JPH0658330B2 - Light intensity setting circuit - Google Patents

Light intensity setting circuit

Info

Publication number
JPH0658330B2
JPH0658330B2 JP62217120A JP21712087A JPH0658330B2 JP H0658330 B2 JPH0658330 B2 JP H0658330B2 JP 62217120 A JP62217120 A JP 62217120A JP 21712087 A JP21712087 A JP 21712087A JP H0658330 B2 JPH0658330 B2 JP H0658330B2
Authority
JP
Japan
Prior art keywords
signal
light quantity
circuit
measurement
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62217120A
Other languages
Japanese (ja)
Other versions
JPS6459146A (en
Inventor
康志 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62217120A priority Critical patent/JPH0658330B2/en
Publication of JPS6459146A publication Critical patent/JPS6459146A/en
Publication of JPH0658330B2 publication Critical patent/JPH0658330B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光学装置分野に利用される。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is used in the field of optical devices.

本発明は、光量設定回路に関し、特に印刷配線板用外観
検査装置の画像取込部において自動的に最適光量を設定
する最適光量の設定回路に関する。
The present invention relates to a light quantity setting circuit, and more particularly to an optimum light quantity setting circuit that automatically sets the optimum light quantity in an image capturing section of a visual inspection apparatus for printed wiring boards.

〔概要〕〔Overview〕

光量を一次元センサで検出し、その最適光量の設定を行
う光量設定回路において、 前記一次元センサで検出されたビデオ信号を異なる値の
二つのしきい値でそれぞれ二値化し、一走査内における
それぞれの二値化信号の「高」レベルの幅の総和を計測
し、比較を行い、両者がほぼ一致する光量を最適光量と
して設定することにより、 最適光量の設定を、容易に、正確に、短時間で行えるよ
うにしたものである。
In the light quantity setting circuit for detecting the light quantity by the one-dimensional sensor and setting the optimum light quantity, the video signal detected by the one-dimensional sensor is binarized by two threshold values of different values, and within one scanning. By measuring the total sum of the "high" level widths of each binarized signal and making a comparison, and setting the light intensity at which they almost match as the optimum light intensity, the optimum light intensity can be set easily and accurately. This is done in a short time.

〔従来の技術〕[Conventional technology]

従来、CCD等の一次元センサで構成される複数の一次
元カメラと、相対応する複数の照明光源を有する反射光
方式の印刷配線板用外観検査装置とを用いて、印刷配線
板の銅箔表面画像を取り込むための最適光量の設定を行
う場合、作業者が、オシロスコープ等の波形観測装置を
用いて複数の一次元カメラから出力されるアナログビデ
オ信号を観察しながら一台一台の光量調整ボリューム等
を操作して光量の設定を行っていた。
Conventionally, a copper foil of a printed wiring board is obtained by using a plurality of one-dimensional cameras including one-dimensional sensors such as CCDs and a reflected light type appearance inspection device for a printed wiring board having a plurality of corresponding illumination light sources. When setting the optimum light intensity for capturing the surface image, the operator adjusts the light intensity of each device while observing the analog video signals output from multiple one-dimensional cameras using a waveform observation device such as an oscilloscope. The volume of light was set by operating the volume.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、前述した作業者による光量の設定では、印刷配
線板のパターン形成時における銅箔面の処理方法、ある
いは経時変化に伴う銅箔面の酸化によって、銅箔表面上
の光の反射率が異なってくるため、均一なアナログビデ
オ信号が得られない。または照明光源のばらつきが存在
するため、各一次元カメラごとにバランスのとれた均一
な画像を得るのに熟練を要する。このため、 (i)光量設定を正確に行わないと正確な画像がとらえ
られないため、欠陥の見のがしが発生する。あるいは誤
認識率が高くなる。
However, in the setting of the amount of light by the worker described above, the reflectance of light on the copper foil surface is different due to the treatment method of the copper foil surface at the time of pattern formation of the printed wiring board or the oxidation of the copper foil surface due to aging. Therefore, a uniform analog video signal cannot be obtained. Or, since there are variations in the illumination light source, it takes skill to obtain a balanced and uniform image for each one-dimensional camera. For this reason, (i) an accurate image cannot be captured unless the light amount is set accurately, and defects may be missed. Or the false recognition rate becomes high.

(ii)光量の設定に時間がかかる。(Ii) It takes time to set the light amount.

などの問題点があった。There were problems such as.

また、光量の設定においては、通常、光量が零の状態か
ら徐々に光量を増加していった最適光量を設定する操作
を行う。これは光量の高いレベルを最初に設定するとセ
ンサが飽和状態になり、光量検出に悪影響を及ぼすから
である。このため、被写体である印刷配線板ごとに光量
を零から設定していくには光量の設定が短時間でできる
ことが要望される。
Further, in setting the light amount, usually, an operation of setting the optimum light amount by gradually increasing the light amount from the state where the light amount is zero is performed. This is because the sensor is saturated when the high light level is set first, which adversely affects the light amount detection. Therefore, in order to set the light amount from zero for each printed wiring board that is a subject, it is required that the light amount can be set in a short time.

本発明の目的は、前記の問題点を解消することにより、
正確な画像を容易に得ることができ、欠陥の見のがしを
なくし誤認識率を低減するとともに光量設定の時間を短
縮できる光量設定回路を提供することにある。
The object of the present invention is to solve the above problems by
An object of the present invention is to provide a light amount setting circuit which can easily obtain an accurate image, which makes it possible to eliminate defects from being seen, reduce the false recognition rate, and shorten the time for setting the light amount.

〔問題点を解決するための手段〕[Means for solving problems]

本第一の発明は、光量を検出する一次元センサを含み、
被写体に与える光源の光量を徐々に増加して最適光量を
設定する手段を備える光量設定回路において、前記一次
元センサから出力されるアナログビデオ信号をそれぞれ
第一のしきい値および第二のしきい値で二値化して一走
査内「高」レベル信号の幅の総和を計測しそれぞれ第一
の計測信号および第二の計測信号を出力する第一の二値
化計測回路および第二の二値化計測回路と、前記第一お
よび第二の計測信号を入力し比較を行い両信号の差があ
らかじめ定められた許容範囲内にある場合粗一致信号を
出力する粗一致検出回路と、前記粗一致信号を入力し前
記一次元センサを含む光学系の光量を制御する光量制御
回路とを含むことを特徴とする。
The first invention includes a one-dimensional sensor that detects the amount of light,
In a light quantity setting circuit including means for gradually increasing the light quantity of a light source applied to a subject and setting an optimum light quantity, an analog video signal output from the one-dimensional sensor is supplied with a first threshold value and a second threshold value, respectively. First binarization measurement circuit and second binarization circuit that binarizes values and measures the total width of "high" level signals in one scan and outputs the first measurement signal and the second measurement signal, respectively. And a rough match detection circuit that outputs a rough match signal when the difference between the first and second measurement signals is input and compared and is within a predetermined allowable range. And a light amount control circuit for inputting a signal and controlling the light amount of an optical system including the one-dimensional sensor.

本第二の発明は、光量を検出する一次元センサを含み、
被写体に与える光源の光量を徐々に増加して最適光量を
設定する手段を備える光量設定回路において、前記一次
元センサから出力されるアナログビデオ信号をディジタ
ル信号に変換するアナログディジタル変換回路と、変換
された前記ディジタル信号をそれぞれ第一のしきい値お
よび第二のしきい値で二値化して一走査内の「高」レベ
ル信号の幅の総和を計測しそれぞれ第一の計測信号およ
び第二の計測信号を出力する第一の二値化計測回路およ
び第二の二値化計測回路と、前記第一および第二の計測
信号を入力し比較を行い両信号の差があらかじめ定めら
れた許容範囲内にある場合粗一致信号を出力する粗一致
検出回路と、前記粗一致信号を入力し前記一次元センサ
を含む光学系の光量を制御する光量制御回路とを含むこ
とを特徴とする。
The second invention includes a one-dimensional sensor that detects the amount of light,
In a light quantity setting circuit including means for gradually increasing the light quantity of a light source given to a subject and setting an optimum light quantity, an analog-digital conversion circuit for converting an analog video signal output from the one-dimensional sensor into a digital signal, and a converted signal. The digital signals are binarized with a first threshold value and a second threshold value, respectively, and the sum of the widths of the "high" level signals in one scan is measured to obtain the first measurement signal and the second measurement signal, respectively. A first binarized measurement circuit and a second binarized measurement circuit that output a measurement signal, and the first and second measurement signals are input and compared, and the difference between the two signals is a predetermined allowable range. And a light quantity control circuit for inputting the rough match signal and controlling the light quantity of the optical system including the one-dimensional sensor.

〔作用〕[Action]

一次元センサからのアナログビデオ信号をそのままある
いはアナログディジタル変換回路でディジタル信号に変
換して、第一および第二の二値化計測回路により、一走
査内における、第一のしきい値による二値化信号の
「高」レベルの幅の総和の計測値と、第二のしきい値に
よる二値化信号の「高」レベルの幅の総和の計測値とを
粗一致検出回路で比較し、その差が一定の許容範囲内に
なるように検出を行い(以下、この検出を粗一致検出と
いう。)粗一致検出信号を出力する。これにより光量制
御回路は、光量を徐々に増加する回路を用いて粗一致信
号が入力されたときに光量増加制御を停止して光量の設
定を行う。
The analog video signal from the one-dimensional sensor is converted to a digital signal as it is or by an analog-digital conversion circuit, and the first and second binarization measurement circuits make it possible to convert the binary value by the first threshold value in one scan. The measured value of the sum of the "high" level widths of the binarized signal and the measured value of the sum of the "high" level widths of the binarized signal by the second threshold are compared by the coarse match detection circuit, and the Detection is performed so that the difference is within a certain allowable range (hereinafter, this detection is referred to as rough match detection), and a rough match detection signal is output. As a result, the light amount control circuit stops the light amount increase control and sets the light amount when the rough coincidence signal is input using the circuit that gradually increases the light amount.

すなわち、相異なる二つのしきい値で二値化し、二つの
二値化信号の「高」レベルの幅の総和(電力に当たる)
をほぼ一致させるので、一次元センサからのアナログビ
デオ信号の不均一性は消去されるので、正確に最適光量
を設定することが可能となる。しかも自動的に制御を行
うことができ設定が容易となる。
That is, binarization is performed with two different thresholds, and the sum of the "high" level widths of the two binarized signals (corresponding to power)
Since the non-uniformity of the analog video signal from the one-dimensional sensor is eliminated by making the values substantially coincide with each other, it is possible to accurately set the optimum light amount. Moreover, the control can be automatically performed and the setting becomes easy.

〔実施例〕 以下、本発明の実施例について図面を参照して説明す
る。
EXAMPLES Examples of the present invention will be described below with reference to the drawings.

第1図は本第一の発明の一実施例を示すブロック構成
図、第2図(a)、(b)および(c)はその最適光量を得るま
での過程を示す説明図である。
FIG. 1 is a block diagram showing an embodiment of the first invention, and FIGS. 2 (a), 2 (b) and 2 (c) are explanatory views showing a process until obtaining the optimum light amount.

本実施例は、銅箔表面の反射光をとらえるラインセンサ
からなる一次元センサ1と、この一次元センサ1から出
力されるアナログビデオ信号6を第3図で示す第一のし
きい値13で二値化し、一走査内の第一の二値化信号15の
「高」レベルの幅の総和を計測する第一の二値化計測回
路2と、第一の二値化計測回路2と並列に設けられ、第
3図で示す第二のしきい値12で二値化し一走査内の第二
の二値化信号14の「高」レベルの幅の総和を計測する第
二の二値化計測回路3と、第一の二値化計測回路2から
出力される第一の計測信号7と第二の二値化計測回路3
から出力される第二の計測信号8とを入力して両者を比
較し粗一致検出を行い粗一致信号9を出力す粗一致検出
回路4と、粗一致信号9により光源16の光量を制御する
光量制御回路5とを含んでいる。なお、17は被試験の印
刷配線板である。
In this embodiment, a one-dimensional sensor 1 composed of a line sensor for capturing the reflected light on the copper foil surface, and an analog video signal 6 output from the one-dimensional sensor 1 are converted into a first threshold value 13 shown in FIG. A first binarization measurement circuit 2 that binarizes and measures the sum of the "high" level widths of the first binarization signal 15 in one scan, and in parallel with the first binarization measurement circuit 2. The second binarization, which is provided in FIG. 3 and binarizes with the second threshold 12 shown in FIG. 3, and measures the sum of the widths of the “high” level of the second binarized signal 14 in one scan Measurement circuit 3, first measurement signal 7 output from first binarization measurement circuit 2, and second binarization measurement circuit 3
The second measurement signal 8 output from the above is input, the two are compared, coarse coincidence detection is performed, and a coarse coincidence signal 9 is output, and the light amount of the light source 16 is controlled by the coarse coincidence signal 9. The light amount control circuit 5 is included. Reference numeral 17 is a printed wiring board under test.

本第一の発明の特徴は、第1図において、第一および第
二の二値化計測回路2および3と、粗一致検出回路4
と、光量制御回路5とを設けたことにある。
The feature of the first invention is that, in FIG. 1, first and second binarization measurement circuits 2 and 3 and a rough match detection circuit 4 are provided.
And the light amount control circuit 5 is provided.

次に第2図を用いて本実施例の動作について説明する。Next, the operation of this embodiment will be described with reference to FIG.

まず、光量制御回路5で徐々に光源16の光量を増加す
る。第2図(a)で示すように、銅箔表面からの反射光に
従って変換されたアナログビデオ信号6が第一のしきい
値13のレベルに達すると、第一の二値化信号15が得られ
る。この場合は銅箔表面の光の反射の不均一部分を二値
化してしまうので、第一の二値化信号15は不連続となり
正確な画像にならない。また第二のしきい値12による第
二の二値化信号14が出力されないので、各々一走査内で
の二値化信号14および15の「高」レベルの幅の総和の計
測値は粗一致検出しない。
First, the light amount control circuit 5 gradually increases the light amount of the light source 16. As shown in FIG. 2 (a), when the analog video signal 6 converted according to the reflected light from the copper foil surface reaches the level of the first threshold 13, the first binary signal 15 is obtained. To be In this case, since the non-uniform reflection of light on the surface of the copper foil is binarized, the first binarized signal 15 becomes discontinuous and an accurate image cannot be obtained. Further, since the second binarized signal 14 by the second threshold 12 is not output, the measured values of the sum of the widths of the “high” level of the binarized signals 14 and 15 within one scanning are roughly the same. Not detected.

そして再び光量制御回路5で光源16の光量を増加する。
第2図(b)は、銅箔表面からの反射光に従って変換され
たアナログビデオ信号6が第二のしきい値12レベルに達
した場合である。この場合、第一のしきい値13による第
一の二値化信号15はほぼ正確な画像としてとらえられる
が、第二のしきい値12による第二の二値化信号14は、銅
箔表面の光の反射の不均一部分を二値化してしまうの
で、不連続な信号となり正確な画像にならないため、両
者の一走査内での「高」レベルの幅の総和は、粗一致検
出回路4で比較しても粗一致しないので粗一致信号9が
出力されない。
Then, the light amount control circuit 5 increases the light amount of the light source 16 again.
FIG. 2 (b) shows a case where the analog video signal 6 converted according to the reflected light from the surface of the copper foil reaches the second threshold 12 level. In this case, the first binarized signal 15 by the first threshold value 13 is regarded as an almost accurate image, but the second binarized signal 14 by the second threshold value 12 is the copper foil surface. Since the non-uniform portion of the light reflection of 2 is binarized, a discontinuous signal is not obtained and an accurate image cannot be obtained. Therefore, the sum of the "high" level widths within one scanning of both is determined by the coarse coincidence detection circuit 4. The coarse match signal 9 is not output because the rough match does not occur even when compared with.

そのためさらに光源16の光量の増加を行う。第2図(c)
は、銅箔表面からの反射光に不均一があってもアナログ
ビデオ信号6の出力が全体的にアップし、第二のしきい
値12レベルを越えた場合である。このとき一走査内での
第一の二値化信号15の「高」レベルの幅の総和と、第二
の二値化信号14の「高」レベルの幅の総和は、はじめて
粗一致する。そして、粗一致検出回路4から出力された
粗一致信号9は光量制御回路5に入力されて光源16の光
量増加制御を停止し、光量設定の一連の動作が完了す
る。
Therefore, the light amount of the light source 16 is further increased. Fig. 2 (c)
Is a case where the output of the analog video signal 6 is entirely increased and exceeds the second threshold 12 level even if there is unevenness in the reflected light from the surface of the copper foil. At this time, the total sum of the widths of the “high” level of the first binarized signal 15 and the total sum of the widths of the “high” level of the second binarized signal 14 in one scan roughly agrees for the first time. Then, the rough match signal 9 output from the rough match detection circuit 4 is input to the light quantity control circuit 5 to stop the light quantity increase control of the light source 16, and the series of operations for setting the light quantity is completed.

以上説明した光量設定を各一次元カメラに対し各々行
う。
The light amount setting described above is performed for each one-dimensional camera.

第3図は、本第二の発明の一実施例を示すブロック構成
図である。本実施例は、第1図の第一の発明の実施例で
説明した一次元センサ1から出力されるアナログビデオ
信号6を一たんアナログディジタル変換回路10にてディ
ジタルビデオ信号11に変換し、第一の二値化計測回路2
aでディジタルしきい値(図示省略)によりディジタル
二値化を行い一走査内の第一の二値化信号の「高」レベ
ルの幅の総和を計測する。第二の二値化計測回路3aに
おいても同様の処理がなされる。以降、第一の発明の実
施例と同様の手順で光源16の光量の増加制御を行うこと
により最適光量の設定がなされる。この場合、二値化信
号の生成がより正確となりより正確な設定が行われる。
FIG. 3 is a block diagram showing an embodiment of the second invention. In this embodiment, the analog video signal 6 output from the one-dimensional sensor 1 described in the embodiment of the first invention of FIG. One binary measurement circuit 2
At a, digital binarization is performed using a digital threshold value (not shown), and the sum of the widths of the "high" level of the first binarized signal in one scan is measured. Similar processing is performed in the second binarization measurement circuit 3a. After that, the optimum light amount is set by performing the increase control of the light amount of the light source 16 in the same procedure as the embodiment of the first invention. In this case, the binarized signal is generated more accurately, and more accurate setting is performed.

本第二の発明の特徴は、第3図において、アナログディ
ジタル変換回路10を第1図の回路に付加したことにあ
る。
A feature of the second invention is that the analog-digital conversion circuit 10 in FIG. 3 is added to the circuit of FIG.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は徐々に光量を増加して、
第一のしきい値および第二のしきい値による二値化信号
の計測値を比較することで粗一致を検出する。そして粗
一致検出信号により光量増加制御を停止し、最適光量の
設定を自動的に行うことで、 (i)各々一次元カメラごとにバランスのとれた正確な
画像を容易に得ることができ、欠陥の見のがしがなくな
り、誤認識率も低域する、 (ii)被写体ごとに異なる最適光量設定の時間が短くな
る などの効果がある。
As described above, the present invention gradually increases the light amount,
A rough match is detected by comparing the measured values of the binarized signal with the first threshold value and the second threshold value. Then, the light quantity increase control is stopped by the rough coincidence detection signal and the optimum light quantity is automatically set. (I) It is possible to easily obtain a balanced and accurate image for each one-dimensional camera. It has the effect of reducing the misrecognition, lowering the false recognition rate, and (ii) shortening the time for setting the optimum light intensity that differs for each subject.

【図面の簡単な説明】[Brief description of drawings]

第1図は本第一の発明の一実施例を示すブロック構成
図。 第2図はその光量設定の過程を示す説明図。 第3図は本第二の発明の一実施例を示すブロック構成
図。 1……一次元センサ、2、2a……第一の二値化計測回
路、3、3a……第二の二値化計測回路、4……粗一致
検出回路、5……光量制御回路、6……アナログビデオ
信号、7……第一の計測信号、8……第二の計測信号、
9……粗一致信号、10……アナログディジタル変換回
路、11……ディジタルビデオ信号、12……第二のしきい
値、13……第一のしきい値、14……第二の二値化信号、
15……第一の二値化信号、16……光源、17……印刷配線
板。
FIG. 1 is a block diagram showing an embodiment of the first invention. FIG. 2 is an explanatory view showing the process of setting the light quantity. FIG. 3 is a block diagram showing an embodiment of the second invention. 1 ... One-dimensional sensor, 2 and 2a ... 1st binarization measurement circuit, 3 and 3a ... 2nd binarization measurement circuit, 4 ... Coarse coincidence detection circuit, 5 ... Light quantity control circuit, 6 ... analog video signal, 7 ... first measurement signal, 8 ... second measurement signal,
9 ... Coarse coincidence signal, 10 ... Analog-digital conversion circuit, 11 ... Digital video signal, 12 ... Second threshold value, 13 ... First threshold value, 14 ... Second binary value Signal,
15 …… first binarized signal, 16 …… light source, 17 …… printed wiring board.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】光量を検出する一次元センサを含み、被写
体に与える光源の光量を徐々に増加して最適光量を設定
する手段を備える光量設定回路において、 前記一次元センサから出力されるアナログビデオ信号を
それぞれ第一のしきい値および第二のしきい値で二値化
して一走査内の「高」レベル信号の幅の総和を計測しそ
れぞれ第一の計測信号および第二の計測信号を出力する
第一の二値化計測回路および第二の二値化計測回路と、 前記第一および第二の計測信号を入力し比較を行い両信
号の差があらかじめ定められた許容範囲内にある場合粗
一致信号を出力する粗一致検出回路と、 前記粗一致信号を入力し前記一次元センサを含む光学系
の光量を制御する光量制御回路と を含むことを特徴とする光量設定回路。
1. A light quantity setting circuit including a one-dimensional sensor for detecting a light quantity, comprising means for gradually increasing the light quantity of a light source applied to an object to set an optimum light quantity, wherein an analog video output from the one-dimensional sensor The signals are binarized with the first threshold and the second threshold, respectively, and the sum of the widths of the "high" level signals in one scan is measured to obtain the first measurement signal and the second measurement signal, respectively. The first binarized measurement circuit and the second binarized measurement circuit for outputting, and the first and second measurement signals are input and compared, and the difference between the two signals is within a predetermined allowable range. In this case, the light quantity setting circuit includes a rough match detection circuit that outputs a rough match signal, and a light quantity control circuit that receives the rough match signal and controls the light quantity of an optical system including the one-dimensional sensor.
【請求項2】光量を検出する一次元センサを含み、被写
体に与える光源の光量を徐々に増加して最適光量を設定
する手段を備える光量設定回路において、 前記一次元センサから出力されるアナログビデオ信号を
ディジタル信号に変換するアナログディジタル変換回路
と、 変換された前記ディジタル信号をそれぞれ第一のしきい
値および第二のしきい値で二値化して一走査内の「高」
レベル信号の幅の総和を計測しそれぞれ第一の計測信号
および第二の計測信号を出力する第一の二値化計測回路
および第二の二値化計測回路と、 前記第一および第二の計測信号を入力し比較を行い両信
号の差があらかじめ定められた許容範囲内にある場合粗
一致信号を出力する粗一致検出回路と、 前記粗一致信号を入力し前記一次元センサを含む光学系
の光量を制御する光量制御回路と を含むことを特徴とする光量設定回路。
2. A light quantity setting circuit including a one-dimensional sensor for detecting a light quantity, and comprising means for gradually increasing the light quantity of a light source applied to an object to set an optimum light quantity, wherein an analog video output from the one-dimensional sensor An analog-to-digital conversion circuit for converting a signal into a digital signal, and the converted digital signal is binarized by a first threshold value and a second threshold value, respectively, to obtain "high" in one scan.
A first binarization measurement circuit and a second binarization measurement circuit for measuring the sum of the widths of the level signals and outputting the first measurement signal and the second measurement signal, respectively, and the first and second A coarse match detection circuit that outputs a rough match signal when a difference between the two signals is within a predetermined allowable range by inputting a measurement signal, and an optical system including the one-dimensional sensor that receives the rough match signal And a light amount control circuit for controlling the light amount of the light amount setting circuit.
JP62217120A 1987-08-31 1987-08-31 Light intensity setting circuit Expired - Lifetime JPH0658330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62217120A JPH0658330B2 (en) 1987-08-31 1987-08-31 Light intensity setting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62217120A JPH0658330B2 (en) 1987-08-31 1987-08-31 Light intensity setting circuit

Publications (2)

Publication Number Publication Date
JPS6459146A JPS6459146A (en) 1989-03-06
JPH0658330B2 true JPH0658330B2 (en) 1994-08-03

Family

ID=16699168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62217120A Expired - Lifetime JPH0658330B2 (en) 1987-08-31 1987-08-31 Light intensity setting circuit

Country Status (1)

Country Link
JP (1) JPH0658330B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347453A (en) * 1986-08-12 1988-02-29 元旦ビューティ工業株式会社 Transverse shingled roof

Also Published As

Publication number Publication date
JPS6459146A (en) 1989-03-06

Similar Documents

Publication Publication Date Title
GB2104214A (en) Inspection system
JPH0736001B2 (en) Bottle defect inspection method
US20050196996A1 (en) Component mounting board inspecting apparatus
EP0974832B1 (en) Apparatus and method for detecting light or dark blemishes
JPH0658330B2 (en) Light intensity setting circuit
JP2596158B2 (en) Component recognition device
JPS62299705A (en) Inspecting instrument for package parts
JPS62140007A (en) Apparatus for detecting pattern
JPS58153328A (en) Photodetecting sensitivity irregularity correcting system for image sensor
JPS591978B2 (en) Object condition inspection device
JPS624851B2 (en)
JP2701872B2 (en) Surface inspection system
JP3029723B2 (en) Method of detecting lead floating in soldering process
JPS62298705A (en) Linear sensor light source controlling system
JPH0121881B2 (en)
JPS62123339A (en) Soldering appearance inspection
JPH05203583A (en) Visual inspection method
JPH03118453A (en) Surface inspecting apparatus
JPH0388079A (en) Method for recognizing object
JPH11166905A (en) Device and method for inspecting surface and computer-readable storage medium
JPH0378607A (en) Inspecting apparatus of soldering
JPH0273473A (en) Inspecting method
JPH01199276A (en) Check device
JPS63124946A (en) Inspection device for soldering state
JPH01284979A (en) Picture recognizing device