JPH0660030B2 - Method for manufacturing glass base material for optical fiber - Google Patents

Method for manufacturing glass base material for optical fiber

Info

Publication number
JPH0660030B2
JPH0660030B2 JP60287764A JP28776485A JPH0660030B2 JP H0660030 B2 JPH0660030 B2 JP H0660030B2 JP 60287764 A JP60287764 A JP 60287764A JP 28776485 A JP28776485 A JP 28776485A JP H0660030 B2 JPH0660030 B2 JP H0660030B2
Authority
JP
Japan
Prior art keywords
base material
glass
gas
soot base
glass soot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60287764A
Other languages
Japanese (ja)
Other versions
JPS62148334A (en
Inventor
倫久 京藤
洋一 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60287764A priority Critical patent/JPH0660030B2/en
Publication of JPS62148334A publication Critical patent/JPS62148334A/en
Publication of JPH0660030B2 publication Critical patent/JPH0660030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、VAD法を用いた光フアイバーの母材の製造方
法に関するもので、特に弗素(F)等の屈折率調整用の元
素を添加剤として多量かつ高速で安定に添加(ドープ)
して高品質の光フアイバー用母材を製造する方法に関す
る。
The present invention relates to a method for producing a base material of an optical fiber using the VAD method, and in particular, an element for adjusting the refractive index such as fluorine (F) is added. Add a large amount as a chemical agent at high speed and stably (dope)
To produce a high quality optical fiber preform.

〔従来の技術〕[Conventional technology]

従来、光フアイバはMCVD法、OVPO法など様々な製法で製
造されているが、生産性・品質などの点でVAD法が注目
されている。この方法は、まず火炎加水分解反応によ
り、ガラス微粒子を生成し、回転する出発材上に次々と
堆積させ、棒状の多孔質プリフオーム(ガラススート母
材)を作る。次に該多孔質プリフオームを様々なガス雰
囲気中で加熱処理し、脱水・溶融ガラス化し、光フアイ
バ母材を得る。さらにこの母材を紡糸して光フアイバを
得るという方法である。
Conventionally, optical fibers have been manufactured by various manufacturing methods such as the MCVD method and the OVPO method, but the VAD method is drawing attention in terms of productivity and quality. In this method, first, glass microparticles are generated by a flame hydrolysis reaction and are successively deposited on a rotating starting material to form a rod-shaped porous preform (glass soot base material). Next, the porous preform is heat-treated in various gas atmospheres, dehydrated and melted into glass to obtain an optical fiber base material. Furthermore, the method is a method in which this base material is spun to obtain an optical fiber.

光フアイバは、主として光の伝搬されるコア部と、その
周囲のクラツド部から構成されており、コア部の屈折率
をn1、クラツド部の屈折率をn2とすると、N.A.(開口
数)は (n1>n2)で定義される(n1,n2は平均値)。シリカ
(SiO2)をベースとする光フアイバでは、(i)コアに屈
折率を上げる添加剤をドープする方式、(ii)クラツドに
屈折率を下げる添加剤をドープする方式、(iii)(i)と(i
i)の方式の合体方式、のいずれかの方式が用いられる。
言うまでもなく、(i)ではクラツド部が(ii)ではコア部
がシリカである。
An optical fiber is mainly composed of a core part through which light is propagated and a cladding part around it. If the refractive index of the core part is n 1 and the refractive index of the cladding part is n 2 , NA (numerical aperture) Is It is defined by (n 1 > n 2 ) (n 1 and n 2 are average values). In optical fibers based on silica (SiO 2 ), (i) the core is doped with an additive that raises the refractive index, (ii) the cladding is doped with an additive that lowers the refractive index, and (iii) (i ) And (i
Either of the methods of i), which is a combination method, is used.
Needless to say, the cladding part in (i) and the core part in (ii) are silica.

通常よく用いられる添加剤としては、GeO2 ,P2O5,Al2O
3 ,TiO2(以上屈折率上昇用)、またB1O3 ,F(以上屈
折率下降用)等が挙げられる。第3図に波長0.59μ
mにおける石英系ガラスの屈折率を示す。横軸はシリカ
中の酸化物重量%を、縦軸は屈折率(nα)および屈折
率△n%をあらわす。〔出典:熊丸.黒崎:“光伝送用材
料”工業材料27(1979),P39〕 これらの添加剤のうち、弗素は最近になつて注目されだ
した添加剤であつて、VAD法におけるのみならず、他の
製法においてもドープする方法が検討、開発されてい
る。
Commonly used additives include GeO 2 , P 2 O 5 , and Al 2 O.
3 , TiO 2 (for increasing the refractive index), B 1 O 3 , F (for decreasing the refractive index) and the like. Wavelength 0.59μ in FIG.
The refractive index of the silica glass at m is shown. The horizontal axis represents the oxide weight% in silica, and the vertical axis represents the refractive index (nα) and the refractive index Δn%. [Source: Kumamaru. Kurosaki: “Materials for optical transmission” Industrial material 27 (1979), P39] Among these additives, fluorine has recently attracted attention, and it is not only the VAD method but also other manufacturing methods. A method for doping is also being studied and developed.

コア・クラツド間で同じ屈折率差を得たい場合に、一般
的にクラツドで屈折率を下げだ、前述の(ii)および(ii
i)の方式は、コア部にドープする添加剤量が全く無い
か、あるいは(i)の方式によるよりも少なくてすむ、と
いう利点を有している。このことは、高NA光フアイバ
にとつて、コア部の添加剤による吸収損失が低減される
という意味で有利である。また、放射線照射下での伝送
損失に優れた純シリカコア光フアイバは(ii)の方式でし
か作成できない。
When it is desired to obtain the same refractive index difference between the core and the cladding, the refractive index is generally lowered by the cladding, which is described in (ii) and (ii) above.
The method i) has the advantage that the amount of the additive to be doped in the core portion does not exist at all, or it can be smaller than that of the method i). This is advantageous for a high NA optical fiber in that the absorption loss due to the additive in the core portion is reduced. Moreover, a pure silica core optical fiber having excellent transmission loss under irradiation with radiation can be produced only by the method (ii).

このように、クラツド部の屈折率を下げる方式は有利な
特性をもつ。
As described above, the method of lowering the refractive index of the cladding portion has advantageous characteristics.

特に、VAD法の焼結工程において、弗素をドープするこ
との利点は、 均一にドープでき、平坦な屈折率分布を与えること
ができる。
In particular, in the sintering process of the VAD method, the advantage of doping with fluorine is that doping can be performed uniformly and a flat refractive index distribution can be provided.

処理速度が速い。すなわち数100〜1kg程度の多
孔質プリフオームを数時間以内で処理・ガラス化でき
る。
The processing speed is fast. That is, a porous preform of several hundreds to 1 kg can be treated and vitrified within several hours.

の2点において特に他方式よりすぐれており、これに関
する技術は特開昭55−67533、同60−8604
7、同60−86049各号公報などに詳細に示されて
いる。
In particular, it is superior to other methods in two points, and the technology relating to this method is disclosed in JP-A-55-67533 and JP-A-60-8604.
7, 60-86049, and the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、焼結工程でガラススート母材に弗素、ボ
ロンなどを添加する際に、下記の如き問題が浮び上つて
きた。
However, when fluorine, boron, etc. are added to the glass soot base material in the sintering process, the following problems have emerged.

(イ) ガラススート母材を一端より他端へと徐々に移動
しつつ加熱領域に挿入する傾斜焼結法を用いた場合、得
られたガラス母材は気泡の残留なく透明なものである
が、弗素添加による非屈折率差△nは母材両端でかなり
の差を有した。
(B) When using the inclined sintering method in which the glass soot base material is gradually moved from one end to the other end and inserted into the heating region, the obtained glass base material is transparent with no bubbles remaining, but The difference Δn in non-refractive index due to the addition of fluorine was considerably different at both ends of the base material.

(ロ) 一方、ガラススート母材全体を均一に加熱昇温し
て透明化する均一加熱焼結法を用いた場合、△nは母材
の長手方向で安定で均一になるものの、母材中に気泡を
残す傾向にあり、しかも弗素の添加量が増えるに従いこ
の傾向が著しくなり、高純度の石英ガラス心棒を有する
ガラススート母材では得られたガラス母材中に多数の気
泡を残し、これは特に心棒界面において著しかつた。
(B) On the other hand, when the uniform heating and sintering method in which the entire glass soot base material is uniformly heated and heated to be transparent is used, Δn is stable and uniform in the longitudinal direction of the base material, but Tend to leave bubbles in the glass soot, and this tendency becomes remarkable as the amount of fluorine added increases, and in the glass soot base material having a high-purity quartz glass mandrel, many bubbles are left in the obtained glass base material. Was especially remarkable at the mandrel interface.

このため、傾斜焼結、均一加熱焼結のいずれの方法によ
つても得られた弗素添加ガラス母材は△nの長手方向の
変動か気泡の残留という欠陥を持つことがあるため、光
フアイバ用ガラス母材として作用できる歩留りに限度が
あつた。
Therefore, the fluorine-containing glass base material obtained by either the gradient sintering or the uniform heating sintering may have a defect that Δn varies in the longitudinal direction or bubbles remain. There is a limit to the yield that can act as a glass base material for glass.

本発明は上記した従来法における問題点のうち、特に弗
素添加の長手方向の不安定性(比屈折率差△nの変動)
と気泡の残留の問題を解消することで、高品質で経済性
に富んだ光フアイバ用母材として供するに充分なガラス
母材の製造方法を提供することを目的とするものであ
る。
Among the problems in the above-mentioned conventional method, the present invention is particularly unstable in the longitudinal direction due to the addition of fluorine (change in relative refractive index difference Δn).
It is an object of the present invention to provide a method for producing a glass preform sufficient for use as a preform for optical fibers, which is high in quality and economical, by solving the problem of residual air bubbles.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上記問題点を解決するための手段について
鋭意研究の結果、本発明の石英を主成分とするガラスス
ート母材を少なくとも1種以上の屈折率調整用の元素を
含んだガス雰囲気内にて加熱処理し、それにより該ガラ
ススート母材に上記元素を添加する方法において、一端
に一つのガス供給入口を持つ炉心管内に、該ガス供給入
口から屈折率調整用元素含有ガスを予め混合された雰囲
気ガスを導入しつつ、該ガラススート母材を加熱された
上記ガス雰囲気内に徐々に移動させて、該ガラススート
母材の一端より他端へと漸次収縮透明化させ、かつ該ガ
ラススート母材の移動方向を上記ガス雰囲気の流れ方向
と一致するように行うことを特徴とする光ファイバ用ガ
ラス母材の製造方法に到達した。上記した本発明により
はじめて、弗素を平坦にかつ長手方向に安定して均一に
添加せしめることと得られる母材への気泡の残留もなく
することの両方の達成が可能となつた。
As a result of earnest research on means for solving the above problems, the present inventors have found that the glass soot base material containing quartz as a main component of the present invention is a gas atmosphere containing at least one or more refractive index adjusting elements. In the method of adding the above elements to the glass soot base material by heat treatment in the furnace, a core tube having one gas supply inlet at one end is preliminarily provided with an element-containing gas for adjusting the refractive index from the gas supply inlet. While introducing a mixed atmosphere gas, the glass soot base material is gradually moved into the heated gas atmosphere to gradually shrink and become transparent from one end to the other end of the glass soot base material, and The present invention has reached a method for producing a glass base material for an optical fiber, which is characterized in that the moving direction of the glass soot base material coincides with the flow direction of the gas atmosphere. For the first time, according to the present invention described above, it is possible to achieve both stable and uniform addition of fluorine in the longitudinal direction and elimination of bubbles from the base material obtained.

本発明の特に好ましい実施態様としては、該ガラススー
ト母材は加熱処理前に予めCl2 ガス等のハロゲン系ガス
を用いて充分に脱水されたものを用い、ガス雰囲気が例
えばCF4、C2F6、SF6、SiF4、BF3等の弗素系又は硼素系
ガスのいずれか一種を含み、これらのガス雰囲気内での
母材の移動及び加熱処理は石英炉心管内にて行ない屈折
率調整用の元素を含むガスとしてSiF4を用いる上記方法
が挙げられる。
In a particularly preferred embodiment of the present invention, the glass soot base material is one that has been sufficiently dehydrated with a halogen-based gas such as Cl 2 gas before heat treatment, and the gas atmosphere is, for example, CF 4 , C 2. Includes one type of fluorine-based or boron-based gas such as F 6 , SF 6 , SiF 4 , BF 3 etc., and the movement of the base material in these gas atmospheres and heat treatment are performed in the quartz furnace core tube to adjust the refractive index. The above method using SiF 4 as the gas containing the element for use can be mentioned.

本発明において用いる石英を主成分とするガラススート
母材は、例えば火炎加水分解反応により、ガラス原料ガ
ス及び添加剤ガス等を不活性ガスをキヤリヤーとして火
炎中に導入し、生成したガラス微粒子を堆積せしめる、
あるいはいわゆるゾルゲル法すなわちアルコラートの加
水分解により得る、等の方法により得られ、これらの技
術は公知のものである。
The glass soot base material mainly composed of quartz used in the present invention is, for example, by flame hydrolysis reaction, glass raw material gas and additive gas are introduced into a flame by using an inert gas as a carrier, and the generated glass fine particles are deposited. Blame,
Alternatively, it can be obtained by a so-called sol-gel method, that is, a method of obtaining by hydrolysis of alcoholate, and these techniques are known.

本発明においては、該ガラススート母材を少なくとも1
種以上の屈折率調整用元素を含むガス雰囲気中において
該スートを加熱処理して該ガラススート母材に屈折率調
整用元素を添加するのであるが、このような屈折率調整
用元素としては、例えばB,F,N,P,Ge,Al,Ti 等が挙げら
れる。
In the present invention, at least 1 of the glass soot base material is used.
Although the soot is heat-treated in a gas atmosphere containing at least one kind of refractive index adjusting element to add the refractive index adjusting element to the glass soot base material, as such a refractive index adjusting element, For example, B, F, N, P, Ge, Al, Ti and the like can be mentioned.

本発明は上記加熱処理において、一端に一つのガス供給
入口を持つ炉心管内に、該ガス供給入口から屈折率調整
用元素含有ガスを予め混合された雰囲気ガスを導入しつ
つ、該ガラススート母材を加熱された雰囲気内にて、徐
々に、かつ屈折率調節用元素を含む雰囲気ガスの流れ方
向に一致した方向に、移動する。これを第1図による具
体的に説明する。第1図は本発明の一実施態様の模式図
であり、図中1はガラススート母材、2は加熱炉、3は
炉心管、4は弗素系ガス入口、5はその他のガス入口、
6はガス出口、7は回転及び上下動可能な時、8はヒー
ター、9はガス供給入口である。図のように軸7に取付
けられ下端に一つだけのガス供給入口9を有する炉心管
3中に入れられたガラススート母材1を、入口4から弗
素系ガスおよび入口5からその他のガスの流れ方向にそ
の移動方向が一致するように、軸7により徐々に上方に
引きあげ、スート母材1がヒーター8の部分を通過する
ことにより、片端より他端に向かい徐々に収縮透明化す
るようにする。
The present invention, in the above heat treatment, in the furnace core tube having one gas supply inlet at one end, while introducing an atmosphere gas premixed with the refractive index adjusting element-containing gas from the gas supply inlet, the glass soot base material Is gradually moved in a heated atmosphere in a direction corresponding to the flow direction of the atmospheric gas containing the refractive index adjusting element. This will be specifically described with reference to FIG. FIG. 1 is a schematic view of an embodiment of the present invention, in which 1 is a glass soot base material, 2 is a heating furnace, 3 is a core tube, 4 is a fluorine-based gas inlet, 5 is another gas inlet,
6 is a gas outlet, 7 is a heater, and 9 is a gas supply inlet when it is rotatable and vertically movable. As shown in the figure, the glass soot base material 1 placed in the core tube 3 having only one gas supply inlet 9 at the lower end is attached to the shaft 7 so that the fluorine-based gas from the inlet 4 and other gas from the inlet 5 The shaft 7 is gradually pulled upward so that the moving direction matches the flow direction, and the soot base material 1 passes through the portion of the heater 8 so that it gradually shrinks from one end to the other end and becomes transparent. To do.

また図示はしていないが、ガラススート母材を上方から
下方へと移動させながら、マツフル上方から弗素系ガス
を含む雰囲気ガスを下方へと流す方法でもよい。
Although not shown, a method may also be used in which the atmosphere gas containing a fluorine-based gas is caused to flow downward from above the pine while moving the glass soot base material from above to below.

〔作用〕[Action]

本発明は、弗素系ガスを添加せしめた混合ガスを流す方
向と、スート母材を上記混合ガス中にて移動させる方法
とを一致させたことによるもので、これによりスート母
材の焼結以前に、多孔質中に弗素系ガスが含浸されるこ
とになり、その結果、弗素を長手方向に安定に添加する
ことが可能となつたと考えられる。この考察は下記の事
実からも正しいことが理解されよう。
The present invention is based on the fact that the direction of flowing the mixed gas to which the fluorine-based gas is added and the method of moving the soot base material in the mixed gas are made to coincide with each other. Moreover, it is considered that the fluorine-based gas was impregnated into the porous material, and as a result, it was possible to stably add the fluorine in the longitudinal direction. It will be appreciated that this consideration is also true from the facts below.

すなわち、ガス雰囲気を保持するマツフル内の加熱部よ
り上方にスート母材を設置し、マツフル下方より上方に
むけて弗素系ガスを含む混合ガスを流し、該スート母材
はガス流と対向して徐々に下降させながら、弗素加熱と
同時に透明ガラス化を行つたところ、気泡の無い円柱状
のガラス母材が得られたが、その△n の長手方向の分布
につき母材全長(30cm)にわたる測定をしたところ、
先端部の−0.2%から徐々に減少し、中心部以降では
後端まで−0.3%と安定していた。つまり△n が−
0.2%〜−0.3%の範囲でバラツイており、これで
は△n の調整に厳密さを要求されるシングルモードフア
イバ用クラツド材等には到底用いることができない。
That is, the soot base material is installed above the heating part in the pine cone that holds the gas atmosphere, and the mixed gas containing the fluorine-based gas is flowed upward from below the pine cone, and the soot base material faces the gas flow. While gradually lowering, the glass vitrification was carried out at the same time as the heating with fluorine, and a cylindrical glass base material without bubbles was obtained. The distribution of Δn in the longitudinal direction was measured over the entire length of the base material (30 cm). When I did
It gradually decreased from -0.2% at the front end and remained stable at -0.3% from the center to the rear end. That is, △ n is −
The variation is in the range of 0.2% to -0.3%, and this cannot be used at all for cladding materials for single mode fibers, etc., which require strict adjustment of Δn.

一方、ガラススート母材の移動方向と弗素系ガス含有雰
囲気ガスの流れ方向と一致させてガスも上方より下方へ
流し、その他条件は同様にして弗素添加と透明ガラス化
とを同時に行つて得たガラス母材は、△n は全長にわた
り−0.3%と安定であつた。
On the other hand, the gas was made to flow downward from above in conformity with the moving direction of the glass soot base material and the flowing direction of the fluorine-containing gas-containing atmosphere gas, and other conditions were similarly obtained by simultaneously performing fluorine addition and transparent vitrification. The Δn of the glass base material was stable at -0.3% over the entire length.

これは、ガラススート母材への弗素添加による△n の形
成が、下記(1)式のような平衡反応で行われており、 3SiO2(s)+SiF4(g)4SiO1.5F(s) ・・・(1) |△n|∝〔SiO1.5F〕=Ko〔SiF41/4 ・・・(2) ただし、|△n|:比屈折率差の絶対値、 〔SiO1.5F〕:SiO1.5Fの濃度 〔SiF4〕:SiF4の濃度 をあらわす、ガラススート母材
内に所定の弗素が充分に含浸されていないと、(2)式よ
りわかるように、SiF4の濃度が小さくなり、このため弗
素含量の不充分な先端領域では弗素のガラスへの添加量
は少なくなる、すなわち|△n|が小さくなるものと考
えられる。
This is because the formation of Δn by adding fluorine to the glass soot base material is carried out by an equilibrium reaction as shown in the following formula (1). 3SiO 2 (s) + SiF 4 (g) 4SiO 1.5 F (s)・ ・ ・ (1) | △ n | ∝ [SiO 1.5 F] = Ko [SiF 4 ] 1/4・ ・ ・ (2) where │ △ n |: absolute value of relative refractive index difference, [SiO 1.5 F ]: Concentration of SiO 1.5 F [SiF 4 ]: Represents the concentration of SiF 4 , if the glass soot base material is not sufficiently impregnated with the specified fluorine, the concentration of SiF 4 is as shown in equation (2). Therefore, it is considered that the amount of fluorine added to the glass is small, that is, | Δn | is small in the tip region where the fluorine content is insufficient.

弗素系ガスのガラススート母材への含浸する早さは該母
材のカサ密度によつても大きく変り、カサ密度を大きく
すると△nは大きくなる傾向がある。ガラススート母材
の移動方向を弗素系ガス含有雰囲気ガスの流れ方向に対
向させた場合、カサ密度0.3g/cm3 の母材では|△
n|の範囲は0.2〜0.3%で変動したのに対し、
0.6g/cm3 のガラススート母材では0.15〜0.
3%の変動となり、中心部でも不安定で0.25%であ
り、ガラススート母材のいかなる位置でも△nは異なつ
ていた。この事実は、ガラススート母材への弗素系ガス
の含浸がカサ密度に大きく依存し、カサ密度が大きい
程、含浸が遅くなることを支持している。
The impregnation speed of the fluorine-based gas into the glass soot base material greatly changes depending on the bulk density of the base material, and Δn tends to increase as the bulk density increases. When the moving direction of the glass soot base material is opposed to the flow direction of the fluorine-containing gas-containing atmosphere gas, the base material with a bulk density of 0.3 g / cm 3 |
While the range of n | fluctuated from 0.2 to 0.3%,
With a glass soot base material of 0.6 g / cm 3 , 0.15 to 0.
The variation was 3%, which was unstable at the center and was 0.25%, and Δn was different at any position of the glass soot base material. This fact supports that the impregnation of the glass soot base material with the fluorine-based gas largely depends on the bulk density, and the higher the bulk density, the slower the impregnation.

一方、ガラススート母材の挿入方向と弗素系ガス含有雰
囲気ガスの流れ方向を一致させた(ガスも上方より下方
へ流した)場合には、得られた母材のカサ密度が0.6
g/cm3 の場合でも、△nは長手方向で安定していた。
なお、この実験は、外径100mm、長さ300mlでカサ
密度がそれぞれ0.3g/cm3 、0.6g/cm3 の心棒
を有するガラススート母材について、温度1650℃、
下降速度4mm/分、SiF4とHeの混合ガスを用い流量比Si
F4/He=0.03としHeは10/分の条件で行つた
ものである。
On the other hand, when the insertion direction of the glass soot base material and the flow direction of the fluorine-based gas-containing atmosphere gas were matched (the gas also flowed downward from above), the bulk density of the obtained base material was 0.6.
Even in the case of g / cm 3 , Δn was stable in the longitudinal direction.
In this experiment, a glass soot base material having an outer diameter of 100 mm, a length of 300 ml, and a mandrel having a bulk density of 0.3 g / cm 3 and 0.6 g / cm 3 was used at a temperature of 1650 ° C.
Flow rate Si using a mixed gas of SiF 4 and He at a descending speed of 4 mm / min.
F 4 /He=0.03, and He was performed under the condition of 10 / min.

さらにガラススート母材をマツフル下部に設置し、軸を
徐々に引上げて上昇せしめ加熱炉中心へと徐々に移動
し、弗素系ガス含有雰囲気ガスを流す方向を変えたとこ
ろ、やはり、スート移動方向とガス流れ方向を一致させ
ると得られたガラススート母材の△nの分布は安定し、
ガス流れ方向が対向していると△nの分布が不安定であ
つた。弗素添加の際、引上げ、引下げ速度はいずれも1
0mm/分以下が好ましく、10mm/分を越えると本発明
の効果をかえつて減じ、△nの安定化にとり好ましくな
い。
Furthermore, the glass soot base material was installed at the bottom of the pine, and the shaft was gradually pulled up and moved up to gradually move to the center of the heating furnace, and the direction in which the atmosphere gas containing fluorine-based gas was flowed was changed. When the gas flow directions are matched, the distribution of Δn in the glass soot base material obtained is stable,
The distribution of Δn was unstable when the gas flow directions were opposite to each other. When adding fluorine, pull up and pull down speeds are both 1
It is preferably 0 mm / min or less, and when it exceeds 10 mm / min, the effect of the present invention is rather reduced, which is not preferable for stabilizing Δn.

ところで、ガラス母材の長手方向に△nを安定に分布さ
せる方法としては、ガラススート母材全体を均一な温度
で加熱し焼結する方法があるが、母材中に気泡を残し易
いことが確かめられ、さらに心棒を有するガラススート
母材の場合には極めて気泡が残り易く、心棒界面で気泡
残留は顕著であつた。このように、均一な加熱炉での加
熱は△nを長手方向に均一にする効果はあるものの、気
泡が残り易い欠点があつた。
By the way, as a method of stably distributing Δn in the longitudinal direction of the glass base material, there is a method of heating and sintering the entire glass soot base material at a uniform temperature, but it is easy to leave bubbles in the base material. It was confirmed that, in the case of the glass soot base material having the mandrel, bubbles were extremely likely to remain, and the bubbles remained remarkably at the mandrel interface. Thus, although the uniform heating in the heating furnace has the effect of making Δn uniform in the longitudinal direction, it has a drawback that bubbles tend to remain.

この気泡残留の現象の原因としては、イ)均一に加熱す
るため、弗素系ガス雰囲気で高温にさらされる時間が傾
斜焼結法に比し長くなるため、ガラス化する以前に心棒
界面付近の弗素系ガスが心棒ガスをエツチングして、こ
れが界面を荒らし気泡の種とならしめること、ロ)均熱
焼結ではスート全体が収縮するため、余剰のガスが系外
へ出ることが傾斜焼結に比べ困難で、気泡を残留させ易
いこと、などが考えられる。
The cause of this bubble retention phenomenon is as follows: a) Since the heating is performed uniformly, the exposure time to high temperature in a fluorine-based gas atmosphere is longer than that in the gradient sintering method. The system gas etches the mandrel gas, which roughens the interface and forms bubbles. (B) In soaking sintering, the entire soot shrinks, so excess gas exiting the system causes gradient sintering. It is considered that it is more difficult than that and bubbles are likely to remain.

ところで弗素を添加することは、スートの収縮を早め、
これも余剰のガスの系外排出を難かしくする原因であ
る。例えば△n=−0.3%に対応する弗素を添加したガラ
ススート母材の収縮は早くなり、ガラス化温度も約15
0℃低下することが、本発明に到る実験の途上で確認さ
れた。このように弗素を添加せしめたガラスの焼結にお
いてはスートの収縮が早く余剰のガスが残留し易いの
で、純石英スートの焼結に比して、母材中に気泡を残し
やすいので、そのガラススート母材の収縮のさせ方は非
常に重要である。
By the way, adding fluorine accelerates the contraction of soot,
This is also a cause of making it difficult to discharge the surplus gas from the system. For example, the glass soot base material containing fluorine corresponding to Δn = -0.3% shrinks faster and the vitrification temperature is about 15%.
A decrease of 0 ° C. was confirmed during the experiment of the present invention. In the sintering of the glass to which fluorine is added as described above, the soot contracts quickly and an excess gas is likely to remain, so that it is easier to leave bubbles in the base material as compared with the sintering of pure quartz soot. How to shrink the glass soot base material is very important.

この観点に立てば、前記の実験の結果及び考察から、弗
素を添加したガラス母材を製造するにあたり、傾斜焼結
法を選択することの意義の大なることは明らかである。
From this point of view, it is clear from the results and consideration of the above-mentioned experiments that the selection of the gradient sintering method is of great significance in producing the glass base material to which fluorine is added.

次に、弗素添加にあたり原料ガスの選択が重要であり、
SiF4ガスの使用が、気泡を残留させないためには最も効
果が大で好ましい。他の弗素系ガス例えばSF6、CF4
どの使用は、スートへの弗素添加と同時に下記(3)及び
(4)式の反応でCO2、SO2F2 などの余剰ガスを発生し、こ
れ等のガスが気泡の原因となる。
Next, it is important to select the raw material gas when adding fluorine,
The use of SiF 4 gas is most effective and preferable for preventing bubbles from remaining. The use of other fluorine-based gases such as SF 6 and CF 4 makes it possible to add (3) and
Excess gases such as CO 2 and SO 2 F 2 are generated by the reaction of the equation (4), and these gases cause bubbles.

SF6+SiO2 →SiF4+SO2F2 (3) CF4+SiO2 →SiF4+CO2 (4) 一方、SiF4の場合は前記反応式(1)から明らかなよう
に、余剰のガスは生じないのである。加えて、心棒のあ
るスートではSF6、CF4 の使用は、上記(3)及び(4)式の
反応によりエツチングされるのに比し、SiF4はこのよう
なエツチング反応がないので、界面気泡の発生も抑えら
れる。
SF 6 + SiO 2 → SiF 4 + SO 2 F 2 (3) CF 4 + SiO 2 → SiF 4 + CO 2 (4) On the other hand, in the case of SiF 4 , excess gas is generated as is clear from the above reaction formula (1). There is no. In addition, in the soot with a mandrel, the use of SF 6 and CF 4 is compared with the etching by the reactions of the above formulas (3) and (4), whereas SiF 4 does not have such an etching reaction. Generation of bubbles is also suppressed.

さらに焼結用マツフルの材質の選択も重要である。例え
ばアルミナを使用した場合、SF6、CF4 と反応して不純
物であるAlF3、CuF2、CuF、FeF3、FeF2 等を発生し、こ
れがスート内に侵入し、得られたガラス母材をフアイバ
化した場合、不純物吸収の原因となる。この点から、マ
ツフル管としては高純度の石英管の使用が好ましい。ま
た、石英管の使用においても、SF6、CF4 ガスは前記(3)
及び(4)式の反応で炉心管をエツチングするため、長時
間の使用には耐えない。本発明の途上調べたところ、温
度1400℃で、弗素添加量が△nで−0.3%、のガ
ラス物体を得るため、SF6 ガスを長したところ、8時間
で炉心管は2mm厚さエツチングされた。従つて、やはり
SiO2をエツチングしないSiF4ガスの使用が好ましい。
Furthermore, it is important to select the material for the sintering pineapple. For example, when using alumina, AlF 3 as an impurity reacts with SF 6, CF 4, CuF 2 , CuF, generates FeF 3, FeF 2, etc., which enters the soot obtained glass preform If it becomes a fiber, it will cause the absorption of impurities. From this point, it is preferable to use a high-purity quartz tube as the pine tube. In addition, even when using a quartz tube, SF 6 and CF 4 gases should be as described in (3) above.
Since the core tube is etched by the reaction of (4) and (4), it cannot be used for a long time. When the method of the present invention was investigated, a temperature of 1400 ° C. and a fluorine content of Δn was −0.3% to obtain a glass body. In order to obtain a glass body, SF 6 gas was lengthened, and the core tube was 2 mm thick in 8 hours. It was etched. Therefore, after all
The use of SiF 4 gas that does not etch SiO 2 is preferred.

スートへの弗素添加を実施するに先立ち、予めCl2 等の
ガスでスートを充分脱水することは、本発明の効果をさ
らに高め、好ましい。これはスート中の水分が弗素系ガ
スと下記(5)式のように反応し、エツチング作用を有す
るHFガスを発生するのを防ぐためである。
It is preferable to sufficiently dehydrate the soot with a gas such as Cl 2 before adding fluorine to the soot, because the effect of the present invention is further enhanced. This is to prevent the moisture in the soot from reacting with the fluorine-based gas as shown in the following formula (5) to generate HF gas having an etching action.

SF6 +H2O →SOF4+2HF ・・・(5) 以下、実施例により本発明を具体的に説明する。SF 6 + H 2 O → SOF 4 + 2HF (5) The present invention will be specifically described below with reference to Examples.

〔実施例〕〔Example〕

実施例1 中心部にはGeO2を6重量%含有した石英のステツプ状の
コアを有し周辺部は弗素を添加し、△n =−0.3%と
した石英である外径10mmの石英系ロツドの外周に、火
炎加水分解反応を利用して、純粋なSiO2からなるスート
を堆積して、第2図の屈折率分布構造を有する外径10
0mmのスート母材とした。該スート母材を第1図の構成
により、SiF4を3モル%添加したHe雰囲気中で、雰囲
気ガスの流れ方向と一致して、温度1600℃の炉心管
中を4mm/分の速度で徐々に引き上げ、透明ガラス化し
た。得られたガラス母材の屈折率分布は第3図に示すと
おりであつた。第2図の縦軸は石英基準比屈折率差(%)
を示し、Aは出発材石英ロツド部分、BはSiO2スートを
堆積した部分に相当する。
Example 1 Quartz having an outer diameter of 10 mm is a quartz step-like core containing 6% by weight of GeO 2 in the central portion, and fluorine is added to the peripheral portion to make Δn = -0.3%. A soot composed of pure SiO 2 was deposited on the outer periphery of the system rod by using a flame hydrolysis reaction, and the outer diameter 10 having the refractive index distribution structure shown in FIG.
A 0 mm soot base material was used. The soot base metal was constructed according to the configuration shown in FIG. 1 and gradually in a He atmosphere containing 3 mol% of SiF 4 in a furnace core tube at a temperature of 1600 ° C. at a speed of 4 mm / min in accordance with the flow direction of the atmosphere gas. It was pulled up to a transparent glass. The refractive index distribution of the obtained glass base material was as shown in FIG. The vertical axis in Fig. 2 is the quartz standard relative refractive index difference (%)
Where A corresponds to the starting quartz rod portion and B corresponds to the SiO 2 soot deposited portion.

実施例2 外径約6mmのカーボンロツドの外周に、火炎加水分解反
応を利用して純粋なSiO2からなるスートを堆積し第4図
の屈折率分布構造を有する外径100mmのスート母材と
した。該母材を第1図の構成によりSiF4を10モル%添
加したHe雰囲気中で、1600℃まで昇温し透明ガラス
化した。得られたガラス母材の屈折率は第5図に示すと
おりであつた。
Example 2 A soot base material having an outer diameter of 100 mm and having a refractive index distribution structure shown in FIG. 4 was prepared by depositing a soot of pure SiO 2 on the outer periphery of a carbon rod having an outer diameter of about 6 mm by utilizing a flame hydrolysis reaction. . The base material was heated to 1600 ° C. in a He atmosphere containing 10 mol% of SiF 4 according to the constitution shown in FIG. The refractive index of the obtained glass base material was as shown in FIG.

なお第4図および第5図においてBはSiO2スートを堆積
した部分をあらわす。
In FIGS. 4 and 5, B represents a portion where SiO 2 soot is deposited.

実施例3 GeO2を0〜17重量%の範囲で添加された第6図の屈折
率分布を有する外径100mmの石英系ガラスロツドの外
周に、火炎加水分解を利用して純粋なSiO2からなるスー
トを堆積させ、第6図に示す屈折率分布構造を有するス
ート母材とした。該スート母材を第1図の構成におい
て、まずCl2 を1モル%添加したHeガス雰囲気で温度
1200℃に加熱することにより、予め脱水した。次に
雰囲気をSiF4を20モル%添加したHeガス雰囲気と
し、温度1600℃で徐々に上昇させながら透明ガラス
化したところ、得られたガラス母材の屈折率分布は第7
図に示すとおりであつた。
The outer periphery of the silica-based Garasurotsudo outer diameter 100mm with a refractive index profile of FIG. 6, which is added to Example 3 GeO 2 in the range of 0-17 wt%, consisting of pure SiO 2 by using a flame hydrolysis Soot was deposited to obtain a soot base material having the refractive index distribution structure shown in FIG. The soot base material was dehydrated in advance by heating it to a temperature of 1200 ° C. in a He gas atmosphere containing 1 mol% of Cl 2 in the constitution shown in FIG. Next, the atmosphere was changed to a He gas atmosphere in which 20 mol% of SiF 4 was added, and the temperature was gradually raised to 1600 ° C. to obtain transparent vitrification.
It was as shown in the figure.

以上の実施例1〜3のいずれにおいても、得られた母材
の長手方向の屈折率は全長において安定しており母材中
に気泡の存在は認められなかつた。
In any of Examples 1 to 3 above, the refractive index in the longitudinal direction of the obtained base material was stable over the entire length, and no bubbles were observed in the base material.

また上記実施例1〜3のガラス母材から得られたフアイ
バーの特性は、いずれも不純物に由来する吸収増は全く
なく、充分に低損失なものであり(例えば1.30μm
において0.5dB/km程度)、OH基による吸収ピークは
経時的に変化することがなかつた。
In addition, the properties of the fibers obtained from the glass base materials of Examples 1 to 3 are sufficiently low loss without any increase in absorption due to impurities (for example, 1.30 μm).
, About 0.5 dB / km), and the absorption peak due to the OH group did not change with time.

〔発明の効果〕〔The invention's effect〕

上記したところから明らかなように、本発明はガラスス
ート母材を屈折率調整用元素を含有する雰囲気ガス中で
加熱してスート母材中に該元素を添加し、該元素を含有
するガラス母材を製造する方法において、母材の長手
方向および径方向において添加量が均一となり、したが
つて屈折率の変動がなく、さらに母材中の気泡残留が
ない、特に弗素添加に際しSiF4を用いれば気泡残留防
止効果は大きく、また炉心管として石英管を用いるこ
とにより、母材の残留水分量低減が非常に容易に達成で
きる、という大きな効果を奏する。よつて本発明は、ガ
ラス母材製造に適用して、生産性向上とガラス母材の品
質向上がはかれる有利な方法である。
As apparent from the above, the present invention is a glass soot base material is heated in an atmosphere gas containing a refractive index adjusting element to add the element in the soot base material, a glass base material containing the element In the method of manufacturing the base material, the addition amount becomes uniform in the longitudinal direction and the radial direction of the base material, so that there is no fluctuation in the refractive index and no bubbles remain in the base material.SiF 4 is used especially when fluorine is added. For example, the effect of preventing residual bubbles is great, and the use of a quartz tube as the core tube makes it possible to reduce the residual water content of the base material very easily. Therefore, the present invention is an advantageous method that is applied to the production of glass preforms to improve the productivity and the quality of the glass preforms.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施態様を説明する図、 第2図ないし第7図は本発明のガラススート母材または
ガラス母材の屈折率分布構造を示す図であつて、いずれ
も縦軸は石英基準の比屈折率差△n(%)をあらわす。 第2図:実施例1のガラススート母材 第3図:実施例1のガラス母材 第4図:実施例2のガラススート母材 第5図:実施例2のガラス母材 第6図:実施例3のガラススート母材 第7図:実施例3のガラス母材。
FIG. 1 is a diagram for explaining an embodiment of the present invention, and FIGS. 2 to 7 are diagrams showing a glass soot base material or a refractive index distribution structure of the glass base material of the present invention, in which the vertical axis represents Represents the relative refractive index difference Δn (%) based on quartz. Fig. 2: Glass soot base material of Example 1 Fig. 3: Glass soot base material of Example 1 Fig. 4: Glass soot base material of Example 2 Fig. 5: Glass base material of Example 2 Fig. 6: Glass soot base material of Example 3 FIG. 7: Glass base material of Example 3

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】石英を主成分とするガラススート母材を炉
心管内の少なくとも1種以上の屈折率調整用の元素を含
んだガス雰囲気内にて加熱処理し、それにより該ガラス
スート母材に上記元素を添加する方法において、一端に
一つのガス供給入口を持つ炉心管内に、該ガス供給入口
から屈折率調整用元素含有ガスを予め混合された雰囲気
ガスを導入しつつ、該ガラススート母材を加熱された上
記ガス雰囲気内に徐々に移動させて、該ガラススート母
材の一端より他端へと漸次収縮透明化させ、かつ該ガラ
ススート母材の移動方向を上記ガス雰囲気の流れ方向と
一致するように行うことを特徴とする光フアイバ用ガラ
ス母材の製造方法。
1. A glass soot base material containing quartz as a main component is heat-treated in a gas atmosphere containing at least one or more refractive index adjusting elements in a furnace core tube, whereby the glass soot base material is obtained. In the method of adding the above element, the glass soot base material is introduced into the furnace core tube having one gas supply inlet at one end, while introducing an atmosphere gas premixed with a gas containing the refractive index adjusting element from the gas supply inlet. Is gradually moved into the heated gas atmosphere to gradually shrink and become transparent from one end of the glass soot base material to the other end, and the moving direction of the glass soot base material is the flow direction of the gas atmosphere. A method for producing a glass preform for optical fibers, which is performed so as to agree with each other.
【請求項2】該ガラススート母材は加熱処理の前に、予
めハロゲン系ガスを用いて充分に脱水されたものである
特許請求の範囲第(1)項に記載される光フアイバ用ガラ
ス母材の製造方法。
2. The glass base material for optical fibers according to claim 1, wherein the glass soot base material has been sufficiently dehydrated in advance using a halogen-based gas before the heat treatment. Method of manufacturing wood.
【請求項3】ガス雰囲気が弗素系ガス又は硼素系ガスの
いずれか1種を含むものである特許請求の範囲第(1)項
に記載される光フアイバ用ガラス母材の製造方法。
3. The method for producing a glass base material for an optical fiber according to claim 1, wherein the gas atmosphere contains one of a fluorine-based gas and a boron-based gas.
【請求項4】弗素系ガス又は硼素系ガスがCF4,C2F4,S
F6,SiF4,BFのいずれか1種である特許請求の範囲の
第(3)項に記載される光フアイバ用ガラス母材の製造方
法。
4. A fluorine-based gas or a boron-based gas is CF 4 , C 2 F 4 , S
The method for producing a glass preform for an optical fiber according to claim (3), which is any one of F 6 , SiF 4 , and BF 3 .
【請求項5】該ガラススート母材がその中心部に円筒状
の高純度石英系ガラス心棒を有し、かつその心棒自体が
光フアイバ用母材の一部となり得るものである特許請求
の範囲の第(1)項に記載される光フアイバ用ガラス母材
の製造方法。
5. The glass soot base material has a cylindrical high-purity quartz glass mandrel at the center thereof, and the mandrel itself can be a part of the optical fiber base material. The method for producing a glass preform for optical fibers according to item (1).
【請求項6】ガラススート母材の該ガス雰囲気内での移
動及び加熱処理は石英炉心管内にて行い、屈折率調整用
元素含有ガスとしてSiF4を使用する特許請求の範囲の第
(1)項に記載される光フアイバ用ガラス母材の製造方
法。
6. The movement and heat treatment of the glass soot base material in the gas atmosphere are performed in a quartz furnace core tube, and SiF 4 is used as a gas containing a refractive index adjusting element.
The method for producing a glass preform for optical fibers according to item (1).
【請求項7】ガラススート母材は加熱処理の前に、予め
Clガスを用いて脱水されるものである特許請求の範
囲の第(6)項に記載される光フアイバ用ガラス母材の製
造方法。
7. The glass soot base material for optical fibers according to claim (6), wherein the glass soot base material is dehydrated in advance by using Cl 2 gas before heat treatment. Production method.
JP60287764A 1985-12-23 1985-12-23 Method for manufacturing glass base material for optical fiber Expired - Fee Related JPH0660030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60287764A JPH0660030B2 (en) 1985-12-23 1985-12-23 Method for manufacturing glass base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60287764A JPH0660030B2 (en) 1985-12-23 1985-12-23 Method for manufacturing glass base material for optical fiber

Publications (2)

Publication Number Publication Date
JPS62148334A JPS62148334A (en) 1987-07-02
JPH0660030B2 true JPH0660030B2 (en) 1994-08-10

Family

ID=17721449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60287764A Expired - Fee Related JPH0660030B2 (en) 1985-12-23 1985-12-23 Method for manufacturing glass base material for optical fiber

Country Status (1)

Country Link
JP (1) JPH0660030B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090843A (en) * 1983-10-20 1985-05-22 Sumitomo Electric Ind Ltd Manufacture of glass base material for optical fiber
JPS60204634A (en) * 1984-01-26 1985-10-16 Sumitomo Electric Ind Ltd Production of base material for optical fiber and apparatus for producing same

Also Published As

Publication number Publication date
JPS62148334A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
US4979971A (en) Method for producing glass preform for optical fiber
CA1120727A (en) Method of producing glass optical filaments
US5221309A (en) Method for producing glass preform for optical fiber
US4812155A (en) Method for production of glass preform for optical fibers
US4772302A (en) Optical waveguide manufacture
CA1311127C (en) Glass body formed from a vapor-derived gel and process for producing same
JPS61247633A (en) Production of glass base material for optical fiber
JPS60260434A (en) Manufacture of anhydrous glass preform for optical transmission
US4874416A (en) Base material of optical fibers and a method for the preparation thereof
US4664690A (en) Method for producing glass preform for optical fiber
EP0164103B1 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
EP0164127B1 (en) Method for producing glass preform for optical fibers
US4318726A (en) Process for producing optical fiber preform
JP2785430B2 (en) Quartz glass for optical transmission
JPH0660030B2 (en) Method for manufacturing glass base material for optical fiber
JPH06263468A (en) Production of glass base material
CA1261127A (en) Optical waveguide manufacture
US5641333A (en) Increasing the retention of Ge02 during production of glass articles
JPS63139028A (en) Production of optical fiber glass base material
JPS6289B2 (en)
JPH0551542B2 (en)
JPS6183639A (en) Production of quartz pipe of high purity
JPH089487B2 (en) Method for producing glass base material for optical fiber
JP2540056B2 (en) Method for manufacturing fluorine-containing clad optical fiber foam
US4804393A (en) Methods for producing optical fiber preform and optical fiber

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees