JPH0658982B2 - Method for manufacturing LD pumped solid-state laser device - Google Patents

Method for manufacturing LD pumped solid-state laser device

Info

Publication number
JPH0658982B2
JPH0658982B2 JP10433088A JP10433088A JPH0658982B2 JP H0658982 B2 JPH0658982 B2 JP H0658982B2 JP 10433088 A JP10433088 A JP 10433088A JP 10433088 A JP10433088 A JP 10433088A JP H0658982 B2 JPH0658982 B2 JP H0658982B2
Authority
JP
Japan
Prior art keywords
state laser
solid
laser device
pumped solid
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10433088A
Other languages
Japanese (ja)
Other versions
JPH01276739A (en
Inventor
利男 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10433088A priority Critical patent/JPH0658982B2/en
Publication of JPH01276739A publication Critical patent/JPH01276739A/en
Publication of JPH0658982B2 publication Critical patent/JPH0658982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は,電子微細加工・測距,レーザレーダー等に用
いられるLD励起固体レーザ装置に係り,特に,それに使
用される固体レーザ素子の製造方法に関する。
The present invention relates to an LD-pumped solid-state laser device used for electronic microfabrication / distance measurement, laser radar, etc., and particularly to manufacture of a solid-state laser device used for the same. Regarding the method.

<従来の技術> 従来のLD励起固体レーザ装置は,第6図に示すようにLD
(半導体レーザ)1と,集光レンズ2と,固体レーザロ
ッド(LD励起固体レーザ素子)3と,出力ミラー4とを
励起光とレーザ光が同一方向になるように配設してい
る。固体レーザ素子3はインゴットから丸棒状に打ち抜
くか,あるいは角棒に切断した後に丸目加工して,その
端面を鏡面研磨した上にそこにコーティングを施すこと
で作られている。
<Prior Art> A conventional LD-pumped solid-state laser device has an LD as shown in FIG.
A (semiconductor laser) 1, a condenser lens 2, a solid-state laser rod (LD excitation solid-state laser element) 3, and an output mirror 4 are arranged so that the excitation light and the laser light are in the same direction. The solid-state laser element 3 is made by punching an ingot in the shape of a round bar, or cutting it into a square bar, and then rounding it, mirror-polishing its end surface, and then coating it.

<考案が解決しようとする課題> 上述の従来方法で量産しようとすると,固体レーザ素子
3を多数本同時に同一の治具で加工する必要がある。し
かし固体レーザ素子3を治具に固定する際に数分程度の
ずれが生じるため,20秒以下の平行度を要する固体レ
ーザ素子ではこの方法が使えない。したがって大量の治
具を用いて,単品で研磨行程を進めなければならない。
<Problems to be Solved by the Invention> When mass production is performed by the above-described conventional method, it is necessary to process a large number of solid-state laser elements 3 at the same time with the same jig. However, when the solid-state laser element 3 is fixed to the jig, a deviation of about several minutes occurs, so this method cannot be used for a solid-state laser element that requires parallelism of 20 seconds or less. Therefore, a large number of jigs must be used to proceed with the polishing process individually.

また,コーティングにおいても固体レーザ素子3を固定
する治具が大量に必要となるため非常に高価なものとな
っていた。
Also, in coating, a large amount of jigs for fixing the solid-state laser element 3 are required, which is very expensive.

それ故に本発明の課題は,大量生産可能なLD励起固体レ
ーザ素子の製造方法を提供することにある。
Therefore, an object of the present invention is to provide a method of manufacturing an LD-pumped solid-state laser device that can be mass-produced.

<課題を解決するための手段> 本発明によれば,固体レーザ素子用インゴットを切断
し,切断面を光学的平行平面で鏡面研磨してウェーハを
作り,該ウェーハの鏡面研磨された面にコーティングを
施した後に所定寸法でコーティングを施した面に垂直に
切断加工してLD励起固体レーザ素子を得ることを特徴と
するLD励起固体レーザ素子の製造方法が得られる。
<Means for Solving the Problems> According to the present invention, the ingot for a solid-state laser device is cut, the cut surface is mirror-polished with an optically parallel plane to form a wafer, and the mirror-polished surface of the wafer is coated. A method for manufacturing an LD-pumped solid-state laser device is obtained, in which the LD-pumped solid-state laser device is obtained by subjecting the LD-pumped solid-state laser device to a vertical cut on a surface coated with a predetermined dimension to obtain an LD-pumped solid-state laser device.

<実施例> 以下,本発明の実施例について図面を参照して説明す
る。
<Example> Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例によって製造された固体レー
ザ素子3を組み込んだLD励起固体レーザ装置の概略構成
図である。このLD励起固体レーザ装置の固体レーザ素子
3は角棒状である。通常,ロッドタイプの励起ランプを
円筒楕円型集光器で固体レーザ素子に集光する場合は,
励起光が円筒状に集光されるためにロッドタイプの固体
レーザ素子を用いている。LD励起固体レーザ装置では,
楕円状の励起光を絞り込んで固体レーザ素子に入射させ
光路上の部分のみ励起状態にしてその部分のみでレーザ
発振するために,励起光の断面積以上の大きさをもつ固
体レーザ素子であれば,固体レーザ素子がどのような形
状であっても良い。したがって第1図に示す角棒状の固
体レーザ素子3を用いても丸棒状のものと同じ発振効率
とモードが得られる。
FIG. 1 is a schematic configuration diagram of an LD-pumped solid-state laser device incorporating a solid-state laser element 3 manufactured according to an embodiment of the present invention. The solid-state laser element 3 of this LD-pumped solid-state laser device has a rectangular rod shape. Normally, when a rod-type excitation lamp is focused on a solid-state laser element with a cylindrical elliptical concentrator,
A rod-type solid-state laser element is used because the excitation light is condensed into a cylindrical shape. In the LD pumped solid state laser device,
Since the elliptical excitation light is focused and made incident on the solid-state laser element and only the portion on the optical path is excited and laser oscillation occurs only at that portion, a solid-state laser element having a size larger than the cross-sectional area of the excitation light is used. The solid-state laser device may have any shape. Therefore, the same oscillation efficiency and mode as those of the round bar can be obtained by using the square bar solid laser element 3 shown in FIG.

角棒状の固体レーザ素子3の製造方法を,第2図乃至第
5図を用いて説明する。
A method of manufacturing the rectangular rod-shaped solid-state laser element 3 will be described with reference to FIGS. 2 to 5.

丸棒状に育成された60φmmの固体レーザ素子用インゴ
ットを第2図のように厚さ4mmの円板状に切断し,その
断面を平行度20秒以下、平面度λ/10で鏡面研磨加工
してウェーハ10を得る。このウェーハ10を洗浄し,
第3図に示すように,真空蒸着装置で片面にLD励起固体
レーザ光の波長に対して無反射コーティング11を施
し,反対面にはLD励起固体レーザ光の波長に対して99.5
%以上の高反射率でLDレーザ光に対して無反射コーティ
ングとなるようなダイクロイックコーティング12を施
す。次に,ダイヤモンドカッターで第4図に縦切断線1
3と横切断線14で示すように3mm×3mm×4mmの角棒
状に切断して固体レーザ素子3を得る。
A 60φ mm solid laser diode ingot grown in the shape of a round bar is cut into a disk with a thickness of 4 mm as shown in Fig. 2, and its cross section is mirror-polished with a parallelism of 20 seconds or less and a flatness of λ / 10. To obtain the wafer 10. Cleaning this wafer 10,
As shown in FIG. 3, a non-reflective coating 11 for the wavelength of the LD-pumped solid-state laser light is applied to one surface of the vacuum vapor deposition apparatus, and 99.5 for the wavelength of the LD-pumped solid-state laser light is applied to the opposite surface.
A dichroic coating 12 having a high reflectance of at least%, which is a non-reflection coating for LD laser light, is applied. Next, with a diamond cutter, the vertical cutting line 1 is shown in Fig. 4.
As shown by 3 and a horizontal cutting line 14, a solid laser element 3 is obtained by cutting into a rectangular rod shape of 3 mm × 3 mm × 4 mm.

60φmmのウェーハ10からは第5図に示すごとき3mm
角の角棒状の固体レーザ素子3を100個以上取ることが
できる。ここで角棒状の固体レーザ素子3は両端面にダ
イクロイックミラー膜5と無反射コート膜6を有した構
造を呈する。
3 mm as shown in Fig. 5 from the wafer 10 of 60φmm
It is possible to take 100 or more solid-state laser elements 3 in the shape of a square bar. Here, the rectangular rod-shaped solid-state laser element 3 has a structure having a dichroic mirror film 5 and an antireflection coating film 6 on both end faces.

研磨工数は3φmmのロッドとほぼ同じなので研磨費が3
φmmのロッドの100分の1以下になる。
The polishing man-hour is almost the same as that of a 3φmm rod, so the polishing cost is 3
It is less than 1/100 of the φmm rod.

蒸着においては3φの場合,同時に20本までしかでき
ないため,1枚のウェーハだけ蒸着したとしても蒸着費
用は5分の1以下になる。
In the case of 3φ in vapor deposition, since only 20 wafers can be formed at the same time, the vapor deposition cost is 1/5 or less even if only one wafer is vapor-deposited.

LDのレーザ光の拡がり角度は15rad程度あるため小さ
く絞り込むことができないが、LD励起レーザにした場合
共振器を自由に設計でき拡がり角度を数mradにすること
ができ,ビームを小さく絞る必要のある電子微細加工等
で有利である。
Since the divergence angle of LD laser light is about 15 rad, it cannot be narrowed down. However, when the LD pumped laser is used, the resonator can be freely designed and the divergence angle can be set to several mrad, and the beam must be narrowed down. It is advantageous for electronic fine processing.

<発明の効果> 以上述べた如く,本発明によれば,質の良いレーザ光を
発するLD励起固体レーザ素子を安価に製造する方法を提
供することが可能となった。
<Effects of the Invention> As described above, according to the present invention, it is possible to provide a method for inexpensively manufacturing an LD-pumped solid-state laser device that emits high-quality laser light.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例にて得られた固体レーザ素子
を用いたLD励起固体レーザ装置の概略構成図である。第
2図乃至第5図は第1図における固体レーザ素子の製造
方法を示し,第2図は斜視図,第3図は側面図,第4図
は平面図,第5図は斜視図である。第6図は従来のLD励
起固体レーザ装置の概略構成図である。 1…LD,2…集光レンズ,3…固体レーザ素子,4…出
力ミラー,5…ダイクロイックミラー膜,6…無反射コ
ート膜,10…ウェーハ。
FIG. 1 is a schematic configuration diagram of an LD-pumped solid-state laser device using a solid-state laser device obtained in one embodiment of the present invention. 2 to 5 show a method of manufacturing the solid-state laser device in FIG. 1, FIG. 2 is a perspective view, FIG. 3 is a side view, FIG. 4 is a plan view, and FIG. 5 is a perspective view. . FIG. 6 is a schematic configuration diagram of a conventional LD pumped solid-state laser device. 1 ... LD, 2 ... Condensing lens, 3 ... Solid-state laser element, 4 ... Output mirror, 5 ... Dichroic mirror film, 6 ... Non-reflective coating film, 10 ... Wafer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固体レーザ素子用インゴットを切断し,切
断面を光学的平行平面で鏡面研磨してウェーハを作り,
該ウェーハの鏡面研磨された面にコーティングを施した
後に所定寸法でコーティングを施した面に垂直に切断加
工してLD励起固体レーザ素子を得ることを特徴とするLD
励起固体レーザ素子の製造方法。
1. An ingot for a solid-state laser device is cut, and a cut surface is mirror-polished with an optically parallel plane to prepare a wafer,
An LD-pumped solid-state laser device is obtained by applying a coating on a mirror-polished surface of the wafer and then cutting the wafer in a direction perpendicular to the surface on which the coating is applied.
Method of manufacturing pumped solid-state laser device.
JP10433088A 1988-04-28 1988-04-28 Method for manufacturing LD pumped solid-state laser device Expired - Fee Related JPH0658982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10433088A JPH0658982B2 (en) 1988-04-28 1988-04-28 Method for manufacturing LD pumped solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10433088A JPH0658982B2 (en) 1988-04-28 1988-04-28 Method for manufacturing LD pumped solid-state laser device

Publications (2)

Publication Number Publication Date
JPH01276739A JPH01276739A (en) 1989-11-07
JPH0658982B2 true JPH0658982B2 (en) 1994-08-03

Family

ID=14377924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10433088A Expired - Fee Related JPH0658982B2 (en) 1988-04-28 1988-04-28 Method for manufacturing LD pumped solid-state laser device

Country Status (1)

Country Link
JP (1) JPH0658982B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456324A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Manufacture of filter
JPS5838905A (en) * 1981-09-02 1983-03-07 Toppan Printing Co Ltd Color separating filter for solid-state image pickup element
JPS59139007A (en) * 1983-01-31 1984-08-09 Dainippon Printing Co Ltd Production of color solid-state image pickup element
JPS59198420A (en) * 1983-04-27 1984-11-10 Hitachi Ltd Production of multilayered filter for optical multiplexer/demultiplexer
JPS60205502A (en) * 1984-03-30 1985-10-17 Toppan Printing Co Ltd Production of color separating filter for solid-state image pickup element
JPS60262102A (en) * 1984-06-09 1985-12-25 Horiba Ltd Chip type multi-layered interference filter and its production
JPS6360401A (en) * 1986-09-01 1988-03-16 Fujitsu Ltd Manufacture of optical film parts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456324A (en) * 1977-10-14 1979-05-07 Hitachi Ltd Manufacture of filter
JPS5838905A (en) * 1981-09-02 1983-03-07 Toppan Printing Co Ltd Color separating filter for solid-state image pickup element
JPS59139007A (en) * 1983-01-31 1984-08-09 Dainippon Printing Co Ltd Production of color solid-state image pickup element
JPS59198420A (en) * 1983-04-27 1984-11-10 Hitachi Ltd Production of multilayered filter for optical multiplexer/demultiplexer
JPS60205502A (en) * 1984-03-30 1985-10-17 Toppan Printing Co Ltd Production of color separating filter for solid-state image pickup element
JPS60262102A (en) * 1984-06-09 1985-12-25 Horiba Ltd Chip type multi-layered interference filter and its production
JPS6360401A (en) * 1986-09-01 1988-03-16 Fujitsu Ltd Manufacture of optical film parts

Also Published As

Publication number Publication date
JPH01276739A (en) 1989-11-07

Similar Documents

Publication Publication Date Title
US20180128885A1 (en) Extended signal paths in microfabricated sensors
US6556614B2 (en) Monolithic solid state laser assembly and method of manufacture
US4807238A (en) A semiconductor laser device
EP0310241A2 (en) High efficiency mode matched solid state laser with transverse pump
TWI334676B (en) Method for fabricating optically pumped semiconductor device
US7729046B2 (en) Solid-state laser device with a crystal array
US5923481A (en) Microlens frames for laser diode arrays
CN101164208A (en) Very low cost surface emitting laser diode arrays
US7187703B2 (en) Intracavity sum-frequency mixing laser
WO2005091447A1 (en) Laser equipment
JPH05206578A (en) External cavity diode laser
JPH07505979A (en) Method and apparatus for generating and using high-density excited ions in a laser medium
US7995633B2 (en) Method for producing a semiconductor laser, and semiconductor laser
JP3053273B2 (en) Semiconductor pumped solid-state laser
JPH0658982B2 (en) Method for manufacturing LD pumped solid-state laser device
JPH06308553A (en) Optical wavelength converter
US20220209487A1 (en) Stable uv laser
US6693312B2 (en) Method for fabricating an optical transmitting subassembly
JPH04137775A (en) Semiconductor laser excitation solid state laser
JPH05283773A (en) Laser oscillation device
JPH05335663A (en) Laser diode-excited solid-state laser device
JP2006047680A (en) Optical system for shaping beam and laser light source and preparing method of the same system
JP2000275488A (en) Optical member fixing method and support member for optical member
US3524132A (en) Galvanometer having a wide reflective mirror with low inertia
JP3321317B2 (en) Etalon manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees