JP2006059916A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2006059916A
JP2006059916A JP2004238476A JP2004238476A JP2006059916A JP 2006059916 A JP2006059916 A JP 2006059916A JP 2004238476 A JP2004238476 A JP 2004238476A JP 2004238476 A JP2004238476 A JP 2004238476A JP 2006059916 A JP2006059916 A JP 2006059916A
Authority
JP
Japan
Prior art keywords
region
epitaxial layer
concentration
well region
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004238476A
Other languages
Japanese (ja)
Other versions
JP4922554B2 (en
Inventor
Kaichiro Taguchi
嘉一郎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004238476A priority Critical patent/JP4922554B2/en
Publication of JP2006059916A publication Critical patent/JP2006059916A/en
Application granted granted Critical
Publication of JP4922554B2 publication Critical patent/JP4922554B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device that is improved in the fracture resistance of an F-ASO and R-ASO without expanding the size of an element nor increasing the man-hour of a process and, at the same time, can suppress the rise of the Ron. <P>SOLUTION: The semiconductor device comprises a first-conductivity semiconductor substrate 1, a first-conductivity epitaxial layer 2, and a first-conductivity high-concentration epitaxial layer 3. The device is also provided with a second-conductivity well region 5, a first-conductivity source region 7, and a source electrode 11 formed on the surfaces of the well and source regions 5 and 7. The device also comprises a second-conductivity channel region 6 which is lower in concentration than the well region 5, a gate electrode 9 provided on the surface of the channel region 6 through a gate insulating film 8, and an interlayer insulating film 10 which insulates the gate and source electrodes 9 and 11. Moreover, the device comprises a drain electrode 12 on the bottom surface of the semiconductor substrate 1, and a high-concentration diffusion region 4 which is arranged in the high-concentration epitaxial layer 3 near the surface of the layer 3 and is higher in concentration than the layer 3 adjacently to the channel region 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高耐圧と低動作抵抗で高出力に使用し得るMOS−FET素子を含んだ半導体装置に関する。   The present invention relates to a semiconductor device including a MOS-FET element that can be used for high output with high breakdown voltage and low operating resistance.

縦型MOS−FETは、一般的に拡散自己整合、いわゆるDSA(Diffused Self Aligned)構造をしている。   A vertical MOS-FET generally has a diffusion self-alignment, a so-called DSA (Diffused Self Aligned) structure.

図4に、従来の半導体装置の一つのセルとして形成された縦型MOS−FETの一例を示す。ドレイン領域となるN型の半導体基板1上に、N型のエピタキシャル層2が形成されている。エピタキシャル層2の表面に、チャンネル領域を含むP型の第一ウェル領域13が形成され、さらに第一ウェル領域13内に第一ウェル領域13よりも高濃度のP型の第二ウェル領域14が形成されている。   FIG. 4 shows an example of a vertical MOS-FET formed as one cell of a conventional semiconductor device. An N type epitaxial layer 2 is formed on an N type semiconductor substrate 1 serving as a drain region. A P-type first well region 13 including a channel region is formed on the surface of the epitaxial layer 2, and a P-type second well region 14 having a higher concentration than the first well region 13 is formed in the first well region 13. Is formed.

さらに、第二ウェル領域14内の表面近傍に第一ウェル領域13に接して、N型のソース領域7が形成されている。また、エピタキシャル層2の表面に、ゲート絶縁膜8が形成され、ゲート絶縁膜8上に多結晶シリコンから成るゲート電極9が形成されている。さらに、ゲート電極9を覆った層間絶縁膜10と、ソース領域7に接続され、層間絶縁膜10および第二ウェル領域14を覆ったソース電極11が形成されている。また、半導体基板1の裏面には、ドレイン電極12が形成されている。   Further, an N-type source region 7 is formed in contact with the first well region 13 in the vicinity of the surface in the second well region 14. A gate insulating film 8 is formed on the surface of the epitaxial layer 2, and a gate electrode 9 made of polycrystalline silicon is formed on the gate insulating film 8. Further, an interlayer insulating film 10 covering the gate electrode 9 and a source electrode 11 connected to the source region 7 and covering the interlayer insulating film 10 and the second well region 14 are formed. A drain electrode 12 is formed on the back surface of the semiconductor substrate 1.

しかしながら、図4の構造においては、ドレイン電流の導通時に、第一ウェル領域13と隣接したエピタキシャル層2との境界にできた空乏層が拡がるため、ドレイン電流の導通時におけるチャンネルの抵抗Ronの低下を妨げる一因となることが問題である。   However, in the structure of FIG. 4, a depletion layer formed at the boundary between the first well region 13 and the adjacent epitaxial layer 2 spreads when the drain current is conducted, so that the channel resistance Ron is lowered when the drain current is conducted. The problem is that it contributes to the problem.

特許文献1には、図4の構成の改良例が示されており、その構成を図5に示す。図4と同じ構成要素は、同じ符号を付す。図5において、N型の半導体基板1上に形成されたN型のエピタキシャル層2の上層部に、エピタキシャル層2より高濃度であるN型の高濃度エピタキシャル層3が形成され、高濃度エピタキシャル層3とP型の第一ウェル領域13とが隣接している。その他は、図4と同じ構造である。この構造により、第一ウェル領域13から、隣接した高濃度エピタキシャル層3へ空乏層が拡がることが抑制され、ドレイン電流導通時のRonが、図4の構造のRonに比べて低下する。   Patent Document 1 shows an improved example of the configuration of FIG. 4, and the configuration is shown in FIG. The same components as those in FIG. 4 are denoted by the same reference numerals. In FIG. 5, an N-type high-concentration epitaxial layer 3 having a higher concentration than the epitaxial layer 2 is formed on an upper layer portion of the N-type epitaxial layer 2 formed on the N-type semiconductor substrate 1. 3 and the P-type first well region 13 are adjacent to each other. The other structure is the same as that of FIG. With this structure, the depletion layer is prevented from spreading from the first well region 13 to the adjacent high-concentration epitaxial layer 3, and Ron at the time of drain current conduction is lower than Ron of the structure of FIG. 4.

次に、従来構造の縦型MOS−FETである図4の構成のもう一つの問題点を示す。その問題点とは、高濃度のN型ソース領域7の下部に抵抗成分を下げるために設けられた第二ウェル領域14の拡散のばらつきによって、順方向安全動作領域(以下F−ASOと称する)、逆方向安全動作領域(以下R−ASOと称する)の破壊耐量が低下する点である。   Next, another problem of the configuration of FIG. 4 which is a conventional vertical MOS-FET will be described. The problem is that a forward safe operation region (hereinafter referred to as F-ASO) is caused by variations in diffusion of the second well region 14 provided to lower the resistance component under the high-concentration N-type source region 7. In this case, the breakdown tolerance in the reverse direction safe operation region (hereinafter referred to as R-ASO) is reduced.

この理由は、第二ウェル領域14の横方向への拡散が不足した場合、ソース領域7の下部の抵抗成分が増加するからである。インダクタンスが負荷された回路では、ゲート入力がオンからオフになるとき、素子のドレイン−ソース間耐圧(VDSS)を超える電圧が掛り、素子がブレークダウンを起こす。このときブレークダウン電流が素子内部を通り、ソース領域7に流れる。   This is because the resistance component under the source region 7 increases when the lateral diffusion of the second well region 14 is insufficient. In a circuit loaded with inductance, when the gate input is switched from on to off, a voltage exceeding the drain-source breakdown voltage (VDSS) of the element is applied, causing the element to break down. At this time, a breakdown current flows through the inside of the element and flows into the source region 7.

第一ウェル領域13は高濃度でないため、その抵抗成分は第二ウェル領域14よりも大きくなり、ソース領域7の下部である第一ウェル領域13にブレークダウン電流が流れることにより生じる電圧降下が大きくなる。この電圧降下によりソース領域7と、第一ウェル領域13および第二ウェル領域14と、エピタキシャル層2および半導体基板1とにより形成される寄生トランジスタがオン状態となる。この状態は、ベースがオン状態となり、さらにベース電流が増加する正帰還の状態であるバイポーラ型のトランジスタと見なすことができるため、電流と温度が上昇し続けて破壊に至る。従って、ソース領域7の下部におけるウェル領域の抵抗成分が大きい程R−ASO破壊耐量が小さくなる。   Since the first well region 13 is not high in concentration, its resistance component is larger than that of the second well region 14 and a voltage drop caused by a breakdown current flowing through the first well region 13 below the source region 7 is large. Become. Due to this voltage drop, the parasitic transistor formed by the source region 7, the first well region 13, the second well region 14, the epitaxial layer 2 and the semiconductor substrate 1 is turned on. This state can be regarded as a bipolar transistor that is in a positive feedback state in which the base is turned on and the base current further increases, so that the current and temperature continue to rise, leading to destruction. Therefore, the larger the resistance component of the well region below the source region 7, the smaller the R-ASO breakdown resistance.

また、第二ウェル領域14が横方向へ過剰に拡散した場合、チャンネル領域へ拡散が進行してチャンネル領域の濃度が高くなるため、閾値電圧が高くなり、ゲート入力がオンになると、チャンネル領域を流れる電流により温度が上昇し、F−ASO破壊レベルが下がる。   Further, when the second well region 14 is excessively diffused in the lateral direction, the diffusion proceeds to the channel region and the concentration of the channel region is increased. Therefore, when the threshold voltage is increased and the gate input is turned on, the channel region is The temperature increases due to the flowing current, and the F-ASO breakdown level decreases.

図4の半導体装置の構成における第2の改良例を図6に示す。図4と同じ構成要素は、同じ符号を付す。図6において、ドレイン領域となるN型の半導体基板1の上層部にN型のエピタキシャル層2が形成されている。エピタキシャル層2の表面から延在して、高濃度のウェル領域5が形成され、ウェル領域5の表面の中央部から外側にN型のソース領域7と、ウェル領域5より低濃度のチャンネル領域6が形成されている。   FIG. 6 shows a second improvement example in the configuration of the semiconductor device of FIG. The same components as those in FIG. 4 are denoted by the same reference numerals. In FIG. 6, an N-type epitaxial layer 2 is formed in the upper layer portion of an N-type semiconductor substrate 1 serving as a drain region. A well region 5 having a high concentration is formed extending from the surface of the epitaxial layer 2. An N-type source region 7 and a channel region 6 having a concentration lower than that of the well region 5 are formed outside the center of the surface of the well region 5. Is formed.

さらに、チャンネル領域6より外側にエピタキシャル層2より高濃度のN型であり、ゲートの閾値電圧が2.0〜3.0Vとなる濃度の高濃度拡散層4が形成されている。チャンネル領域6と高濃度拡散層4との上にゲート絶縁膜8が形成され、ゲート絶縁膜8の表面に多結晶シリコンから成るゲート電極9が形成されている。さらに、ゲート電極9を覆う層間絶縁膜10と、層間絶縁膜10とソース領域7とウェル領域5とを覆ってソース電極11が形成されている(例えば特許文献2参照)。   Further, a high concentration diffusion layer 4 having an N type concentration higher than that of the epitaxial layer 2 and having a gate threshold voltage of 2.0 to 3.0 V is formed outside the channel region 6. A gate insulating film 8 is formed on the channel region 6 and the high concentration diffusion layer 4, and a gate electrode 9 made of polycrystalline silicon is formed on the surface of the gate insulating film 8. Further, an interlayer insulating film 10 covering the gate electrode 9, and a source electrode 11 are formed covering the interlayer insulating film 10, the source region 7, and the well region 5 (see, for example, Patent Document 2).

この図6に示した縦型MOS−FETは、図4におけるソース領域7の下部の抵抗成分を下げるために設けた第二ウェル領域14の拡散のばらつきによるF−ASOとR−ASOの破壊耐量低下を防止することができる。   The vertical MOS-FET shown in FIG. 6 has F-ASO and R-ASO breakdown tolerance due to variations in diffusion of the second well region 14 provided to lower the resistance component under the source region 7 in FIG. A decrease can be prevented.

図6の構造によれば、ウェル領域5を任意の高濃度で形成できるため、ウェル領域5の抵抗成分を小さくすることができる。この場合においても、ソース−ドレイン電極間にインダクタンスが負荷されていると、ゲート入力をオンからオフにした際に、ソース領域7−チャンネル領域6形成領域間のジャンクションが動作しにくくなり、チャンネル領域6を通らずに電流が流れる。すなわち、ドレイン電極12から半導体基板1、エピタキシャル層2、ウェル領域5、ソース領域7を通ってソース電極11へと流れる。しかし、図6の構造では、ウェル領域5の抵抗が小さいため、ウェル領域5における電圧降下が小さく、MOS−FETのR−ASOは高い。   According to the structure of FIG. 6, since the well region 5 can be formed at an arbitrary high concentration, the resistance component of the well region 5 can be reduced. Also in this case, if an inductance is loaded between the source and drain electrodes, the junction between the source region 7 and the channel region 6 formation region becomes difficult to operate when the gate input is turned from on to off. Current flows without passing through 6. That is, it flows from the drain electrode 12 to the source electrode 11 through the semiconductor substrate 1, the epitaxial layer 2, the well region 5, and the source region 7. However, in the structure of FIG. 6, since the resistance of the well region 5 is small, the voltage drop in the well region 5 is small, and the R-ASO of the MOS-FET is high.

また、チャンネル領域6へのP型の不純物拡散が発生しないため、ゲートの閾値電圧VTHの上昇を防ぐと共にF−ASO破壊耐量を向上させることができる。
特開平07−169950号公報 特開平04−25180号公報
Further, since the P-type impurity diffusion into the channel region 6 is not generated, it is possible to improve the F-ASO destruction resistance while preventing an increase in the threshold voltage V TH of the gate.
Japanese Patent Application Laid-Open No. 07-169950 Japanese Patent Laid-Open No. 04-25180

F−ASOとR−ASOの破壊耐量を向上させるために図6の構造を用いた場合、図5の構造に比べて、高濃度エピタキシャル層がないため、空乏層が広がり、Ronが上昇するという問題がある。   When the structure of FIG. 6 is used to improve the breakdown tolerance of F-ASO and R-ASO, the depletion layer expands and Ron increases because there is no high concentration epitaxial layer compared to the structure of FIG. There's a problem.

本発明は、従来の問題を解決するもので、素子サイズの拡大とプロセス工数を増やす事なく、F−ASOとR−ASOの破壊耐量を向上させると共にRonの上昇も抑制させた半導体装置を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention solves the conventional problems and provides a semiconductor device that improves the breakdown tolerance of F-ASO and R-ASO and suppresses the rise of Ron without increasing the element size and increasing the number of process steps. The purpose is to do.

第一導電型の半導体基板と、前記半導体基板上に形成された第一導電型のエピタキシャル層と、前記エピタキシャル層の上層部に形成された前記エピタキシャル層より高濃度で第一導電型の高濃度エピタキシャル層と、前記高濃度エピタキシャル層内に前記高濃度エピタキシャル層の表面から内部に延在させて形成された第二導電型のウェル領域と、前記ウェル領域内に配置され、前記ウェル領域表面から内部に延在させて形成された第一導電型のソース領域と、前記ウェル領域表面および前記ソース領域表面に形成されたソース電極と、前記ソース領域と前記高濃度エピタキシャル層とに隣接して、前記ウェル領域の表面から内部に延在して形成され、前記ウェル領域よりも低濃度である第二導電型のチャンネル領域と、前記チャンネル領域の表面にゲート絶縁膜を介して設けられたゲート電極と、前記ゲート電極と前記ソース電極を絶縁する層間絶縁膜と、前記半導体基板の下面にドレイン電極とを備える。上記の問題を解決するために、前記高濃度エピタキシャル層内の表面近傍に配置され、前記高濃度エピタキシャル層よりもさらに高濃度であり、前記チャンネル領域に隣接した高濃度拡散領域を備えたことを特徴とする。   A first conductivity type semiconductor substrate, a first conductivity type epitaxial layer formed on the semiconductor substrate, and a higher concentration of the first conductivity type than the epitaxial layer formed on the upper layer of the epitaxial layer An epitaxial layer; a well region of a second conductivity type formed in the high-concentration epitaxial layer so as to extend from the surface of the high-concentration epitaxial layer; and disposed in the well region, from the surface of the well region Adjacent to the source region of the first conductivity type formed extending inside, the source electrode formed on the well region surface and the source region surface, the source region and the high-concentration epitaxial layer, A channel region of a second conductivity type formed extending from the surface of the well region and having a lower concentration than the well region; and the channel region. Comprising a gate electrode provided via a gate insulating film on the surface of the interlayer insulating film for insulating the source electrode and the gate electrode, and a drain electrode on the lower surface of the semiconductor substrate. In order to solve the above-described problem, a high concentration diffusion region is provided near the surface in the high concentration epitaxial layer, which is higher in concentration than the high concentration epitaxial layer, and adjacent to the channel region. Features.

本発明の半導体装置は、素子サイズの拡大とプロセス工数を増やす事なく、F−ASOとR−ASOの破壊耐量が向上すると共にRonも低下することができる。   The semiconductor device of the present invention can improve the breakdown tolerance of F-ASO and R-ASO and reduce Ron without increasing the element size and increasing the number of process steps.

(実施の形態)
本発明の実施の形態について、図面を用いて説明する。
(Embodiment)
Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態における半導体装置の一つのセルとして形成された縦型MOS−FET素子の断面図である。N型の半導体基板1の上部にN型のエピタキシャル層2が形成されている。エピタキシャル層2の上層部に、N型でエピタキシャル層2より高濃度の高濃度エピタキシャル層3が形成され、高濃度エピタキシャル層3内にP型の高濃度のウェル領域5が形成されている。ウェル領域5内には、P型のチャンネル領域6と、N型のソース領域7が形成され、高濃度エピタキシャル層3内には、チャネル領域6に接して、高濃度エピタキシャル層3より高濃度のN型の高濃度拡散層4が形成されている。   FIG. 1 is a cross-sectional view of a vertical MOS-FET element formed as one cell of a semiconductor device according to an embodiment of the present invention. An N type epitaxial layer 2 is formed on the N type semiconductor substrate 1. An N-type high-concentration epitaxial layer 3 having a higher concentration than the epitaxial layer 2 is formed in the upper layer portion of the epitaxial layer 2, and a P-type high-concentration well region 5 is formed in the high-concentration epitaxial layer 3. A P-type channel region 6 and an N-type source region 7 are formed in the well region 5, and in the high-concentration epitaxial layer 3 is in contact with the channel region 6 and has a higher concentration than the high-concentration epitaxial layer 3. An N-type high concentration diffusion layer 4 is formed.

さらに、チャネル領域6と高濃度拡散層4の表面を覆うゲート絶縁膜8が形成され、ゲート絶縁膜8上に覆ったゲート電極9と、ゲート電極9を覆う層間絶縁膜10が形成されている。さらに、ソース領域7と接続され、ウェル領域5と層間絶縁膜10を覆ったソース電極11が形成され、半導体基板1の裏面にドレイン電極12が形成されている。   Further, a gate insulating film 8 covering the surface of the channel region 6 and the high concentration diffusion layer 4 is formed, and a gate electrode 9 covering the gate insulating film 8 and an interlayer insulating film 10 covering the gate electrode 9 are formed. . Further, a source electrode 11 connected to the source region 7 and covering the well region 5 and the interlayer insulating film 10 is formed, and a drain electrode 12 is formed on the back surface of the semiconductor substrate 1.

図2は、本実施の形態における半導体装置と従来品の性能を比較したグラフである。(a)はRonレベル、(b)はR−ASOレベル、(c)はF−ASOレベルを示す。それぞれのグラフの×印が従来品、○印が本実施の形態における半導体装置の値を示している。(a)では、値が小さいほど抵抗が小さく、(b)、(c)では、値が大きいほど破壊耐圧が高いことを示している。従来品として、図2(a)の比較実験では、図4、図6に示した構造の従来品を用い、図2(b)、(c)の比較実験では、図4、図5に示した構造の従来品を用いた。   FIG. 2 is a graph comparing the performance of the semiconductor device according to the present embodiment and the conventional product. (A) shows Ron level, (b) shows R-ASO level, and (c) shows F-ASO level. In each graph, a cross indicates a conventional product, and a circle indicates the value of the semiconductor device in this embodiment. In (a), the smaller the value, the smaller the resistance. In (b) and (c), the larger the value, the higher the breakdown voltage. As the conventional product, the conventional product having the structure shown in FIGS. 4 and 6 is used in the comparative experiment of FIG. 2A, and the comparative test shown in FIGS. 2B and 2C is shown in FIGS. The conventional product with the same structure was used.

本実施の形態における構成によれば、高濃度の高濃度エピタキシャル層3を形成することにより、ウェル領域5から高濃度エピタキシャル層3への空乏領域の拡がりが抑えられ、図2(a)に示すように、従来例に比べてRonを低く抑制することができる。   According to the configuration of the present embodiment, by forming the high concentration high concentration epitaxial layer 3, the expansion of the depletion region from the well region 5 to the high concentration epitaxial layer 3 can be suppressed, as shown in FIG. Thus, Ron can be suppressed lower than in the conventional example.

また、高濃度拡散層4とウェル領域5との濃度調整により、閾値電圧VTHが2.0〜3.0VとなるP型チャンネル領域6を形成する事ができる。そして、ソース領域7の下部を高濃度のウェル領域5として抵抗成分を下げる事が出来るため、図2(b)に示すように、従来例に比べてR−ASOであるアバランシェ破壊耐量を向上させることができる。さらに、チャンネル領域6へのP型の不純物拡散が発生しないためにVTHの上昇を抑制でき、図2(c)に示すように、従来例に比べてF−ASO破壊レベルが向上する。以上により図4に示した従来例に比べて、R−ASO、F−ASOおよびRonの各々の性能が向上した。 Further, by adjusting the concentration between the high concentration diffusion layer 4 and the well region 5, it is possible to form the P-type channel region 6 in which the threshold voltage V TH is 2.0 to 3.0V. Since the resistance component can be lowered by making the lower portion of the source region 7 a high-concentration well region 5, as shown in FIG. 2B, the avalanche breakdown resistance as R-ASO is improved as compared with the conventional example. be able to. Furthermore, since no P-type impurity diffusion into the channel region 6 occurs, an increase in V TH can be suppressed, and the F-ASO breakdown level is improved as compared with the conventional example, as shown in FIG. As a result, the performance of each of R-ASO, F-ASO, and Ron was improved as compared with the conventional example shown in FIG.

図3は、図1に示した半導体装置の各製造工程を示す断面図である。各構成部分の符号は、各部分の最終形態に図1の符号を用い、製造途中の形態においては、1aのように最終形態の符号と、その形態ごとにaからアルファベットを対応させた符号を用いる。   FIG. 3 is a cross-sectional view showing each manufacturing process of the semiconductor device shown in FIG. 1 is used for the final form of each part, and in the form in the middle of manufacture, the code of the final form as in 1a and the code corresponding to the alphabet from a for each form are used. Use.

まず、図3(a)に示すように、半導体基板1上にN型のエピタキシャル層2aを形成した後、図3(b)に示すように、N型のエピタキシャル層2aの上層を、拡散法を用いて、エピタキシャル層2aより高濃度の高濃度エピタキシャル層3aを形成する。   First, as shown in FIG. 3A, after an N-type epitaxial layer 2a is formed on a semiconductor substrate 1, an upper layer of the N-type epitaxial layer 2a is formed by a diffusion method as shown in FIG. Is used to form a high-concentration epitaxial layer 3a having a higher concentration than the epitaxial layer 2a.

次に、図3(c)に示すように、高濃度拡散層4aを形成する。その工程は図示しないが、高濃度エピタキシャル層3aの表面の高濃度拡散層4aを作成しない領域をレジスト膜でマスクし、ドナーをドープし、拡散させる。拡散されたことにより高濃度エピタキシャル層3aの表面に高濃度拡散層4aが作成され、その後レジスト膜を除去する。この工程により、高濃度エピタキシャル層3aの表面近傍において、レジスト膜で覆われていた領域は変化せず、縦型MOS−FET素子のセルの中心部となり、他の領域は、高濃度拡散層4aとなる。   Next, as shown in FIG. 3C, a high concentration diffusion layer 4a is formed. Although not shown in the figure, the region where the high-concentration diffusion layer 4a on the surface of the high-concentration epitaxial layer 3a is not formed is masked with a resist film, and the donor is doped and diffused. As a result of the diffusion, a high concentration diffusion layer 4a is formed on the surface of the high concentration epitaxial layer 3a, and then the resist film is removed. By this process, in the vicinity of the surface of the high concentration epitaxial layer 3a, the region covered with the resist film is not changed and becomes the center of the cell of the vertical MOS-FET element, and the other regions are the high concentration diffusion layer 4a. It becomes.

次に、図3(d)に示すように、半導体基板1の表面全面にシリコン酸化膜からなるゲート絶縁膜8aをパイロジェニック法により形成する。さらに、ゲート絶縁膜8aの表面全体に多結晶シリコンからなるゲート電極9aを化学気相成長法(以下CVDと称する)を用いて形成する。形成されたゲート電極9aは、フォトリソグラフィーによりパターニングが行われ、セルの中心部から円状にエッチング除去される。すなわち、ゲート絶縁膜8aに接した高濃度エピタキシャル層3bの領域および、高濃度拡散層4aの高濃度エピタキシャル層3bとの境界付近の領域に対応したゲート電極9aが除去される。   Next, as shown in FIG. 3D, a gate insulating film 8a made of a silicon oxide film is formed on the entire surface of the semiconductor substrate 1 by a pyrogenic method. Further, a gate electrode 9a made of polycrystalline silicon is formed on the entire surface of the gate insulating film 8a by chemical vapor deposition (hereinafter referred to as CVD). The formed gate electrode 9a is patterned by photolithography and etched away from the center of the cell in a circular shape. That is, the gate electrode 9a corresponding to the region of the high concentration epitaxial layer 3b in contact with the gate insulating film 8a and the region in the vicinity of the boundary between the high concentration diffusion layer 4a and the high concentration epitaxial layer 3b is removed.

次に、図3(e)に示すように、ウェル領域5aを形成する。すなわち、ゲート電極9をマスクとし、ゲート絶縁膜8aを介したセルフアライメント拡散により、高濃度エピタキシャル層3bと高濃度拡散層4aの表面から高濃度エピタキシャル層3bの内部にかけて、N型の高濃度拡散層4aより不純物濃度の高いP型のウェル領域5を形成する。その後、CVDを用いて、ゲート電極9の表面およびエッチングされた端面と、ゲート絶縁膜8aの表面にかけての全面とを覆って、酸化シリコンからなる層間絶縁膜10aを形成する。   Next, as shown in FIG. 3E, a well region 5a is formed. That is, N-type high concentration diffusion is performed from the surface of the high concentration epitaxial layer 3b and the high concentration diffusion layer 4a to the inside of the high concentration epitaxial layer 3b by self-alignment diffusion through the gate insulating film 8a using the gate electrode 9 as a mask. A P-type well region 5 having an impurity concentration higher than that of the layer 4a is formed. Thereafter, an interlayer insulating film 10a made of silicon oxide is formed by using CVD so as to cover the surface of the gate electrode 9 and the etched end face and the entire surface of the gate insulating film 8a.

この工程により、ウェル領域5は、横方向にも拡散してゲート電極9の下層にも入り込み、ウェル領域5が形成された高濃度拡散層4aの領域は、ウェル領域5の他の部分よりも低濃度のP型に反転し、チャンネル領域6aとなる。   By this step, the well region 5 diffuses also in the lateral direction and enters the lower layer of the gate electrode 9, and the region of the high concentration diffusion layer 4 a where the well region 5 is formed is more than the other part of the well region 5. The channel region 6a is obtained by inverting to the low concentration P type.

次に、層間絶縁膜10aを選択的にエッチングして、図3(f)に示すように、ゲート電極9の上部以外の層間絶縁膜10aとゲート電極9の下部以外のゲート絶縁膜8aとを共に除去し、ウェル領域5とチャンネル領域6aの表面を露出させる。この工程により、ゲート電極9の上面に形成された層間絶縁膜10bの端面は、ゲート電極9およびゲート絶縁膜8の端面と同一面となる。次に、露出された表面のウェル領域5の領域上面をレジスト膜で覆う。   Next, the interlayer insulating film 10a is selectively etched to form an interlayer insulating film 10a other than the upper part of the gate electrode 9 and a gate insulating film 8a other than the lower part of the gate electrode 9, as shown in FIG. Both are removed to expose the surface of the well region 5 and the channel region 6a. By this step, the end surface of the interlayer insulating film 10 b formed on the upper surface of the gate electrode 9 is flush with the end surfaces of the gate electrode 9 and the gate insulating film 8. Next, the upper surface of the well region 5 on the exposed surface is covered with a resist film.

その後、レジスト膜と層間絶縁膜10bをマスクとして、ドープした領域がN型となる量のドナーをドープし、拡散させることにより、ウェル領域5内部にP型のチャンネル領域6aと同様の深さに、チャンネル領域6aの一部にN型のソース領域7を形成し、その後にレジスト膜を除去する。形成されたソース領域7は横方向にも拡散して、ゲート絶縁膜8の下層にも入り込む。   Thereafter, using the resist film and the interlayer insulating film 10b as a mask, the doped region is doped with an amount of N-type donor and diffused, so that the well region 5 has the same depth as the P-type channel region 6a. The N-type source region 7 is formed in a part of the channel region 6a, and then the resist film is removed. The formed source region 7 is also diffused in the lateral direction and enters the lower layer of the gate insulating film 8.

次に、図3(g)に示すように、CVDによって、層間絶縁膜10bの表面と、同一端面上にある層間絶縁膜10b、ゲート電極9およびゲート絶縁膜8の各々の端面と、露出したウェル領域5およびソース領域7の表面との全面を覆った層間絶縁膜10cを追加形成し、ウェル領域5の全表面と、ウェル領域5近傍のソース領域7表面の一部を覆う層間絶縁膜10cをエッチング除去して、コンタクト窓を形成する。   Next, as shown in FIG. 3G, the surface of the interlayer insulating film 10b and the end surfaces of the interlayer insulating film 10b, the gate electrode 9 and the gate insulating film 8 on the same end surface are exposed by CVD. An interlayer insulating film 10c that covers the entire surface of the well region 5 and the source region 7 is additionally formed, and an interlayer insulating film 10c that covers the entire surface of the well region 5 and part of the surface of the source region 7 near the well region 5 is formed. Is removed by etching to form a contact window.

この状態で、残された層間絶縁膜10は、ゲート電極9とゲート絶縁膜8との端面を覆っており、ソース領域7表面の一部領域にもかかっている。次に、露出したウェル領域5と、ソース領域7と、層間絶縁膜10の表面を覆ったソース電極11を形成する。さらに、半導体基板1の裏面をメタライズすることにより、ドレイン電極12を形成し、図1に示す構造が完成する。   In this state, the remaining interlayer insulating film 10 covers the end surfaces of the gate electrode 9 and the gate insulating film 8 and also covers a part of the surface of the source region 7. Next, the exposed well region 5, the source region 7, and the source electrode 11 covering the surface of the interlayer insulating film 10 are formed. Furthermore, the drain electrode 12 is formed by metallizing the back surface of the semiconductor substrate 1, and the structure shown in FIG. 1 is completed.

本発明の半導体装置は、高耐圧と低動作抵抗で高出力に使用し得る半導体装置として有用であり、特に高出力タイプに適している。   The semiconductor device of the present invention is useful as a semiconductor device that can be used for high output with high breakdown voltage and low operating resistance, and is particularly suitable for a high output type.

本発明の実施の形態における半導体装置の断面図Sectional drawing of the semiconductor device in embodiment of this invention 本発明の半導体装置と従来の半導体装置の特性比較グラフであり、(a)は、Ronレベル、(b)は、R−ASOレベル、(c)は、F−ASOレベルを示すグラフ4 is a characteristic comparison graph between the semiconductor device of the present invention and a conventional semiconductor device, where (a) is a Ron level, (b) is an R-ASO level, and (c) is a graph showing an F-ASO level. 本発明の半導体装置の各製造工程における断面図Sectional drawing in each manufacturing process of the semiconductor device of this invention 従来の半導体装置の断面図Sectional view of a conventional semiconductor device 従来の半導体装置の断面図Sectional view of a conventional semiconductor device 従来の半導体装置の断面図Sectional view of a conventional semiconductor device

符号の説明Explanation of symbols

1 半導体基板
2、2a エピタキシャル層
3、3a、3b 高濃度エピタキシャル層
4、4a 高濃度拡散層
5 ウェル領域
6、6a チャンネル領域
7 ソース領域
8、8a ゲート絶縁膜
9、9a ゲート電極
10、10a、10b、10c 層間絶縁膜
11 ソース電極
12 ドレイン電極
13 第一ウェル領域
14 第二ウェル領域
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2, 2a Epitaxial layer 3, 3a, 3b High concentration epitaxial layer 4, 4a High concentration diffusion layer 5 Well region 6, 6a Channel region 7 Source region 8, 8a Gate insulating film 9, 9a Gate electrode 10, 10a, 10b, 10c Interlayer insulating film 11 Source electrode 12 Drain electrode 13 First well region 14 Second well region

Claims (1)

第一導電型の半導体基板と、
前記半導体基板上に形成された第一導電型のエピタキシャル層と、
前記エピタキシャル層の上層部に形成された前記エピタキシャル層より高濃度で第一導電型の高濃度エピタキシャル層と、
前記高濃度エピタキシャル層内に前記高濃度エピタキシャル層の表面から内部に延在させて形成された第二導電型のウェル領域と、
前記ウェル領域内に配置され、前記ウェル領域表面から内部に延在させて形成された第一導電型のソース領域と、
前記ウェル領域表面および前記ソース領域表面に形成されたソース電極と、
前記ソース領域と前記高濃度エピタキシャル層とに隣接して、前記ウェル領域の表面から内部に延在して形成され、前記ウェル領域よりも低濃度である第二導電型のチャンネル領域と、
前記チャンネル領域の表面にゲート絶縁膜を介して設けられたゲート電極と、
前記ゲート電極と前記ソース電極を絶縁する層間絶縁膜と、
前記半導体基板の下面にドレイン電極とを備えた半導体装置において、
前記高濃度エピタキシャル層内の表面近傍に配置され、前記高濃度エピタキシャル層よりもさらに高濃度であり、前記チャンネル領域に隣接した高濃度拡散領域を備えたことを特徴とする半導体装置。
A first conductivity type semiconductor substrate;
An epitaxial layer of a first conductivity type formed on the semiconductor substrate;
A high-concentration epitaxial layer of the first conductivity type at a higher concentration than the epitaxial layer formed in the upper layer portion of the epitaxial layer;
A well region of a second conductivity type formed in the high concentration epitaxial layer so as to extend from the surface of the high concentration epitaxial layer to the inside;
A source region of a first conductivity type disposed in the well region and extending from the surface of the well region to the inside;
A source electrode formed on the surface of the well region and the surface of the source region;
Adjacent to the source region and the high-concentration epitaxial layer, a channel region of a second conductivity type formed extending from the surface of the well region to the inside and having a lower concentration than the well region;
A gate electrode provided on the surface of the channel region via a gate insulating film;
An interlayer insulating film for insulating the gate electrode and the source electrode;
In a semiconductor device comprising a drain electrode on the lower surface of the semiconductor substrate,
A semiconductor device comprising a high concentration diffusion region disposed near a surface in the high concentration epitaxial layer, having a higher concentration than the high concentration epitaxial layer, and adjacent to the channel region.
JP2004238476A 2004-08-18 2004-08-18 Manufacturing method of semiconductor device Expired - Fee Related JP4922554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004238476A JP4922554B2 (en) 2004-08-18 2004-08-18 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004238476A JP4922554B2 (en) 2004-08-18 2004-08-18 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2006059916A true JP2006059916A (en) 2006-03-02
JP4922554B2 JP4922554B2 (en) 2012-04-25

Family

ID=36107153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004238476A Expired - Fee Related JP4922554B2 (en) 2004-08-18 2004-08-18 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4922554B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554746A (en) * 2020-04-23 2020-08-18 杭州创勤传感技术有限公司 Silicon carbide MOSFET device and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742164A (en) * 1980-08-27 1982-03-09 Hitachi Ltd Semiconductor device
JPS60186068A (en) * 1985-01-31 1985-09-21 Hitachi Ltd Insulated gate field effect transistor
JPH065867A (en) * 1992-06-19 1994-01-14 Hitachi Ltd Semiconductor device and its production
JPH065865A (en) * 1992-06-19 1994-01-14 Fuji Electric Co Ltd Mos type semiconductor element and its production
JPH09102506A (en) * 1995-10-05 1997-04-15 Hitachi Ltd Manufacture of semiconductor device
JP2000077663A (en) * 1998-09-02 2000-03-14 Mitsubishi Electric Corp Field-effect semiconductor device
JP2000200904A (en) * 1999-01-06 2000-07-18 Rohm Co Ltd Semiconductor device and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742164A (en) * 1980-08-27 1982-03-09 Hitachi Ltd Semiconductor device
JPS60186068A (en) * 1985-01-31 1985-09-21 Hitachi Ltd Insulated gate field effect transistor
JPH065867A (en) * 1992-06-19 1994-01-14 Hitachi Ltd Semiconductor device and its production
JPH065865A (en) * 1992-06-19 1994-01-14 Fuji Electric Co Ltd Mos type semiconductor element and its production
JPH09102506A (en) * 1995-10-05 1997-04-15 Hitachi Ltd Manufacture of semiconductor device
JP2000077663A (en) * 1998-09-02 2000-03-14 Mitsubishi Electric Corp Field-effect semiconductor device
JP2000200904A (en) * 1999-01-06 2000-07-18 Rohm Co Ltd Semiconductor device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111554746A (en) * 2020-04-23 2020-08-18 杭州创勤传感技术有限公司 Silicon carbide MOSFET device and method of manufacturing the same

Also Published As

Publication number Publication date
JP4922554B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
KR100859701B1 (en) High voltage LDMOS transistor and method for fabricating the same
JP4772843B2 (en) Semiconductor device and manufacturing method thereof
JP4024503B2 (en) Semiconductor device and manufacturing method thereof
US8866220B2 (en) Semiconductor device
US6870218B2 (en) Integrated circuit structure with improved LDMOS design
US20140320174A1 (en) Integrated circuits with laterally diffused metal oxide semiconductor structures
US20060001110A1 (en) Lateral trench MOSFET
JP2006074015A (en) Semiconductor device and its manufacturing method
JP2011100877A (en) Semiconductor device and method of manufacturing the same
JP2005285913A (en) Semiconductor device and manufacturing method thereof
JP2001077354A (en) Vertical insulating gate semiconductor device
JP2008004649A (en) Semiconductor device, and manufacturing method thereof
JP2010040686A (en) Semiconductor device and its manufacturing method
JP2006287127A (en) Semiconductor device and its manufacturing method
JP2011009387A (en) Semiconductor device, method of manufacturing the same, and dc-dc converter using the same
JP2000332247A (en) Semiconductor device
JP4857590B2 (en) Semiconductor element
JP2009206145A (en) Semiconductor device, and manufacturing method thereof
JP2006294990A (en) Semiconductor device
JP4922554B2 (en) Manufacturing method of semiconductor device
TW408472B (en) The manufacture method for increasing CMOS breakdown voltage
JP2010010583A (en) Semiconductor device and method of manufacturing the same
JP2005332886A (en) Semiconductor device
JP2009170598A (en) Semiconductor device and method for producing the same
JP2008085082A (en) Power mosfet, semiconductor device equipped with the same, and manufacturing method of power mosfet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees