JPH065867A - Semiconductor device and its production - Google Patents

Semiconductor device and its production

Info

Publication number
JPH065867A
JPH065867A JP4160632A JP16063292A JPH065867A JP H065867 A JPH065867 A JP H065867A JP 4160632 A JP4160632 A JP 4160632A JP 16063292 A JP16063292 A JP 16063292A JP H065867 A JPH065867 A JP H065867A
Authority
JP
Japan
Prior art keywords
concentration
layer
semiconductor substrate
well diffusion
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4160632A
Other languages
Japanese (ja)
Other versions
JP3259330B2 (en
Inventor
Tetsuo Iijima
哲郎 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16063292A priority Critical patent/JP3259330B2/en
Publication of JPH065867A publication Critical patent/JPH065867A/en
Application granted granted Critical
Publication of JP3259330B2 publication Critical patent/JP3259330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Abstract

PURPOSE:To provide a small and low-consumption power MOS transistor without deteriorating the breakdown strength. CONSTITUTION:A plurality of well diffused layers 101 are formed on the semiconductor substrate for a power MOS transistor 100, a source area 104 is formed in the well diffused layer 101 and a semiconductor substrate other than the well diffused layer 101 is formed as a drain substrate layer 103. High concentration impurities are introduced at the top of the drain substrate layer 103 sandwiched by the plurality of well diffused layers 101 from the substrate and a high concentration impurity introducing part 120 is formed. The high concentration impurity introducing part 120 has a larger cross-section in the horizontal direction at the bottom and the higher concentration impurities are introduced at the top. The concentration profile of the high concentration impurity introducing part 120 is formed by two steps and implantation is performed twice by different implantation depths so as to form the profile.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体技術さらにはM
OSFETを用いた縦型パワートランジスタに適用して
特に有効な技術に関し、例えば小型化及び低消費電力化
が図られた縦型パワーMOSトランジスタに利用して有
用な半導体装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to semiconductor technology and further to M technology.
The present invention relates to a technique particularly effective when applied to a vertical power transistor using an OSFET, and relates to a semiconductor device useful for a vertical power MOS transistor, which is miniaturized and has low power consumption.

【0002】[0002]

【従来の技術】電源等のスイッチングに用いられ耐圧が
300V〜600V程度の縦型パワーMOSトランジス
タが公知である(例えば電子情報通信ハンドブック80
7頁)。近年の縦型パワーMOSトランジスタにおいて
は、十分な耐圧構造を保持しつつ、その小型化、低消費
電力化が図られる。ところで、パワーMOSトランジス
タの小型化を図るには、チャネル領域及びソース領域が
形成されたウェル拡散層を多数形成するに当たり、該ウ
ェル拡散層同士の間隔を狭めればよい。更にこのように
ウェル拡散層間を狭めた場合、ドレインを挟んだソース
領域及びベース領域間も狭められ、トランジスタ導通時
にこの間に形成される空乏層がピンチオフしやすく、こ
の結果ソース・ドレイン間接合部の電界強度が緩和され
耐圧の向上が図られる。更にドレイン基板層の上端の間
隔が狭められるためゲートからみたドレイン間の酸化膜
容量(帰還容量)も小さくなる。しかしながら、上記の
ように小型化を図った場合、一方でそのオン抵抗が大き
くなることが知られている。これはウェル拡散層に挟ま
れた、ゲート電極直下のドレイン基板層の面積縮小によ
り、該ドレイン基板部分での抵抗値が高くなるためであ
り、抵抗値の増大に従って熱損失が増加し、トランジス
タ全体としての消費電力が多くなる。
2. Description of the Related Art A vertical power MOS transistor used for switching a power source or the like and having a withstand voltage of about 300 V to 600 V is known (for example, Electronic Information Communication Handbook 80).
7). In recent years, vertical power MOS transistors can be downsized and have low power consumption while maintaining a sufficient breakdown voltage structure. By the way, in order to miniaturize the power MOS transistor, when forming a large number of well diffusion layers in which a channel region and a source region are formed, the distance between the well diffusion layers may be narrowed. Further, when the well diffusion layer is narrowed in this way, the source region and the base region sandwiching the drain are also narrowed, and the depletion layer formed between them during transistor conduction is likely to be pinched off. The electric field strength is relaxed and the breakdown voltage is improved. Furthermore, since the distance between the upper ends of the drain substrate layers is narrowed, the oxide film capacitance (feedback capacitance) between the drains as viewed from the gate is also reduced. However, it is known that when the size is reduced as described above, on-resistance increases on the other hand. This is because the area of the drain substrate layer immediately below the gate electrode, which is sandwiched between the well diffusion layers, is reduced, and the resistance value in the drain substrate portion is increased. As a result, the power consumption increases.

【0003】トランジスタの小型化を図りつつ、このド
レイン領域での抵抗値を低くすべく、図12に示すよう
に、ウェル拡散層201,201…に囲まれたドレイン
基板層203の上部側203a,203a,…に高濃度
に不純物を導入し、もって、縮小化に伴う上記オン抵抗
の増大を抑えた縦型パワーMOSトランジスタがアメリ
カ特許4376286号によりて提案されている。この
提案は、ドレイン−ソース間耐圧が300V以上のパワ
ーMOSトランジスタにおいてはウェル拡散層201,
201,…に挟まれた上記ドレイン基板層203a,2
03a,…でのオン抵抗が、パワーMOSトランジスタ
を構成する素子全体のオン抵抗に一番影響が大きいこと
に鑑み(この領域での抵抗値は全体の約半分程度の抵抗
値となっている)、この領域のオン抵抗を下げるため、
その耐圧を低下させないと云う条件の下で、表面に不純
物を高濃度に、しかも浅く導入したものである(図13
には図12のX−X線に沿った不純物濃度分布を示
す)。
In order to reduce the resistance of the drain region while reducing the size of the transistor, as shown in FIG. 12, the upper side 203a of the drain substrate layer 203 surrounded by the well diffusion layers 201, 201 ,. U.S. Pat. No. 4,376,286 proposes a vertical power MOS transistor in which impurities are introduced into 203a, ... In a high concentration to suppress the increase of the on-resistance due to the reduction in size. This proposal proposes a well diffusion layer 201, in a power MOS transistor having a drain-source breakdown voltage of 300 V or more.
The drain substrate layers 203a, 203 sandwiched between 201, ...
In view of the fact that the on-resistance of 03a, ... Has the greatest effect on the on-resistance of the entire element that constitutes the power MOS transistor (the resistance value in this region is about half of the total resistance value). , To reduce the on-resistance in this area,
Impurities were introduced into the surface at a high concentration and shallowly under the condition that the breakdown voltage was not lowered (FIG. 13).
Shows the impurity concentration distribution along the line XX in FIG.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記提
案の縦型パワーMOSトランジスタ構造を採用してオン
抵抗の低下を図った場合、以下のような問題点があるこ
とが本発明者らによって明かとされた。即ち、ウェル拡
散層201,201,…同士の間隔を狭め、この間に形
成されるドレイン基板層の上部203a,203a,…
に不純物を導入した場合、電圧が印加されたときに該不
純物が導入されたドレイン基板部において空乏層が広が
り難くなり、この結果、この領域での耐圧が低下し易く
なる。従って、上述の手法を採った場合には、ドレイン
基板層の上部に導入される不純物の濃度と深さを、形成
されるチャネル層の幅、ウェル拡散層の設置間隔等の他
のパラメータに合わせて最適値を選ぶようにしなければ
ならない。即ち、上記パラメータを選択し、このパラメ
ータに従って形成されたパワーMOSトランジスタの耐
圧、オン抵抗、さらには、ゲート電極とドレイン間の帰
還容量(寄生容量)等の特性が、最適となるように、ド
レイン基板層に導入される不純物の濃度と深さを決定す
る必要がある。従って、ドレイン基板層に導入される不
純物の濃度と深さを決定するために、各パラメータの組
合せによって得られたトランジスタ毎に、多くの特性項
目(耐圧、オン抵抗、容量)を評価しなければならず、
最適な特性を得るために、上記不純物の濃度と深さを決
定することがで困難であった。
However, when the proposed vertical power MOS transistor structure is adopted to reduce the on-resistance, the following problems are revealed by the present inventors. Was done. That is, the distance between the well diffusion layers 201, 201, ... Is narrowed, and the upper portions 203a, 203a, ... Of the drain substrate layer formed between the well diffusion layers 201, 201 ,.
When an impurity is introduced into the substrate, the depletion layer is less likely to spread in the drain substrate portion where the impurity is introduced when a voltage is applied, and as a result, the breakdown voltage in this region is likely to decrease. Therefore, when the above-mentioned method is adopted, the concentration and depth of the impurities introduced into the upper part of the drain substrate layer are adjusted to other parameters such as the width of the formed channel layer and the installation interval of the well diffusion layers. You have to select the optimum value. That is, by selecting the above parameters, the power MOS transistor formed according to these parameters is optimized so that the characteristics such as withstand voltage, on-resistance, and feedback capacitance (parasitic capacitance) between the gate electrode and the drain are optimized. It is necessary to determine the concentration and depth of impurities introduced into the substrate layer. Therefore, in order to determine the concentration and depth of impurities introduced into the drain substrate layer, many characteristic items (breakdown voltage, ON resistance, capacitance) must be evaluated for each transistor obtained by the combination of each parameter. Not
It has been difficult to determine the concentration and depth of the impurities in order to obtain the optimum characteristics.

【0005】本発明はかかる事情に鑑みて為されたもの
で、耐圧特性を低下させることなく、小型、低消費電力
のパワーMOSトランジスタを提供することを目的とす
る。この発明の前記ならびにそのほかの目的と新規な特
徴については、本明細書の記述および添附図面から明ら
かになるであろう。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power MOS transistor which is small in size and low in power consumption without degrading withstand voltage characteristics. The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0006】[0006]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を説明すれば、下記のと
おりである。即ち、請求項1に記載の半導体装置は、第
1の導電形の半導体基板に所定間隔を隔てて少なくとも
2以上形成された第2の導電形のウェル拡散層と、該ウ
ェル拡散層及びチャネル拡散層内に形成された第1の導
電形のソース領域とを具え、前記ウェル拡散層以外の半
導体基板部分がドレイン領域として形成され、前記少な
くとも2以上のウェル拡散層に挟まれた半導体基板部分
は、第1の導電形でそれよりも高濃度に不純物が導入さ
れてなると共に、その深度が深くなるにつれて水平方向
の断面積が大きくなるように形成された縦型パワーMO
Sトランジスタにおいて、ウェル拡散層に挟まれた前記
半導体基板部分にはその深度が浅くなるにつれて濃度が
高くなるように不純物が導入されてなる。また、請求項
3の半導体装置の製造方法によれば、請求項1に記載の
2以上のウェル拡散層に挟まれた半導体基板部分への不
純物の導入が、打込み深度が異なる少なくとも2回の打
込み工程にて行われる。
The typical ones of the inventions disclosed in the present application will be outlined below. That is, in the semiconductor device according to claim 1, at least two well diffusion layers of the second conductivity type are formed on the semiconductor substrate of the first conductivity type at a predetermined interval, and the well diffusion layer and the channel diffusion layer. A source region of the first conductivity type formed in the layer, a semiconductor substrate portion other than the well diffusion layer is formed as a drain region, and the semiconductor substrate portion sandwiched by the at least two or more well diffusion layers is , A vertical power MO formed by introducing impurities into the first conductivity type in a concentration higher than that of the first conductivity type and increasing the horizontal cross-sectional area as the depth increases.
In the S transistor, impurities are introduced into the semiconductor substrate portion sandwiched by the well diffusion layers so that the concentration becomes higher as the depth becomes shallower. According to the method of manufacturing a semiconductor device of claim 3, the introduction of impurities into the semiconductor substrate portion sandwiched by the two or more well diffusion layers according to claim 1 is performed at least twice with different implantation depths. It is done in the process.

【0007】[0007]

【作用】請求項1の発明によれば、チャネル領域とソー
ス領域が形成されるウェル拡散層の設置間隔を狭めて、
半導体基板部分(ドレイン基板層)の上端を狭くしつ
つ、更にウェル拡散層に挟まれた半導体基板部分の不純
物濃度が、その深度が浅くなるにつれて濃度が高くなる
ように形成されているので、トランジスタ導通時には、
該半導体基板部分に形成される空乏層が均等となって、
この部分での電界集中が防止され、耐圧低下が防止され
る。また、請求項3の発明によれば、上記ウェル領域に
挟まれた半導体基板部分への不純物の導入が、深度の異
なる2回の不純物打ち込みによって行われるので、不純
物の導入パターンの態様が多様化し、トランジスタの耐
圧、帰還容量、オン抵抗値を最適値に調整するための設
計上のパラメータ選択が容易となる。
According to the invention of claim 1, the installation interval of the well diffusion layer in which the channel region and the source region are formed is narrowed,
Since the upper end of the semiconductor substrate portion (drain substrate layer) is narrowed, the impurity concentration of the semiconductor substrate portion further sandwiched by the well diffusion layers is formed so as to increase as the depth becomes shallower. When conducting,
The depletion layer formed on the semiconductor substrate becomes uniform,
The electric field concentration is prevented at this portion, and the breakdown voltage is prevented from being lowered. Further, according to the third aspect of the present invention, since the impurities are introduced into the semiconductor substrate portion sandwiched between the well regions by two times of impurity implantation with different depths, the mode of the impurity introduction pattern is diversified. It becomes easy to select design parameters for adjusting the withstand voltage, feedback capacitance, and on-resistance value of the transistor to the optimum values.

【0008】[0008]

【実施例】以下本発明の一実施例について、図1〜図3
を参照して詳細に説明する。図1は、本実施例のnチャ
ネル縦型パワーMOSトランジスタ100の縦断面図で
ある。この実施例で示されたnチャネルパワーMOSト
ランジスタ100の場合、ドレイン領域が形成されるド
レイン基板層103の不純物濃度が1×1014cm-3〜4
×1014cm-3であって、ドレイン耐圧を300V〜60
0V程度確保するように形成されてなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
Will be described in detail with reference to. FIG. 1 is a vertical sectional view of an n-channel vertical power MOS transistor 100 of this embodiment. In the case of the n-channel power MOS transistor 100 shown in this embodiment, the impurity concentration of the drain substrate layer 103 in which the drain region is formed is 1 × 10 14 cm −3 -4.
× 10 14 cm -3 and drain withstand voltage of 300V-60
It is formed so as to secure about 0V.

【0009】以下、このパワーMOSトランジスタ10
0の構造について説明する。図1に示すように、パワー
MOSトランジスタ100は、n形半導体基板101に
形成されるもので、該基板109の上層側にはn形不純
物が導入されたドレイン基板層103が形成され、一
方、基板109の下側にはドレイン用の裏面電極108
が形成されている。又、前記基板層103には多数のp
形のウェル拡散層101,101,…及びチャネル拡散
層101’,101’,…が所定間隔(LW)隔てて形
成されている。このpウェル拡散層101,101,…
及びチャネル拡散層101’,101’,…には、その
基板表面側にn形の高濃度不純物領域(ソース領域)1
04,104…が形成されている。そしてトランジスタ
の作動時、このチャネル拡散層101’,101’…の
ゲート電極102下の表面にチャネルが形成されるよう
になっている。
Hereinafter, this power MOS transistor 10 will be described.
The structure of 0 will be described. As shown in FIG. 1, the power MOS transistor 100 is formed on an n-type semiconductor substrate 101, and a drain substrate layer 103 into which an n-type impurity is introduced is formed on the upper side of the substrate 109, while On the lower side of the substrate 109, a back electrode 108 for drain is formed.
Are formed. In addition, the substrate layer 103 has a large number of p
, And channel diffusion layers 101 ', 101', ... are formed at a predetermined interval (LW). The p well diffusion layers 101, 101, ...
The channel diffusion layers 101 ′, 101 ′, ... Have n-type high-concentration impurity regions (source regions) 1 on the substrate surface side.
04, 104 ... Are formed. When the transistor operates, a channel is formed on the surface of the channel diffusion layers 101 ', 101' ... Under the gate electrode 102.

【0010】又、上記pウェル拡散層101,101,
…及びチャネル拡散層101’,101’,…に挟まれ
たn形のドレイン基板層103の上部には、n形の高濃
度不純物導入部120が形成されている。この高濃度不
純物導入部120は、その深度が深くなるにつれて水平
方向の断面積が大きくなる形状であり、導入されている
不純物(例えばリン)の濃度は、その深度が浅くなるに
つれて濃度が高くされている。即ち、このn形高濃度不
純物導入部120は、後述するように、例えば、打込み
深度の異なる2回のイオン打ち込み(インプラ)によっ
て形成され、従って、その濃度プロフィールは、図10
に示すように、2段階(領域A,B)に変化する。そし
て、上層側の領域A(以下、第1高濃度層(第1層)1
20Aと称する)の不純物濃度(少なくとも最大値)
は、下層側の領域B(以下、第2高濃度層(第2層)1
20Bと称する)の不純物濃度(その最大値)より高濃
度となるように不純物(例えばリン)が導入されてい
る。
The p-well diffusion layers 101, 101,
, And the n-type drain substrate layer 103 sandwiched between the channel diffusion layers 101 ′, 101 ′, ... An n-type high-concentration impurity introduction part 120 is formed. The high-concentration impurity introduction portion 120 has a shape in which the horizontal cross-sectional area increases as the depth thereof increases, and the concentration of impurities (for example, phosphorus) introduced is increased as the depth thereof decreases. ing. That is, the n-type high-concentration impurity introducing portion 120 is formed by, for example, two times of ion implantation (implantation) having different implantation depths, as will be described later, and therefore the concentration profile thereof is as shown in FIG.
As shown in (2), there are two steps (areas A and B). Then, the region A on the upper layer side (hereinafter referred to as the first high-concentration layer (first layer) 1
20A) impurity concentration (at least maximum value)
Is a region B on the lower layer side (hereinafter, referred to as a second high concentration layer (second layer) 1
The impurity (for example, phosphorus) is introduced so as to have a higher concentration than the impurity concentration (referred to as 20B) (its maximum value).

【0011】又、上記高濃度不純物導入部120上方に
はシリコン酸化膜(ゲート酸化膜)106を介してゲー
ト電極102,102…が形成されており、後述するよ
うにこのゲート電極102,102の設置間隔にてウェ
ル拡散層101,101…及びチャネル拡散層10
1’,101’,…の横幅が決定されるようになってい
る。又、ゲート電極102,102…自体の幅を調整す
ることによりドレイン幅LWが決定される(図2)。
Further, gate electrodes 102, 102 ... Are formed above the high-concentration impurity introduction portion 120 via a silicon oxide film (gate oxide film) 106. As will be described later, the gate electrodes 102, 102 are formed. The well diffusion layers 101, 101 ... And the channel diffusion layer 10 are arranged at the installation intervals.
The widths of 1 ', 101', ... Are determined. Further, the drain width LW is determined by adjusting the widths of the gate electrodes 102, 102 ... (FIG. 2).

【0012】概略上記のように構成されてなる縦型パワ
ーMOSトランジスタ100は以下に示す製造プロセス
に従って形成される。 先ず、パワーMOSトランジスタが形成される領域に
不純物(例えばリン)のインプラ・拡散を行ってその表
層にn形の高濃度不純物導入部120を形成する(図
3)。この時の不純物(リン)の打ち込みは、その濃度
が5×1015cm-3程度、打ち込みの深さが4〜5μm程
度で行われる(図9の実線I)。 次に、基準となるpウェル拡散層(例えば図1の拡散
層101a)を形成すべく、ドレイン基板層103表面
に形成されたマスク材131を拡散層の形状に従ってパ
ターニングし、その後p形不純物(例えばボロン)のイ
ンプラ・拡散を行う(図9の破線II)。そしてこのp形
拡散層101aに再度p形不純物のインプラ・拡散を行
って(図9の破線IV)、チャネル領域101’を形成す
る(図4)。 更に、上記拡散層101aにマスク材132を形成
し、この拡散層101a以外の、ドレイン基板層103
に、n形不純物(リン)をインプラ・拡散により重ねて
導入し上記高濃度不純物導入部120の上半分側に、第
1の高濃度層を形成する。この第1の高濃度層120A
の下側の層が第2の高濃度層120Bとなる(図5)。
尚、上記不純物(リン)打ち込みは、そのピーク濃度が
3×1015cm-3程度、深さが2〜3μm程度にて行われ
る(図9、2点鎖線III参照)。 このようにn形又はp形の不純物拡散層が形成された
ドレイン基板層103の表面にゲート酸化膜106を酸
化工程で形成し、その上部に多結晶シリコン(102)
をデポジションさせ、これをパターニングしてゲート電
極102,102,…をそのゲート幅LDが5〜8μ
m、更にゲート電極間の間隔LSが15〜24μmとな
るように形成する(図6)。 次いで上記形成されたゲート電極102,102…を
マスクとして、n形半導体基板101の表面の所定位置
に、他のnウェル拡散層101b,101b,…をイン
プラ・拡散によりセルフアライメントで形成する。この
場合の不純物(ボロン)の導入は図9の破線II及び一点
鎖線IVに従って重ねて行われる。このようにしてドレイ
ン基板層103にpウェル拡散層101,101及びチ
ャネル拡散層101’,101’,…が形成される。更
に、この拡散層101,101,101’,101’に
対して、上記ゲート電極102,102,…をマスクと
して用いた、n形不純物のインプラ・拡散により該pウ
ェル拡散層101,101…及びチャネル拡散層10
1’,101’,…内部にn形不純物拡散層(ソース領
域)104,104…をセルフアライメントで形成し、
縦型パワーMOSトランジスタの基本的な構造を得る
(図7)。 その後、層間絶縁膜(例えばSiO2)107をデポ
ジションし、これにAl引出し電極用のスルーホール1
11,111…(ソース電極用のみ図示)を、ソース領
域、及びゲート電極が形成された領域に対応させて設
け、Al配線112を蒸着し、これをパターニングして
夫々の配線パターンを形成する(図8)。 そして、熱処理によるAl−Siのアロイングを行っ
た後、表面保護膜113を形成し、ボンディングバッド
用のスルーホール(図示省略)を形成し、最後に半導体
基板109の裏面に裏面電極108を蒸着して図1に示
すパワーMOSトランジスタ構造を得る。
The vertical power MOS transistor 100 having the above-described structure is formed according to the following manufacturing process. First, an impurity (for example, phosphorus) is implanted / diffused in a region where a power MOS transistor is formed to form an n-type high-concentration impurity introduction portion 120 in the surface layer (FIG. 3). Implantation of impurities (phosphorus) at this time is performed at a concentration of about 5 × 10 15 cm −3 and an implantation depth of about 4 to 5 μm (solid line I in FIG. 9). Next, the mask material 131 formed on the surface of the drain substrate layer 103 is patterned according to the shape of the diffusion layer to form a reference p-well diffusion layer (for example, the diffusion layer 101a in FIG. 1), and then a p-type impurity ( For example, boron implantation is performed (dashed line II in FIG. 9). Then, the p-type impurity is implanted again into the p-type diffusion layer 101a (dashed line IV in FIG. 9) to form a channel region 101 '(FIG. 4). Further, a mask material 132 is formed on the diffusion layer 101a, and the drain substrate layer 103 other than the diffusion layer 101a is formed.
Then, the n-type impurities (phosphorus) are introduced by being overlapped by implantation and diffusion to form a first high-concentration layer on the upper half side of the high-concentration impurity introduction part 120. This first high concentration layer 120A
The lower layer becomes the second high-concentration layer 120B (FIG. 5).
The impurity (phosphorus) implantation is performed at a peak concentration of about 3 × 10 15 cm −3 and a depth of about 2 to 3 μm (see FIG. 9, two-dot chain line III). A gate oxide film 106 is formed on the surface of the drain substrate layer 103 on which the n-type or p-type impurity diffusion layer is formed by an oxidation process, and polycrystalline silicon (102) is formed on the gate oxide film 106.
Are deposited and patterned to form the gate electrodes 102, 102, ... With a gate width LD of 5 to 8 μm.
m, and the distance LS between the gate electrodes is 15 to 24 μm (FIG. 6). Next, using the formed gate electrodes 102, 102 ... As a mask, other n well diffusion layers 101b, 101b, ... Are formed by self-alignment at a predetermined position on the surface of the n-type semiconductor substrate 101 by implantation / diffusion. In this case, the introduction of impurities (boron) is performed by overlapping according to the broken line II and the chain line IV in FIG. In this way, the p-well diffusion layers 101, 101 and the channel diffusion layers 101 ', 101', ... Are formed on the drain substrate layer 103. Further, with respect to the diffusion layers 101, 101, 101 ', 101', the p-well diffusion layers 101, 101 ... And by the implantation / diffusion of n-type impurities using the gate electrodes 102, 102 ,. Channel diffusion layer 10
1 ', 101', ... Forming n-type impurity diffusion layers (source regions) 104, 104 ...
A basic structure of a vertical power MOS transistor is obtained (FIG. 7). After that, an interlayer insulating film (for example, SiO 2 ) 107 is deposited, and an Al lead electrode through hole 1 is deposited thereon.
11, 111 ... (Only shown for the source electrode) are provided corresponding to the source region and the region where the gate electrode is formed, Al wiring 112 is vapor-deposited, and this is patterned to form respective wiring patterns ( (Figure 8). Then, after Al—Si alloying is performed by heat treatment, a surface protective film 113 is formed, a through hole (not shown) for a bonding pad is formed, and finally, a back electrode 108 is deposited on the back surface of the semiconductor substrate 109. To obtain the power MOS transistor structure shown in FIG.

【0013】このようにして得られたパワーMOSトラ
ンジスタ100は、ドレイン基板層103のうちpウェ
ル拡散層101,101,…及びチャネル拡散層10
1’,101’,…によって囲まれた部分に、高濃度不
純物導入部120が形成され、しかもこの導入部120
の不純物濃度が、上方となるにしたがって濃く形成され
ているので(第1の高濃度層120Aに導入される不純
物濃度が第2の高濃度層120Bの濃度より濃く形成さ
れている)、トランジスタ導通時に、高濃度不純物導入
部120に生じる空乏層を当該導入部120内で均等に
し、電界集中を回避することができる。また、該高濃度
不純物導入部120の不純物の導入の態様が多様化する
ので、他のトランジスタの各構成部の不純物濃度/拡散
層の深さ、ゲート電極の幅、拡散層の大きさ等の製造時
のパラメータをある程度決定した後であっても、該パワ
ーMOSトランジスタの特性が最適となるように、即
ち、小型化に伴うオン抵抗の増大、耐圧の低下防止を同
時に達成するように上記第1,第2の高濃度層の不純物
濃度を決定することができる。
In the power MOS transistor 100 thus obtained, the p-well diffusion layers 101, 101, ... Of the drain substrate layer 103 and the channel diffusion layer 10 are formed.
A high-concentration impurity introducing portion 120 is formed in a portion surrounded by 1 ', 101', ...
Since the impurity concentration of the first high concentration layer 120A is formed higher (the impurity concentration introduced into the first high concentration layer 120A is higher than the concentration of the second high concentration layer 120B), the transistor is turned on. At times, the depletion layer generated in the high-concentration impurity introducing portion 120 can be made uniform in the introducing portion 120, and electric field concentration can be avoided. In addition, since the manner of introducing impurities in the high-concentration impurity introducing portion 120 is diversified, the impurity concentration / diffusion layer depth, gate electrode width, diffusion layer size, etc. of each component of other transistors can be varied. Even after the manufacturing parameters have been determined to some extent, the characteristics of the power MOS transistor are optimized, that is, the on resistance and the breakdown voltage are prevented from increasing with miniaturization at the same time. The impurity concentrations of the first and second high-concentration layers can be determined.

【0014】実際に、上記構成のパワーMOSトランジ
スタの各構成部及びその設計に用いられるパラメータを
以下のように選択したところ、従来のパワーMOSトラ
ンジスタに比して著しくその特性が向上した。以下、詳
述する。
Actually, when the respective components of the power MOS transistor having the above-mentioned structure and the parameters used for the design thereof were selected as follows, the characteristics were remarkably improved as compared with the conventional power MOS transistor. The details will be described below.

【0015】本実施例のnチャネルパワーMOSトラン
ジスタ(ドレイン耐圧=300〜600V)は、以下の
ように各部のパラメータが決定されている。 (1)ドレイン基板層の不純物濃度=1×1014cm-3
4×1014cm-3 (2)第1高濃度層120Aの不純物濃度=6×1015
cm-3〜1×1016cm-3;深さ=2〜3μm程度(図10
のAにて示す範囲) (3)第2高濃度層120Bの不純物濃度=1×1015
cm-3〜5×1015cm-3;深さ=2〜3μm程度(図10
のBにて示す範囲) (4)ゲート電極102,102のゲート幅LD=5〜
8μm;ゲート電極間の間隔LS=15〜24μm (5)pウェル拡散層の相互の間隔LW=1.5〜2.
5μm (6)pウェル拡散層(チャネル層)の縦横の幅LC=
15μm以上
The parameters of each part of the n-channel power MOS transistor (drain breakdown voltage = 300 to 600 V) of this embodiment are determined as follows. (1) Impurity concentration of drain substrate layer = 1 × 10 14 cm −3
4 × 10 14 cm −3 (2) Impurity concentration of the first high concentration layer 120A = 6 × 10 15
cm −3 to 1 × 10 16 cm −3 ; depth = about 2 to 3 μm (see FIG.
Range indicated by A) (3) Impurity concentration of the second high concentration layer 120B = 1 × 10 15
cm −3 to 5 × 10 15 cm −3 ; depth = about 2 to 3 μm (FIG. 10)
(A range indicated by B) (4) Gate widths of gate electrodes 102, 102 LD = 5 to 5
8 μm; Distance between gate electrodes LS = 15 to 24 μm (5) Distance between mutual p well diffusion layers LW = 1.5 to 2.
5 μm (6) Vertical and horizontal width of p well diffusion layer (channel layer) LC =
15 μm or more

【0016】以上の条件に従って実際にパワーMOSト
ランジスタを構成した結果、トランジスタ特性(オン抵
抗RONと,ソース・ドレイン間耐圧VDSS)は図11の実
線Iにて示すものとなる。これは、高濃度不純物導入部
の不純物の導入を1のパターン(高濃度層が1つのみ形
成)にて行った従来のパワーMOSトランジスタ(図1
3に従来のトランジスタ(図12)のX−X線に沿った
濃度特性を示す)の特性(図11の破線にて示す)に比
して、オン抵抗を素子全体で4〜5%低減させ、ドレイ
ン基板層−ゲート電極間の酸化膜容量(帰還容量)を約
20%低減させる構造とすることができた(尚、比較す
るに当たっては、チャネル層101’、ウェル拡散層1
01の深さ、第2層の濃度特性、ドレイン基板103の
不純物濃度、基板の厚さを同一とした。又、耐圧VDSS
は、トランジスタ全体としての耐圧が互いに同一となる
ように構成して、これらを比較した)。
As a result of actually constructing the power MOS transistor according to the above conditions, the transistor characteristics (ON resistance RON and source-drain breakdown voltage VDSS) are as shown by the solid line I in FIG. This is a conventional power MOS transistor in which impurities are introduced into a high-concentration impurity introduction portion in one pattern (only one high-concentration layer is formed) (see FIG. 1).
In FIG. 3, the on-resistance is reduced by 4 to 5% as a whole as compared with the characteristics (indicated by the broken line in FIG. 11) of the conventional transistor (FIG. 12 showing the concentration characteristics along the line XX). The structure can reduce the oxide film capacitance (return capacitance) between the drain substrate layer and the gate electrode by about 20% (for comparison, the channel layer 101 ′ and the well diffusion layer 1
The depth of 01, the concentration characteristic of the second layer, the impurity concentration of the drain substrate 103, and the thickness of the substrate were the same. Also, withstand voltage VDSS
Is configured so that the breakdown voltage of the transistor as a whole is the same, and these are compared).

【0017】以上のように、第1の高濃度層120Aの
不純物濃度を、第2の高濃度層120Bの不純物濃度よ
り高濃度と云う具合いに段階的にその濃度を変化させる
ことによって、高濃度不純物導入部120全体として、
ドレイン基板層の幅が狭い基板表面近傍では不純物濃度
を濃くし、幅が広くなる下部側で不純物濃度をこれより
薄くする(図12に示す従来の高濃度層203aと略同
一の濃度)ことによって、トランジスタ導通時に生じる
空乏層を当該導入部120内で均等にし、電界集中を回
避して、高濃度化に伴う耐圧低下が防止される。
As described above, the impurity concentration of the first high-concentration layer 120A is changed stepwise such that it is higher than the impurity concentration of the second high-concentration layer 120B. The impurity introduction unit 120 as a whole,
By making the impurity concentration high near the substrate surface where the width of the drain substrate layer is narrow, and making the impurity concentration thinner at the lower side where the width is wide (substantially the same concentration as the conventional high concentration layer 203a shown in FIG. 12). The depletion layer generated when the transistor is turned on is made uniform in the introduction part 120, electric field concentration is avoided, and a decrease in breakdown voltage due to high concentration is prevented.

【0018】また、本実施例のn形パワーMOSトラン
ジスタによれば、ドレイン基板層103の上部に形成さ
れた高濃度不純物導入部120が第1高濃度層120A
と第2高濃度層120Bの2段構造となっており、第1
高濃度層の不純物濃度と、第2高濃度層の不純物濃度と
を異なるように設定できるので、高濃度不純物導入部1
20の不純物導入量を適宜調整することにより、そのト
ランジスタ特性(オン抵抗RON,ソース・ドレイン間耐
圧VDSS,帰還容量)を最適値としたまま素子の小型化
を図ることが容易となる。
According to the n-type power MOS transistor of this embodiment, the high-concentration impurity introduction part 120 formed on the drain substrate layer 103 is the first high-concentration layer 120A.
And the second high-concentration layer 120B has a two-stage structure.
Since the impurity concentration of the high-concentration layer and the impurity concentration of the second high-concentration layer can be set differently, the high-concentration impurity introduction part 1
By appropriately adjusting the impurity introduction amount of 20, it becomes easy to miniaturize the element while keeping its transistor characteristics (ON resistance RON, source-drain breakdown voltage VDSS, feedback capacitance) at optimum values.

【0019】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。例えば、本
実施例にて示したトランジスタの各部分の膜厚、不純物
濃度等は、例示的に列挙したものであり、これらの例示
範囲を逸脱したトランジスタにおいても、高濃度不純物
領域を2段階に形成し、これらの領域に導入される不純
物の濃度の組合せを種々変化させることによって、更
に、小型化,オン抵抗の低減等が図られるパワーMOS
トランジスタの設計が容易となる。また、上記実施例の
パワーMOSトランジスタを形成するに当たっては、導
入されるn形不純物としてリン(P)、p形不純物とし
てボロン(B)を例示したが、他のn形,p形不純物を
導入しても同様の効果が得られる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, the film thickness, the impurity concentration, and the like of each portion of the transistor shown in this embodiment are listed as an example, and even in a transistor that deviates from these exemplified ranges, the high-concentration impurity region has two stages. The power MOS is formed and various combinations of the concentrations of the impurities introduced into these regions are changed to further reduce the size and reduce the on-resistance.
The transistor design becomes easy. Further, in forming the power MOS transistor of the above embodiment, phosphorus (P) is illustrated as the n-type impurity to be introduced and boron (B) is illustrated as the p-type impurity, but other n-type and p-type impurities are introduced. Even if the same effect is obtained.

【0020】[0020]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば下記
のとおりである。本発明によれば、チャネル領域とソー
ス領域が形成されるウェル拡散層及びチャネル拡散層の
設置間隔を狭めて、ドレイン基板層の上端を狭くし、且
つ、該半導体基板部分の耐圧低下が防止されるので、オ
ン抵抗の増大防止、耐圧の低下防止を図りつつ、パワー
MOSトランジスタの小型、低消費電力化が達成され
る。
The effects obtained by the representative one of the inventions disclosed in the present application will be briefly described as follows. According to the present invention, the installation interval of the well diffusion layer and the channel diffusion layer in which the channel region and the source region are formed is narrowed, the upper end of the drain substrate layer is narrowed, and the breakdown voltage of the semiconductor substrate portion is prevented from lowering. Therefore, the power MOS transistor can be downsized and the power consumption can be reduced while preventing the increase of the on-resistance and the reduction of the withstand voltage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例のnチャネル縦型パワーMOSトラン
ジスタ100の縦断面図である。
FIG. 1 is a vertical cross-sectional view of an n-channel vertical power MOS transistor 100 of this embodiment.

【図2】図1のトランジスタ100のゲート幅LD,ゲ
ート電極の間隔LS,チャネル幅LC,ウェル拡散層の設
置間隔LWを説明するための縦断面図である。
2 is a vertical cross-sectional view for explaining a gate width LD, a gate electrode interval LS, a channel width LC, and a well diffusion layer installation interval LW of the transistor 100 of FIG.

【図3】パワーMOSトランジスタ100の製造プロセ
スのうち、インプラ・拡散を行って基板表層にn形の高
濃度不純物導入部120を形成した状態を示す断面図で
ある。
FIG. 3 is a cross-sectional view showing a state in which an n-type high-concentration impurity introduction portion 120 is formed in the surface layer of the substrate by performing implantation / diffusion in the manufacturing process of the power MOS transistor 100.

【図4】図3の半導体装置に基準となるウェル拡散層及
びチャネル拡散層を形成した状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which a reference well diffusion layer and a channel diffusion layer are formed in the semiconductor device of FIG.

【図5】図4の半導体装置にインプラを行って高濃度不
純物導入部120の上半分側に、第1の高濃度層を形成
した状態を示す断面図である。
5 is a cross-sectional view showing a state in which a first high-concentration layer is formed on the upper half side of the high-concentration impurity introducing portion 120 by performing implantation on the semiconductor device of FIG.

【図6】図5の半導体装置の基板層103の表面にゲー
ト電極を形成した状態を示す断面図である。
6 is a cross-sectional view showing a state in which a gate electrode is formed on the surface of a substrate layer 103 of the semiconductor device of FIG.

【図7】図6の半導体装置にゲート電極をマスクとして
インプラを行って他のウェル拡散層を形成した状態を示
す断面図である。
7 is a cross-sectional view showing a state in which another well diffusion layer is formed by performing implantation on the semiconductor device of FIG. 6 using a gate electrode as a mask.

【図8】図7の半導体装置に、層間絶縁膜をデポジショ
ンした後、Al配線パターンを形成した状態を示す断面
図である。
8 is a cross-sectional view showing a state in which an Al wiring pattern is formed after depositing an interlayer insulating film on the semiconductor device of FIG.

【図9】上記製造プロセスにて行われるインプラの濃度
/深度を示すグラフである。
FIG. 9 is a graph showing the concentration / depth of implants performed in the manufacturing process.

【図10】本発明のパワーMOSトランジスタの濃度プ
ロフィールを示すグラフである。
FIG. 10 is a graph showing a concentration profile of the power MOS transistor of the present invention.

【図11】本発明のパワーMOSトランジスタの特性
(オン抵抗RONと,ソース・ドレイン間耐圧VDSS)を従
来のトランジスタの特性と比較して示したグラフであ
る。
FIG. 11 is a graph showing characteristics (ON resistance RON and source-drain breakdown voltage VDSS) of the power MOS transistor of the present invention in comparison with characteristics of a conventional transistor.

【図12】従来構造のパワーMOSトランジスタを示す
縦断面図である。
FIG. 12 is a vertical cross-sectional view showing a power MOS transistor having a conventional structure.

【図13】従来構造のパワーMOSトランジスタの濃度
プロフィールを示すグラフである。
FIG. 13 is a graph showing a concentration profile of a power MOS transistor having a conventional structure.

【符号の説明】[Explanation of symbols]

100 縦型nチャネルパワーMOSトランジスタ 101 ウェル拡散層 101’ チャネル拡散層 102 ゲート電極 103 ドレイン基板層 120 高濃度不純物導入部 120A 第1高濃度層(第1層) 120B 第2高濃度層(第2層) LW ドレイン幅 LS ゲート電極の間隔 LC チャネル幅 LD ゲート幅 100 vertical n-channel power MOS transistor 101 well diffusion layer 101 'channel diffusion layer 102 gate electrode 103 drain substrate layer 120 high concentration impurity introduction part 120A first high concentration layer (first layer) 120B second high concentration layer (second Layer) LW drain width LS gate electrode spacing LC channel width LD gate width

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の導電形の半導体基板に所定間隔を
隔てて少なくとも2以上形成された第2の導電形のウェ
ル拡散層と、該ウェル拡散層内に形成された第1の導電
形のソース領域とを具え、前記ウェル拡散層以外の半導
体基板部分がドレイン領域として形成され、前記少なく
とも2以上のウェル拡散層に挟まれた半導体基板部分
は、第1の導電形でそれよりも高濃度に不純物が導入さ
れてなると共に、その深度が深くなるにつれて水平方向
の断面積が大きくなるように形成された縦型パワーMO
Sトランジスタにおいて、ウェル拡散層に挟まれた前記
半導体基板部分にはその深度が浅くなるにつれて濃度が
高くように不純物が導入されてなることを特徴とする半
導体装置。
1. A well diffusion layer of a second conductivity type formed on a semiconductor substrate of a first conductivity type at least two or more at predetermined intervals, and a first conductivity type formed in the well diffusion layer. A semiconductor substrate portion other than the well diffusion layer is formed as a drain region, and the semiconductor substrate portion sandwiched by the at least two or more well diffusion layers has a first conductivity type and is higher than that. A vertical power MO formed by introducing impurities into the concentration and increasing the horizontal cross-sectional area as the depth increases.
In the S-transistor, the semiconductor device is characterized in that impurities are introduced into the semiconductor substrate portion sandwiched by the well diffusion layers so that the concentration becomes higher as the depth becomes shallower.
【請求項2】 前記半導体基板の不純物濃度が1×10
14cm-3〜4×1014cm-3の範囲であるときの前記ウェル
領域に挟まれた半導体基板部分の不純物濃度の最大値は
6×1015cm-3〜1×1016cm-3であることを特徴とす
る請求項1に記載の半導体装置。
2. The impurity concentration of the semiconductor substrate is 1 × 10.
The maximum value of the impurity concentration of the semiconductor substrate portion sandwiched between the well regions in the range of 14 cm −3 to 4 × 10 14 cm −3 is 6 × 10 15 cm −3 to 1 × 10 16 cm −3. The semiconductor device according to claim 1, wherein
【請求項3】 請求項1または2に記載の前記2以上の
ウェル拡散層に挟まれた半導体基板部分に不純物を導入
するに当たって、打込み深度が異なる少なくとも2回の
打込み工程にて不純物を重ね打つようにしたことを特徴
とする半導体装置の製造方法。
3. When introducing impurities into a semiconductor substrate portion sandwiched by the two or more well diffusion layers according to claim 1 or 2, the impurities are overlapped and implanted by at least two implantation steps having different implantation depths. A method of manufacturing a semiconductor device characterized by the above.
JP16063292A 1992-06-19 1992-06-19 Method for manufacturing semiconductor device Expired - Lifetime JP3259330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16063292A JP3259330B2 (en) 1992-06-19 1992-06-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16063292A JP3259330B2 (en) 1992-06-19 1992-06-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH065867A true JPH065867A (en) 1994-01-14
JP3259330B2 JP3259330B2 (en) 2002-02-25

Family

ID=15719132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16063292A Expired - Lifetime JP3259330B2 (en) 1992-06-19 1992-06-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3259330B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101023A (en) * 2001-09-27 2003-04-04 Sanken Electric Co Ltd Vertical insulated gate field-effect transistor and method of manufacturing the same
US6979845B2 (en) 2003-01-30 2005-12-27 Nec Electronics Corporation Semiconductor device in which punchthrough is prevented
JP2006059916A (en) * 2004-08-18 2006-03-02 Matsushita Electric Ind Co Ltd Semiconductor device
JP2009520365A (en) * 2005-12-14 2009-05-21 フリースケール セミコンダクター インコーポレイテッド Super junction power MOSFET
JPWO2007091360A1 (en) * 2006-02-07 2009-07-02 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2011228643A (en) * 2010-03-30 2011-11-10 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacturing method thereof
JP2016529720A (en) * 2013-08-08 2016-09-23 クリー インコーポレイテッドCree Inc. Vertical power transistor device
JP2017059637A (en) * 2015-09-15 2017-03-23 ローム株式会社 Semiconductor device, and inverter device including semiconductor device
CN109638076A (en) * 2017-10-06 2019-04-16 丰田自动车株式会社 Nitride semiconductor device and the method for manufacturing nitride semiconductor device
US10600903B2 (en) 2013-09-20 2020-03-24 Cree, Inc. Semiconductor device including a power transistor device and bypass diode
US10868169B2 (en) 2013-09-20 2020-12-15 Cree, Inc. Monolithically integrated vertical power transistor and bypass diode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101023A (en) * 2001-09-27 2003-04-04 Sanken Electric Co Ltd Vertical insulated gate field-effect transistor and method of manufacturing the same
US6979845B2 (en) 2003-01-30 2005-12-27 Nec Electronics Corporation Semiconductor device in which punchthrough is prevented
JP2006059916A (en) * 2004-08-18 2006-03-02 Matsushita Electric Ind Co Ltd Semiconductor device
JP2009520365A (en) * 2005-12-14 2009-05-21 フリースケール セミコンダクター インコーポレイテッド Super junction power MOSFET
US8222649B2 (en) 2006-02-07 2012-07-17 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
JP2010045388A (en) * 2006-02-07 2010-02-25 Mitsubishi Electric Corp Silicon carbide semiconductor device
JP4545800B2 (en) * 2006-02-07 2010-09-15 三菱電機株式会社 Silicon carbide semiconductor device and manufacturing method thereof
JPWO2007091360A1 (en) * 2006-02-07 2009-07-02 三菱電機株式会社 Semiconductor device and manufacturing method thereof
JP2011228643A (en) * 2010-03-30 2011-11-10 Shindengen Electric Mfg Co Ltd Semiconductor device and manufacturing method thereof
JP2018125544A (en) * 2013-08-08 2018-08-09 クリー インコーポレイテッドCree Inc. Vertical power transistor device
JP2016529720A (en) * 2013-08-08 2016-09-23 クリー インコーポレイテッドCree Inc. Vertical power transistor device
USRE48380E1 (en) 2013-08-08 2021-01-05 Cree, Inc. Vertical power transistor device
USRE49913E1 (en) 2013-08-08 2024-04-09 Wolfspeed, Inc. Vertical power transistor device
US10600903B2 (en) 2013-09-20 2020-03-24 Cree, Inc. Semiconductor device including a power transistor device and bypass diode
US10868169B2 (en) 2013-09-20 2020-12-15 Cree, Inc. Monolithically integrated vertical power transistor and bypass diode
US10950719B2 (en) 2013-09-20 2021-03-16 Cree, Inc. Seminconductor device with spreading layer
JP2017059637A (en) * 2015-09-15 2017-03-23 ローム株式会社 Semiconductor device, and inverter device including semiconductor device
CN109638076A (en) * 2017-10-06 2019-04-16 丰田自动车株式会社 Nitride semiconductor device and the method for manufacturing nitride semiconductor device

Also Published As

Publication number Publication date
JP3259330B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US6633065B2 (en) High-voltage transistor with multi-layer conduction region
KR100859701B1 (en) High voltage LDMOS transistor and method for fabricating the same
US5436482A (en) MOSFET with assymetric lightly doped source-drain regions
US6828631B2 (en) High-voltage transistor with multi-layer conduction region
US5589405A (en) Method for fabricating VDMOS transistor with improved breakdown characteristics
KR100721043B1 (en) Lateral Double-Diffused MOS Transistor and Manufacturing Method Therefor
US7397084B2 (en) Semiconductor device having enhanced performance and method
US5869371A (en) Structure and process for reducing the on-resistance of mos-gated power devices
US5528063A (en) Conductive-overlaid self-aligned MOS-gated semiconductor devices
JP2005286328A (en) Process for manufacturing terminal region of trench mis device, semiconductor die including mis device, and method for forming the same
US6030870A (en) High density MOS technology power device
JP3259330B2 (en) Method for manufacturing semiconductor device
US5825065A (en) Low voltage DMOS transistor
JP2008511973A (en) Power semiconductor devices
US7268046B2 (en) Dual gate oxide high-voltage semiconductor device and method for forming the same
US9837320B2 (en) MOSFET devices with asymmetric structural configurations introducing different electrical characteristics
JP3340435B2 (en) Power FET with shielded channel
JPH03159270A (en) Semiconductor device and manufacture thereof
JP3592734B2 (en) MOS type field effect transistor and method of manufacturing the same
JP3067227B2 (en) MOS type transistor
JPH0567778A (en) Transistor
KR19990065877A (en) Improved Brodymos transistor and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11