軸となる。
Further, the other end 24b side of the optical fiber 24 has a support tube portion 31b of the outer ring 31 and a support tube portion 30d of the inner ring 30.
Is inserted along the outer peripheral surface of the inner ring 30, and is also inserted into the support tubular portion 30b of the inner ring 30. As a result, the portion 24c of the optical fiber 24 facing inward of the inner ring 30 is coaxial with the support cylinder portion 30b serving as the rotation axis, and the portion 24d of the optical fiber 24 facing inward of the outer ring 31 is defined as the support cylinder portion 30d serving as the rotation axis. It becomes coaxial.

次に、この様な構成の液面高さ計測装置の作用を説明す
る。
Next, the operation of the liquid level height measuring device having such a configuration will be described.

演算処理制約回路16からの変調信号により発光ダイオー
ド14を発光させると、この発光ダイオード14は測距光を
発光する。この測距光は、プリズム18、レンズ19,21、
プリズム22及び光ファイバー23を介して対物光学手段12
内に案内された後、光ファイバー23の他端23bからプリ
ズム26の反射面26aに向けて射出される。この射出され
る測距光は、反射面26a及び対物レンズ27を介して原油
タンク8内の液面Sに向けて照射され、液面Sで反射す
る。
When the light emitting diode 14 is caused to emit light by the modulation signal from the arithmetic processing restriction circuit 16, the light emitting diode 14 emits distance measuring light. This distance measuring light is generated by the prism 18, the lenses 19 and 21,
Objective optical means 12 through prism 22 and optical fiber 23
After being guided inside, it is emitted from the other end 23b of the optical fiber 23 toward the reflecting surface 26a of the prism 26. The emitted distance measuring light is irradiated toward the liquid surface S in the crude oil tank 8 through the reflecting surface 26a and the objective lens 27, and is reflected by the liquid surface S.

この液面Sで反射した反射光は、対物レンズ27、プリズ
ム26の反射面26b、光ファイバー24、プリズム22、レン
ズ21,19及びプリズム18を介して受光ダイオード15に入
射させられる。これにより、受光ダイオード15から信号
が出力され、この出力信号は演算処理制御回路16に入力
される。そして、この演算処理制御回路16は、変調信号
と受光ダイオード15からの出力信号から反射光の変調信
号に対する時間遅れ演算し、此れを液面高さに変換し
て、表示器17に入力する。これにより、液面Sの高さH
が表示器17に表示される。
The reflected light reflected by the liquid surface S is incident on the light receiving diode 15 via the objective lens 27, the reflecting surface 26b of the prism 26, the optical fiber 24, the prism 22, the lenses 21, 19 and the prism 18. As a result, a signal is output from the light receiving diode 15, and this output signal is input to the arithmetic processing control circuit 16. Then, the arithmetic processing control circuit 16 calculates a time delay with respect to the modulation signal of the reflected light from the modulation signal and the output signal from the light receiving diode 15, converts this to the liquid level height, and inputs it to the display unit 17. . As a result, the height H of the liquid surface S
Is displayed on the display unit 17.

ところで、対物光学手段12を装着した原油タンク8が原
油10の重量、或は、他の原因により変形させられて、原
油タンク8の上壁8aが変形又は変位させられた場合、対
物光学手段12の重量によりジンバル機構29のインナーリ
ング30がベアリング34,35を介して支持筒部30c,30dを中
心に回動し、鏡筒25がベアリング32,33を介してインナ
ーリング30の支持筒部30a,30bを中心に回動する。これ
らの回動は相対的に行なわれる。これにより、対物光学
手段12の対物レンズ27が液面Sに対して常時、正対す
る。すなわち、対物レンズ27の光軸が液面Sに対して常
に直交させられる。この結果、対物レンズ27から出た光
は、液面Sで反射した後に対物レンズ27に確実に受光さ
れる。
By the way, when the crude oil tank 8 equipped with the objective optical means 12 is deformed due to the weight of the crude oil 10 or other causes and the upper wall 8a of the crude oil tank 8 is deformed or displaced, the objective optical means 12 The inner ring 30 of the gimbal mechanism 29 rotates about the support cylinders 30c and 30d via the bearings 34 and 35, and the lens barrel 25 supports the support cylinder 30a of the inner ring 30 via the bearings 32 and 33. Rotate around 30b. These rotations are performed relatively. As a result, the objective lens 27 of the objective optical means 12 always faces the liquid surface S directly. That is, the optical axis of the objective lens 27 is always orthogonal to the liquid surface S. As a result, the light emitted from the objective lens 27 is reliably received by the objective lens 27 after being reflected by the liquid surface S.

以上説明した実施例では、支持筒部30a,30b,30c,30dを
支持筒部25a,25b,31a,31b内にベアリング32,33,34,35で
支持すると共に、光ファイバー23の他端部23b側を支持
筒部30a,25a及び30c,31aに跨って挿通し、光ファイバー
24の他端部24b側を支持筒部30b,25b及び30d,31dに跨っ
て挿通した構成としたが、必ずしもこの構成に限定され
るものではなく、例えば第5図、第6図に示した様に形
成しても良い。
In the embodiment described above, the supporting cylinder portions 30a, 30b, 30c, 30d are supported by the bearings 32, 33, 34, 35 in the supporting cylinder portions 25a, 25b, 31a, 31b, and the other end portion 23b of the optical fiber 23. Insert the side over the support cylinders 30a, 25a and 30c, 31a,
Although the other end 24b side of 24 is inserted so as to straddle the support cylinder portions 30b, 25b and 30d, 31d, it is not necessarily limited to this configuration, and is shown in, for example, FIG. 5 and FIG. You may form like.

この実施例では、鏡筒25の支持筒部25a,25b及びインナ
ーリング30の支持筒部30c,30dがテーパ状に形成されて
いる。また、インナーリング30の支持筒部30a,30bの先
端部にテーパ孔部30e,30fが形成され、アウターリング3
1の支持筒部31a,31bの先端部にテーパ孔部31c,31dが形
成されている。そして、支持筒部25a,25b,30c,30dの先
端部がテーパ孔部30e,30f,31c,31d内に回転自在に当接
させられている。
In this embodiment, the support tube portions 25a and 25b of the lens barrel 25 and the support tube portions 30c and 30d of the inner ring 30 are formed in a tapered shape. Further, tapered hole portions 30e and 30f are formed at the tip end portions of the support cylinder portions 30a and 30b of the inner ring 30, and the outer ring 3
Tapered hole portions 31c and 31d are formed at the front end portions of the first support cylinder portions 31a and 31b. Then, the tip ends of the support tubular portions 25a, 25b, 30c, 30d are rotatably abutted in the tapered hole portions 30e, 30f, 31c, 31d.

しかも、アウターリング31の外周面には、支持筒部31a,
31bと同軸の接続筒部31e,31fが設けられ、この接続筒部
31e,31fの外周には筒状コネクター36,37が螺合され、こ
の筒状コネクター36,37には光ファイバー23,24の他端部
23b,24bが挿入されている。そして、支持筒部30a,30cに
はインナーリング30の外周に沿わせた光ファイバー38の
両端部が嵌着され、支持筒部30b,30dにはインナーリン
グ30の外周に沿わせた光ファイバー39の両端部が嵌着さ
れている。
Moreover, on the outer peripheral surface of the outer ring 31, the support tubular portion 31a,
Connection tube parts 31e and 31f coaxial with 31b are provided.
Cylindrical connectors 36 and 37 are screwed onto the outer circumferences of 31e and 31f, and the other ends of the optical fibers 23 and 24 are attached to the cylindrical connectors 36 and 37.
23b and 24b are inserted. Then, both ends of the optical fiber 38 along the outer circumference of the inner ring 30 are fitted to the supporting cylinder portions 30a and 30c, and both ends of the optical fiber 39 along the outer circumference of the inner ring 30 are fitted to the supporting cylinder portions 30b and 30d. The part is fitted.

また、支持筒部25a,30aにはコリメータレンズ40,41が装
着され、支持筒部25b,30bにはコリメータレンズ42,43が
装着され、支持筒部30cと筒状コネクター36にはコリメ
ータレンズ44,45が装着され、支持筒部30dと筒状コネク
ター37にはコリメータレンズ46,47が装着されている。
Further, collimator lenses 40 and 41 are attached to the support tubular portions 25a and 30a, collimator lenses 42 and 43 are attached to the support tubular portions 25b and 30b, and a collimator lens 44 is attached to the support tubular portion 30c and the tubular connector 36. , 45 are mounted, and collimator lenses 46, 47 are mounted on the support cylindrical portion 30d and the cylindrical connector 37.

なお、ジョイント光学系20、光ファイバー23、コリメー
タレンズ45,44、光ダイオード38、コリメータレンズ41,
40等から測距光案内光路が形成されており、又、コリメ
ータレンズ42,43、光ファイバー39、コリメータレンカ
ズ46,47、光ファイバー24及びジョイント光学系20等か
ら反射光案内光路が形成されていて、この測距光案内光
路と反射光案内光路とにより光伝送手段が構成されてい
る。この実施例でも、測距光案内光路の光軸の一部が回
転軸となる支持筒部25a,30c同軸となり、反射光案内光
路の光軸の一部が回転軸となる支持筒部25b,30dと同軸
となる。
The joint optical system 20, the optical fiber 23, the collimator lenses 45 and 44, the photo diode 38, the collimator lens 41,
The distance measuring light guiding optical path is formed from 40 etc., and the reflected light guiding optical path is formed from the collimator lenses 42, 43, the optical fiber 39, the collimator lenses 46, 47, the optical fiber 24 and the joint optical system 20. The distance measuring light guiding optical path and the reflected light guiding optical path constitute an optical transmission means. Also in this embodiment, a part of the optical axis of the distance measuring light guiding optical path serves as a supporting cylinder portion 25a, 30c which is coaxial, and a part of the optical axis of the reflected light guiding optical path serves as a rotating shaft supporting cylinder portion 25b, It is coaxial with 30d.

このような構成においては、測距光が上述の測距光案内
光路を介して対物光学手段に案内され、この案内された
測距光がプリズム26の反射面26a及び対物レンズ27を介
して液面Sに照射される。そして、この照射により液面
Sから反射した反射光は対物レンズ27、プリズム236の
反射面26b、上述の反射光案内路を介して光波測距部に
戻される。また、ジンバル機構29も第1図、第2図に示
した実施例と同様に作用する。
In such a configuration, the distance measuring light is guided to the objective optical means through the distance measuring light guiding optical path, and the guided distance measuring light is guided through the reflecting surface 26a of the prism 26 and the objective lens 27. The surface S is illuminated. Then, the reflected light reflected from the liquid surface S by this irradiation is returned to the light wave distance measuring unit via the objective lens 27, the reflecting surface 26b of the prism 236, and the above-described reflected light guide path. The gimbal mechanism 29 also operates in the same manner as the embodiment shown in FIGS. 1 and 2.

この実施例では、ジンバル機構29のインナーリング30と
アウターリング31との結合部に光ファイバー23,24が跨
っていないので、ジンバル機構29を滑らかに作動させる
ことができると共に、対物光学手段12を液面Sに対して
確実に正対させることができる。
In this embodiment, since the optical fibers 23 and 24 do not straddle the joint between the inner ring 30 and the outer ring 31 of the gimbal mechanism 29, the gimbal mechanism 29 can be operated smoothly, and the objective optical means 12 can be used as a liquid. The surface S can be surely faced.

(発明の効果) この発明は、以上説明したように、予め定められた変調
信号で変調される測距光が発生させられる光波測距部を
設け、測距光出入射用の対物光学手段を被検液面に対向
させて此れの上方の支持部に支持させると共に、前記光
波測距部で発生する測距光を光伝達手段を介して前記対
物光学手段に伝送させることにより、前記測距光を対物
光学手段から被検液面に対し照射して反射させ、該反射
光を前記対物光学手段及び光伝送手段を介して前記光波
測距部に案内させ、該光波測距部内で前記変調信号と反
射光との時間遅れを演算して、此れから前記被検液面高
さを知る様にした液面高さ計測装置において、前記対物
光学手段はジンバル機構を介して前記支持部に支持さ
れ、前記光伝送手段の一部が前記ジンバル機構の回転軸
と同軸に設けられていることを特徴とする液面高さ計測
装置としたので、対物光学手段の支持部が種々の条件に
よって変形又は変位しても、ジンバル機構の作用により
対物光学手段の光軸を常時鉛直方向に自動的に向けて、
対物光学手段を、常時、被検液面に正対させることがで
きる。
(Effects of the Invention) As described above, the present invention is provided with an optical wave distance measuring section for generating distance measuring light modulated by a predetermined modulation signal, and is provided with objective optical means for emitting and entering distance measuring light. The distance measurement light generated by the light wave distance measuring section is transmitted to the objective optical means via the light transmitting means while being opposed to the surface of the test liquid and supported by the supporting portion above the liquid level measuring section. Distance light is radiated from the objective optical means to the surface of the test liquid to be reflected, and the reflected light is guided to the light wave distance measuring section through the objective optical means and the light transmitting means, and within the light wave distance measuring section. In the liquid level height measuring device in which the time delay between the modulated signal and the reflected light is calculated and the liquid level height to be detected is known from this, the objective optical means includes the supporting portion via a gimbal mechanism. And a part of the optical transmission means is the same as the rotating shaft of the gimbal mechanism. Since the liquid level height measuring device is provided on the shaft, even if the supporting portion of the objective optical means is deformed or displaced under various conditions, the optical axis of the objective optical means is acted by the action of the gimbal mechanism. Always automatically in the vertical direction,
The objective optical means can always face the test liquid surface.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の第1実施例を示す液面高さ計測装置
の要部断面図、第2図は第1図のII−II線に沿う断面
図、第3図は第1図、第2図に示した液面高さ計測装置
の使用例を示す説明図、第4図はこの発明の他の実施例
を示す液面高さ計測装置の要部断面図、第5図は第4図
の一部を破断して示した平面図、第6図及び第7図は従
来の液面高さ計測装置の使用例を示す説明図である。 11…光波測距部、12…対物光学手段、 13…光伝送手段、27…対物レンズ、 29…ジンバル機構、30インナーリング、 31…アウターリング。
FIG. 1 is a sectional view of an essential part of a liquid level height measuring device showing a first embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, FIG. 3 is FIG. FIG. 4 is an explanatory view showing an example of use of the liquid level height measuring device shown in FIG. 2, FIG. 4 is a sectional view of a main part of a liquid level height measuring device showing another embodiment of the present invention, and FIG. FIG. 4 is a plan view in which a part of FIG. 4 is broken away, and FIGS. 6 and 7 are explanatory views showing an example of use of a conventional liquid level height measuring device. 11 ... Light wave distance measuring section, 12 ... Objective optical means, 13 ... Optical transmission means, 27 ... Objective lens, 29 ... Gimbal mechanism, 30 Inner ring, 31 ... Outer ring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】予め定められた変調信号で変調される測距
光が発生させられる光波測距部を設け、測距光出入射用
の対物光学手段を被検液面に対向させて此れの上方の支
持部に支持させると共に、前記光波測距部で発生する測
距光を光伝達手段を介して前記対物光学手段に伝送させ
ることにより、前記測距光を対物光学手段から被検液面
に対し照射して反射させ、該反射光を前記対物光学手段
及び光伝送手段を介して前記光波測距部に案内させ、該
光波測距部内で前記変調信号と反射光との時間遅れを演
算して、此れから前記被検液面高さを知る様にした液面
高さ計測装置において、 前記対物光学手段はジンバル機構を介して前記支持部に
支持され、前記光伝送手段の一部が前記ジンバル機構の
回転軸と同軸に設けられていることを特徴とする液面高
さ計測装置。
1. An optical wave distance measuring section for generating distance measuring light modulated by a predetermined modulation signal is provided, and an objective optical means for emitting and entering the distance measuring light is made to face the surface of the test liquid. The distance measuring light generated by the light wave distance measuring section is transmitted to the objective optical means via the light transmitting means, so that the distance measuring light is transmitted from the objective optical means to the test liquid. The surface is irradiated and reflected, and the reflected light is guided to the light wave distance measuring section through the objective optical means and the light transmitting means, and a time delay between the modulated signal and the reflected light is generated in the light wave distance measuring section. In the liquid level measuring device, which is calculated to obtain the liquid level of the test liquid from this, in the liquid level measuring device, the objective optical means is supported by the supporting part via a gimbal mechanism, and A portion is provided coaxially with the rotation axis of the gimbal mechanism. Liquid level measuring device.
JP60001880A 1985-01-09 1985-01-09 Liquid level measuring device Expired - Lifetime JPH0660937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60001880A JPH0660937B2 (en) 1985-01-09 1985-01-09 Liquid level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60001880A JPH0660937B2 (en) 1985-01-09 1985-01-09 Liquid level measuring device

Publications (2)

Publication Number Publication Date
JPS61160076A JPS61160076A (en) 1986-07-19
JPH0660937B2 true JPH0660937B2 (en) 1994-08-10

Family

ID=11513873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60001880A Expired - Lifetime JPH0660937B2 (en) 1985-01-09 1985-01-09 Liquid level measuring device

Country Status (1)

Country Link
JP (1) JPH0660937B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6484119A (en) * 1987-09-27 1989-03-29 Hamamatsu Photonics Kk Object state detector
JPH07324962A (en) * 1994-05-30 1995-12-12 Stanley Electric Co Ltd Fixing unit of liquid level sensor
JP2007101404A (en) * 2005-10-05 2007-04-19 Hokuyo Automatic Co Wave transmitting/receiving apparatus and ranging apparatus
JP2011145157A (en) * 2010-01-14 2011-07-28 Yamatake Corp Vibration sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3135392A1 (en) * 1981-09-07 1983-03-17 Bayer Ag, 5090 Leverkusen "SUBSTITUTED 6-ALKOXY-TERT.-BUTYL-1,2,4-TRIAZINE-5-ONE, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE AS HERBICIDES"

Also Published As

Publication number Publication date
JPS61160076A (en) 1986-07-19

Similar Documents

Publication Publication Date Title
US5949548A (en) Height sensing measurement device
US5513001A (en) Tilt angle automatic compensator in all directions
JP5451649B2 (en) Modal metric fiber sensor
BR112015013346B1 (en) optical sensor for pressure measurements
JPH04531B2 (en)
US5164606A (en) Material level sensor with removable optics
JPH0660937B2 (en) Liquid level measuring device
EP0102390A1 (en) Fluid level sensing apparatus.
RU2327959C2 (en) Fiber optic indicator of fluid level
US3520611A (en) Method and means for incorporating a theodolite or a tachymeter with a telemeter or the like distance-measuring apparatus
CN210293218U (en) Laser guide system of push bench
CN214408664U (en) Laser gas remote measuring system
JPH0616088B2 (en) Liquid level measuring device
SU1244489A1 (en) Level indicator
JP3548092B2 (en) Liquid detector
JP2587237B2 (en) Measurement method of machine center height of coaxial collimation rangefinder
JP3744639B2 (en) Mechanical height measuring method and mechanical height measuring device
CN215810843U (en) Laser alignment device of autocollimator
JP2011145157A (en) Vibration sensor
JP2002107130A (en) Apparatus for measuring inclination angle of optical fiber leading end face
CN214894806U (en) Multi-beam parallel adjusting device and positioning structure thereof
CN116879178A (en) Liquid refractive index measuring assembly and refractometer
JP2005164326A (en) Rotating body measurement system
JP2020159909A (en) Gas concentration detector and gas concentration measuring device
JPH027035B2 (en)