JPH0656702A - Method for hydrogenating and reducing cyclic organic compound - Google Patents

Method for hydrogenating and reducing cyclic organic compound

Info

Publication number
JPH0656702A
JPH0656702A JP3355680A JP35568091A JPH0656702A JP H0656702 A JPH0656702 A JP H0656702A JP 3355680 A JP3355680 A JP 3355680A JP 35568091 A JP35568091 A JP 35568091A JP H0656702 A JPH0656702 A JP H0656702A
Authority
JP
Japan
Prior art keywords
hydrogen
cyclic organic
organic compound
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3355680A
Other languages
Japanese (ja)
Other versions
JP3023809B2 (en
Inventor
Isahiro Kawasaki
功博 川崎
Minoru Morita
稔 守田
Hiroaki Konishi
寛昭 小西
Masami Kawanari
真美 川成
Shunichi Dosemari
俊一 堂迫
Sakanori Shukke
栄記 出家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP3355680A priority Critical patent/JP3023809B2/en
Publication of JPH0656702A publication Critical patent/JPH0656702A/en
Application granted granted Critical
Publication of JP3023809B2 publication Critical patent/JP3023809B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enable the efficient carrying out of a hydrogenating reduction of a cyclic organic compound under conditions of high safety without requiring a catalyst such as the conventional nickel by catalytically hydrogenating the cyclic organic compound with hydrogen released from a hydrogen storing alloy. CONSTITUTION:A cyclic organic compound having one or more double bonds, preferably an aromatic compound or a heterocyclic compound, especially an aromatic hydrocarbon, furan, pyrrole or pyridine is hydrogenated and reduced. In the process, a hydrogen storing alloy (e.g. CaNi5 or LaNi5) containing a compound having a hexagonal CaCu5 type crystal structure comprising M (which denotes a rare earth element or Ca element) and Ni as essential elements as a main phase is used and the cyclic organic compound is catalytically hydrogenated with hydrogen released from the alloy to reduce the one or more double bonds. After the reaction, the hydrogen gas and the reactional solution are recovered and the hydrogen storing alloy is cooled. The hydrogen is then recycled for repeated use in the next reducing reaction. Since the hydrogen storing alloy has a high catalytic ability, the cyclic organic compound can safely be reduced with a high reduction ratio even under 30kg/cm<2> or lower hydrogen gas pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素貯蔵合金を用い
て、芳香族化合物や複素環式化合物等の環状有機化合物
を水素化還元する方法に関する。本発明の方法は、食
品、医薬、農薬等の分野において利用される化成品の合
成に際して有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydrogenating a cyclic organic compound such as an aromatic compound or a heterocyclic compound using a hydrogen storage alloy. INDUSTRIAL APPLICABILITY The method of the present invention is useful in the synthesis of chemical products used in the fields of food, medicine, agricultural chemicals and the like.

【0002】[0002]

【従来の技術】芳香族化合物、あるいは複素環式化合物
を水素添加によって還元する反応は、古くから多くの例
が知られている。その代表的なものとしてパラジウム、
白金、ニッケル、コバルト、銅等の金属触媒を用い、水
素雰囲気下で水素化還元する方法がある。この方法によ
ると、他の還元剤を用いる反応に比べて操作が簡単で、
しかも生成物と触媒を容易に分離できるので、反応系を
汚さずに反応を行うことができるという利点がある。こ
の際に使用する金属触媒のうち、パラジウム及び白金は
触媒としての活性が比較的高く、低温・低圧下でも水素
化反応を行うことができるが、ニッケル、コバルト、銅
等は触媒としての活性が低く、しばしば、高温・高圧条
件下の反応を必要とする。一方、産業上、この反応を利
用する場合のランニングコストという観点からみると、
パラジウムや白金等の貴金属は再生が可能であるとはい
え高価であり、工業規模で使用するには必ずしも適当と
言えない。
2. Description of the Related Art Many examples of the reaction for reducing an aromatic compound or a heterocyclic compound by hydrogenation have been known for a long time. Palladium as a typical one,
There is a method of performing hydrogenation reduction in a hydrogen atmosphere using a metal catalyst such as platinum, nickel, cobalt and copper. According to this method, the operation is easier than the reaction using other reducing agents,
Moreover, since the product and the catalyst can be easily separated, there is an advantage that the reaction can be performed without polluting the reaction system. Among the metal catalysts used at this time, palladium and platinum have a relatively high activity as a catalyst and can perform the hydrogenation reaction at low temperature and low pressure, but nickel, cobalt, copper, etc. have a high activity as a catalyst. Low, often requiring reaction under high temperature, high pressure conditions. On the other hand, industrially, from the viewpoint of running cost when using this reaction,
Noble metals such as palladium and platinum can be recycled, but are expensive, and are not necessarily suitable for use on an industrial scale.

【0003】近年開発されその応用が注目されている水
素貯蔵合金は、現在、自動車、ヒートポンプ及び室内の
冷暖房システム等の分野で利用されているが、水素貯蔵
合金には、例えばLaNi5 、MgNi、TiFeなど
多くの種類があって、合金の水素貯蔵量、排出圧力及び
排出温度などの機能は、その構成金属によって大きく異
なるため、その利用に当たっては合金の選択が重要とな
る。
Hydrogen storage alloys, which have been recently developed and are attracting attention for their applications, are currently used in the fields of automobiles, heat pumps, indoor air-conditioning systems, and the like. The hydrogen storage alloys include, for example, LaNi 5 , MgNi, There are many types such as TiFe, and the functions of the alloy such as hydrogen storage amount, discharge pressure, discharge temperature, etc. differ greatly depending on the constituent metals, and therefore the selection of the alloy is important for its use.

【0004】ところで、水素貯蔵合金による水素化還元
反応の例としては、オレフィンの水素化還元、一酸化炭
素の水素化及びアンモニアの合成が「水素貯蔵合金デー
タブック」(与野書房1987年発行) において、更に、オ
レイン酸メチルの常圧水素化分解によるC18アルコール
生成反応については、日本化学会(第54回春季年会1987
年開催) において報告されている。また、油脂の水素添
加(特開昭63-268799号) 、糖アルコールの製造 (特願
平2-219100号) 、ジスルフィド結合の還元(特願平2-27
7808号) 、脱保護法 (特願平2-277809号) 等について
も、報告されている。
By the way, as an example of the hydrogenation reduction reaction by a hydrogen storage alloy, hydrogenation reduction of olefins, hydrogenation of carbon monoxide and synthesis of ammonia are described in "Hydrogen Storage Alloy Data Book" (published by Yono Shobo 1987). In addition, regarding the C 18 alcohol formation reaction by atmospheric hydrogenolysis of methyl oleate, the Chemical Society of Japan (54th Annual Meeting of the Spring 1987
(Held annually). In addition, hydrogenation of fats and oils (JP-A-63-268799), production of sugar alcohol (Japanese Patent Application No. 2-219100), reduction of disulfide bond (Japanese Patent Application No. 2-27100).
7808) and the deprotection law (Japanese Patent Application No. 2-277809).

【0005】しかし、水素貯蔵合金を用いて芳香族化合
物や複素環式化合物等の環状有機化合物を水素化還元し
た例についての報告は見られない。
However, there is no report on an example in which a cyclic organic compound such as an aromatic compound or a heterocyclic compound is hydrogenated using a hydrogen storage alloy.

【0006】[0006]

【発明が解決しようとする課題】本発明は、接触水素化
による芳香族化合物や複素環式化合物等の環状有機化合
物の還元を行うに当たり、反応性の高い水素貯蔵合金を
利用するため、従来の触媒を全く用いる必要がなく、ま
た、水素貯蔵合金から排出される大量の水素を低圧で利
用することができ、高い還元率で、安全かつ安価に接触
水素化による芳香族化合物や複素環式化合物等の環状有
機化合物の水素化還元を行う方法を提供することを課題
とする。
DISCLOSURE OF THE INVENTION The present invention utilizes a highly reactive hydrogen storage alloy in the reduction of cyclic organic compounds such as aromatic compounds and heterocyclic compounds by catalytic hydrogenation. It is not necessary to use a catalyst at all, and a large amount of hydrogen discharged from a hydrogen storage alloy can be used at low pressure. It has a high reduction rate and can be safely and inexpensively produced by catalytic hydrogenation of aromatic compounds or heterocyclic compounds. An object of the present invention is to provide a method for hydrogenating and reducing a cyclic organic compound such as.

【0007】[0007]

【課題を解決するための手段】本発明は、芳香族化合物
や複素環式化合物等の環状有機化合物に対し、接触水素
化反応によって水素化する際に、M(希土類元素もしく
はCa元素を表す)及びNiを必須元素とした六方晶の
CaCu5 型の結晶構造を有する化合物を主相とする水
素貯蔵合金を用い、該合金から放出される水素で接触水
素化を行い、還元することを特徴とする。
According to the present invention, when a cyclic organic compound such as an aromatic compound or a heterocyclic compound is hydrogenated by a catalytic hydrogenation reaction, M (representing a rare earth element or Ca element) is used. And a hydrogen storage alloy having as a main phase a compound having a hexagonal CaCu 5 type crystal structure in which Ni is an essential element, and catalytic hydrogenation is performed with hydrogen released from the alloy to reduce the hydrogen. To do.

【0008】以下、本発明を詳しく説明する。本発明に
おいて用いられる環状有機化合物は、一つ以上の二重結
合を有する芳香族化合物や複素環式化合物が好ましく、
さらに好ましくは、芳香族炭化水素、フラン、ピロー
ル、ピリジンである。本発明において用いられる水素貯
蔵合金は、M(希土類元素もしくはCa元素を表す)及
びNiを必須元素とした六方晶のCaCu5 型の結晶構
造を有する化合物を主相とする。また、水素貯蔵合金内
に含まれるCaCu5 型の結晶相は、50重量%以上含ま
れ、残部は主相以外の金属間化合物、不純物、添加元素
などが第2相もしくは混合相として存在する。これらの
水素貯蔵合金は、それ自体還元反応に対する高い触媒能
を有するので、使用する合金の種類と還元反応を行う温
度条件を適切に設定することにより、30kg/cm2未満の水
素ガス圧条件でも、高い還元率で、かつ安全に芳香族化
合物や複素環式化合物等の環状有機化合物を還元するこ
とが可能である。
The present invention will be described in detail below. The cyclic organic compound used in the present invention is preferably an aromatic compound or a heterocyclic compound having one or more double bonds,
More preferred are aromatic hydrocarbons, furan, pyrrole and pyridine. The hydrogen storage alloy used in the present invention has, as a main phase, a compound having a hexagonal CaCu 5 type crystal structure in which M (representing a rare earth element or Ca element) and Ni are essential elements. Further, the CaCu 5 type crystal phase contained in the hydrogen storage alloy is contained in an amount of 50% by weight or more, and the rest contains intermetallic compounds other than the main phase, impurities, additional elements, etc. as the second phase or mixed phase. Since these hydrogen storage alloys themselves have high catalytic ability for the reduction reaction, by appropriately setting the type of alloy to be used and the temperature condition for performing the reduction reaction, even under the hydrogen gas pressure condition of less than 30 kg / cm 2. It is possible to reduce cyclic organic compounds such as aromatic compounds and heterocyclic compounds safely with a high reduction rate.

【0009】この水素貯蔵合金を微粉化した後、0℃も
しくはそれ以下の温度で、水素雰囲気下、一定時間保持
することにより、水素を合金に吸蔵させる。本発明にお
いては、芳香族化合物や複素環式化合物等の環状有機化
合物を含む反応溶液と上記水素貯蔵合金を反応槽に入
れ、脱気後、攪拌しながら反応液を適切な温度条件に調
整して反応させるか、ジャケット式によって水素貯蔵合
金を冷却し得るようにした棚段式カラムに水素貯蔵合金
を封入し、適切な温度条件に保持された反応液を循環さ
せることにより,芳香族化合物や複素環式化合物等の環
状有機化合物を水素化還元する。
After pulverizing this hydrogen storage alloy, the alloy is occluded with hydrogen by holding it at a temperature of 0 ° C. or lower in a hydrogen atmosphere for a certain period of time. In the present invention, a reaction solution containing a cyclic organic compound such as an aromatic compound or a heterocyclic compound and the hydrogen storage alloy are placed in a reaction tank, and after degassing, the reaction solution is adjusted to an appropriate temperature condition while stirring. Of the aromatic compound and the hydrogen storage alloy is sealed in a tray column that can cool the hydrogen storage alloy by a jacket method and the reaction solution kept at an appropriate temperature condition is circulated. A cyclic organic compound such as a heterocyclic compound is hydrogenated and reduced.

【0010】反応後、水素ガス及び反応液を回収し、水
素貯蔵合金を冷却する。この水素貯蔵合金は、水素を再
循環することにより、次回の還元反応に繰り返し使用す
ることが可能である。なお、本発明は、水素貯蔵合金の
特性上、水素ガス圧が30kg/cm2未満の条件で十分に環状
有機化合物の水素化還元を行うことが可能であり、製造
装置の保持安全性上、有利である。また、水素貯蔵合金
は、耐食性、熱伝導性等の向上を意図して表面改質され
たメッキ粉末、表面処理粉末、銅やシリコンなどによる
カプセル化合金等も本発明に使用可能である。
After the reaction, the hydrogen gas and the reaction solution are recovered and the hydrogen storage alloy is cooled. This hydrogen storage alloy can be repeatedly used for the next reduction reaction by recycling hydrogen. Incidentally, the present invention, in the characteristics of the hydrogen storage alloy, the hydrogen gas pressure can be sufficiently hydrogenated reduction of the cyclic organic compound under the condition of less than 30 kg / cm 2 , in terms of the retention safety of the manufacturing apparatus, It is advantageous. In addition, as the hydrogen storage alloy, a plating powder, a surface-treated powder, an encapsulated alloy of copper, silicon or the like, which is surface-modified for the purpose of improving corrosion resistance, thermal conductivity, etc., can be used in the present invention.

【0011】[0011]

【実施例】次に実施例を示し、本発明を具体的に説明す
る。 実施例1 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素貯蔵合金CaNi5 を入れ
る。これに0℃、真空度750mmHg で5分間脱気した後、
冷却したトルエン100ml を反応容器内に注入した。その
後、攪拌しながら反応温度を80℃に調整した。この時、
反応容器内の水素ガス圧力は、20kg/cm2であった。2時
間後、HPLCにて反応液中の主生成物を分取し、I
R、NMRで確認したところ、88%の収率で目的の1−
メチル−シクロヘキサンが生成していることを確認し
た。
EXAMPLES Next, the present invention will be described concretely by showing Examples. Example 1 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 0 ° C and vacuum degree of 750mmHg,
100 ml of cooled toluene was poured into the reaction vessel. Then, the reaction temperature was adjusted to 80 ° C. with stirring. At this time,
The hydrogen gas pressure in the reaction vessel was 20 kg / cm 2 . After 2 hours, the main product in the reaction solution was collected by HPLC, and I
When confirmed by R and NMR, the desired 1-
It was confirmed that methyl-cyclohexane was produced.

【0012】実施例2 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素貯蔵合金LaNi5 を入れ
る。これに4℃、真空度750mmHg で5分間脱気した後、
冷却した5重量%の濃度の安息香酸の0.01M KOH溶液
100ml を反応容器内に注入した。その後、攪拌しながら
反応温度を70℃に調整した。この時の反応容器内の水素
ガス圧力は、18kg/cm2であった。3時間後、HPLCに
て反応液中の主生成物を分取し、IR,NMRで確認し
たところ、76%の収率で目的のシクロヘキサンカルボン
酸が生成していることを確認した。
Example 2 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy LaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 4 ℃ and vacuum degree of 750mmHg,
Cooled 0.01% KOH solution of benzoic acid at a concentration of 5% by weight
100 ml was poured into the reaction vessel. Then, the reaction temperature was adjusted to 70 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 18 kg / cm 2 . After 3 hours, the main product in the reaction solution was collected by HPLC and confirmed by IR and NMR. It was confirmed that the target cyclohexanecarboxylic acid was produced in a yield of 76%.

【0013】実施例3 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素貯蔵合金LaNi4.2 Al
0.8 を入れる。これに、0℃、真空度750mmHgで5分間
脱気した後、冷却した4重量%の濃度の2,4−ジアミ
ノトルエンのメタノール溶液100ml を反応容器内に注入
した。その後、攪拌しながら反応温度を100 ℃に調整し
た。この時、反応容器内の水素ガス圧力は、24kg/cm2
あった。2時間後、HPLCにて反応液中の主生成物を
分取し、IR、NMRで確認したところ、68%の収率で
目的の1−メチル−2,4−ジアミノシクロヘキサンが
生成していることを確認した。
Example 3 100 g of hydrogen storage alloy LaNi 4.2 Al in which hydrogen was previously stored in a dead-end type reaction vessel having a volume of 1 liter
Insert 0.8 . After degassing for 5 minutes at 0 ° C. and a vacuum degree of 750 mmHg, 100 ml of a cooled 4% by weight methanol solution of 2,4-diaminotoluene was poured into the reaction vessel. Then, the reaction temperature was adjusted to 100 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 24 kg / cm 2 . After 2 hours, the main product in the reaction solution was separated by HPLC and confirmed by IR and NMR. As a result, the target 1-methyl-2,4-diaminocyclohexane was produced in a yield of 68%. It was confirmed.

【0014】実施例4 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた60gの水素貯蔵合金CaNi5 を入れ
る。これに0℃、真空度750mmHg で5分間脱気した後、
冷却した5重量%の濃度のナフタレンのエタノール溶液
80mlを反応容器内に注入した。その後、攪拌しながら反
応温度を70℃に調整した。この時、反応容器内の水素ガ
ス圧力は、14kg/cm2であった。4時間後、HPLCにて
反応液中の主生成物を分取し、IR、NMRで確認した
ところ、92%の収率で目的のテトラリンが生成している
ことを確認した。
Example 4 In a dead-end type reaction vessel having a volume of 1 liter, 60 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 0 ° C and vacuum degree of 750mmHg,
Cooled 5 wt% Naphthalene solution in ethanol
80 ml was poured into the reaction vessel. Then, the reaction temperature was adjusted to 70 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 14 kg / cm 2 . After 4 hours, the main product in the reaction solution was collected by HPLC and confirmed by IR and NMR. It was confirmed that the desired tetralin was produced in a yield of 92%.

【0015】実施例5 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた150gの水素貯蔵合金CaNi5 を入れ
る。これに0℃、真空度750mmHg で5分間脱気した後、
冷却した10重量%の濃度のアントラセンのシクロヘキサ
ン溶液100ml を反応容器内に注入した。その後、攪拌し
ながら反応温度を40℃に調整した。この時、反応容器内
の水素ガス圧力は、15kg/cm2であった。4時間後、HP
LCにて反応液中の主生成物を分取し、IR、NMRで
確認したところ、71%の収率で目的のデカヒドロアント
ラセンが生成していることを確認した。
Example 5 In a dead-end type reaction vessel having a volume of 1 liter, 150 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 0 ° C and vacuum degree of 750mmHg,
100 ml of a cooled 10% strength by weight solution of anthracene in cyclohexane were injected into the reaction vessel. Then, the reaction temperature was adjusted to 40 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 15 kg / cm 2 . 4 hours later, HP
When the main product in the reaction solution was separated by LC and confirmed by IR and NMR, it was confirmed that the target decahydroanthracene was produced in a yield of 71%.

【0016】実施例6 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた150gの水素貯蔵合金LaNi5 を入れ
る。これに0℃、真空度750mmHg で5分間脱気した後、
冷却した10重量%の濃度のフェナントリンのシクロヘキ
サン溶液100mlを反応容器内に注入した。その後、攪拌
しながら反応温度を40℃に調整した。この時、反応容器
内の水素ガス圧力は、14kg/cm2であった。4時間後、H
PLCにて反応液中の主生成物を分取し、IR、NMR
で確認したところ、66%の収率で目的のデカヒドロフェ
ナントリンが生成していることを確認した。
Example 6 In a dead-end type reaction vessel having a volume of 1 liter, 150 g of hydrogen storage alloy LaNi 5 in which hydrogen is stored in advance is placed. After degassing for 5 minutes at 0 ° C and vacuum degree of 750mmHg,
100 ml of a cooled 10% by weight strength solution of phenanthrin in cyclohexane was injected into the reaction vessel. Then, the reaction temperature was adjusted to 40 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 14 kg / cm 2 . 4 hours later, H
The main product in the reaction solution was collected by PLC, IR, NMR
As a result, it was confirmed that the target decahydrophenanthrin was produced in a yield of 66%.

【0017】実施例7 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素貯蔵合金LaNi4.2 Al
0.8 を入れる。これに25℃、真空度750mmHg で5分間脱
気した後、冷却した1−ナフトール100ml を反応容器内
に注入した。その後、攪拌しながら反応温度を80℃に調
整した。この時、反応容器内の水素ガス圧力は、21kg/c
m2であったが、更に水素を加え40kg/cm2とした。2時間
後、HPLCにて反応液中の主生成物を分取し、IR、
NMRで確認したところ、81%の収率で目的の5−ヒド
ロキシテトラリンが生成していることを確認した。
Example 7 100 g of hydrogen storage alloy LaNi 4.2 Al in which hydrogen was previously stored in a dead-end type reaction vessel having a volume of 1 liter
Insert 0.8 . After degassing for 5 minutes at 25 ° C. and a vacuum degree of 750 mmHg, 100 ml of cooled 1-naphthol was injected into the reaction vessel. Then, the reaction temperature was adjusted to 80 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel is 21 kg / c.
Although it was m 2 , hydrogen was further added to 40 kg / cm 2 . After 2 hours, the main product in the reaction solution was collected by HPLC, IR,
When confirmed by NMR, it was confirmed that the target 5-hydroxytetralin was produced in a yield of 81%.

【0018】実施例8 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素を貯蔵させた100gの水素貯
蔵合金CaNi5 を入れる。これに25℃、真空度750mmH
g で5分間脱気した後、冷却した2−ナフトール100ml
を反応容器内に注入した。その後、攪拌しながら反応温
度を120 ℃に調整した。この時、反応容器内の水素ガス
圧力は、29kg/cm2であったが、更に水素を加え50kg/cm2
とした。2時間後、HPLCにて反応液中の主生成物を
分取し、IR、NMRで確認したところ、74%の収率で
目的の6−ヒドロキシテトラリンが生成していることを
確認した。
Example 8 In a dead-end type reaction vessel having a capacity of 1 liter, 100 g of hydrogen storage alloy CaNi 5 containing 100 g of hydrogen stored therein was placed. 25 ℃, vacuum degree 750mmH
After degassing with g for 5 minutes, 100 ml of cooled 2-naphthol
Was injected into the reaction vessel. Then, the reaction temperature was adjusted to 120 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 29 kg / cm 2 , but hydrogen was further added to 50 kg / cm 2
And After 2 hours, the main product in the reaction solution was collected by HPLC and confirmed by IR and NMR. As a result, it was confirmed that the target 6-hydroxytetralin was produced in a yield of 74%.

【0019】実施例9 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素貯蔵合金LaNi5 を入れ
る。これに4℃、真空度750mmHg で5分間脱気した後、
冷却したシクロペンタジエン50mlを反応容器内に注入し
た。その後、攪拌しながら反応温度を60℃に調整した。
この時、反応容器内の水素ガス圧力は、9kg/cm2であっ
た。2時間後、HPLCにて、反応液中の主生成物を分
取し、IR、NMRで確認したところ55%の収率で目的
のシクロペンテンが生成していることを確認した。
Example 9 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy LaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 4 ℃ and vacuum degree of 750mmHg,
50 ml of cooled cyclopentadiene was injected into the reaction vessel. Then, the reaction temperature was adjusted to 60 ° C. while stirring.
At this time, the hydrogen gas pressure in the reaction vessel was 9 kg / cm 2 . After 2 hours, the main product in the reaction solution was separated by HPLC and confirmed by IR and NMR. It was confirmed that the target cyclopentene was produced in a yield of 55%.

【0020】実施例10 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた200gの水素貯蔵合金CaNi5 を入れ
る。これに、4℃、真空度750mmHg で5分間脱気した
後、冷却したシクロオクタテトラエン50mlを反応容器内
に注入した。その後、攪拌しながら反応温度を60℃に調
整した。この時、反応容器内の水素ガス圧は、12kg/cm2
であった。4時間後、HPLCにて反応液中の主生成物
を分取し、IR、NMRで確認したところ、66%の収率
で目的のシクロオクタンが生成していることを確認し
た。
Example 10 In a dead-end type reaction vessel having a volume of 1 liter, 200 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 4 ° C. and a vacuum degree of 750 mmHg, 50 ml of cooled cyclooctatetraene was injected into the reaction vessel. Then, the reaction temperature was adjusted to 60 ° C. while stirring. At this time, the hydrogen gas pressure in the reaction vessel is 12 kg / cm 2
Met. After 4 hours, the main product in the reaction solution was separated by HPLC and confirmed by IR and NMR. It was confirmed that the target cyclooctane was produced in a yield of 66%.

【0021】実施例11 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた50gの水素貯蔵合金CaNi5 を入れ
る。これに4℃、真空度750mmHg で5分間脱気した後、
冷却したフラン50mlを反応容器内に注入した。その後、
攪拌しながら反応温度を40℃に調整した。この時、反応
容器内の水素ガス圧力は、5kg/cm2であった。1時間
後、HPLCにて、反応液中の主生成物を分取し、I
R、NMRで確認したところ89%の収率で目的のテトラ
ヒドロフランが生成していることを確認した。
Example 11 In a dead-end type reaction vessel having a volume of 1 liter, 50 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 4 ℃ and vacuum degree of 750mmHg,
50 ml of cooled furan was poured into the reaction vessel. afterwards,
The reaction temperature was adjusted to 40 ° C with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 5 kg / cm 2 . After 1 hour, the main product in the reaction solution was collected by HPLC, and I
When confirmed by R and NMR, it was confirmed that the target tetrahydrofuran was produced in a yield of 89%.

【0022】実施例12 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素貯蔵合金CaNi5 を入れ
る。これに4℃、真空度750mmHg で5分間脱気した後、
冷却した2−メトキシカルボニルフラン40mlを反応容器
内に注入した。その後、攪拌しながら反応温度を40℃に
調整した。この時、反応容器内の水素ガス圧力は、9kg
/cm2であった。3時間後、HPLCにて反応液中の主生
成物を分取し、IR、NMRで確認したところ、75%の
収率で目的の2−メトキシカルボニルテトラヒドロフラ
ンが生成していることを確認した。
Example 12 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 4 ℃ and vacuum degree of 750mmHg,
40 ml of cooled 2-methoxycarbonylfuran was poured into the reaction vessel. Then, the reaction temperature was adjusted to 40 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel is 9 kg
It was / cm 2 . After 3 hours, the main product in the reaction solution was collected by HPLC and confirmed by IR and NMR. As a result, it was confirmed that the target 2-methoxycarbonyltetrahydrofuran was produced at a yield of 75%.

【0023】実施例13 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた100gの水素貯蔵合金LaNi5 を入れ
る。これに4℃、真空度750mmHg で5分間脱気した後、
冷却したピロール40mlを反応容器内に注入した。その
後、攪拌しながら反応温度を60℃に調整した。この時、
反応容器内の水素ガス圧力は、12kg/cm2であった。2時
間後、HPLCにて反応液中の主生成物を分取し、I
R、NMRで確認したところ、68%の収率で目的のピロ
リジンが生成していることを、確認した。
Example 13 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy LaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 4 ℃ and vacuum degree of 750mmHg,
40 ml of cooled pyrrole was injected into the reaction vessel. Then, the reaction temperature was adjusted to 60 ° C. while stirring. At this time,
The hydrogen gas pressure in the reaction vessel was 12 kg / cm 2 . After 2 hours, the main product in the reaction solution was collected by HPLC, and I
When confirmed by R and NMR, it was confirmed that the target pyrrolidine was produced in a yield of 68%.

【0024】実施例14 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた200gの水素貯蔵合金CaNi5 を入れ
る。これに4℃、真空度750mmHg で5分間脱気した後、
冷却した1,2−ジ−エトキシカルボニルピロール50ml
を反応容器内に注入した。その後、攪拌しながら反応温
度を60℃に調整した。この時、反応容器内の水素ガス圧
力は、18kg/cm2であった。4時間後、HPLCにて反応
液中の主生成物を分取し、IR、NMRで確認したとこ
ろ、69%の収率で目的の1,2−ジエトキシカルボニル
ピロリジンが生成していることを確認した。
Example 14 In a dead-end type reaction vessel having a volume of 1 liter, 200 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 4 ℃ and vacuum degree of 750mmHg,
50 ml of cooled 1,2-di-ethoxycarbonylpyrrole
Was injected into the reaction vessel. Then, the reaction temperature was adjusted to 60 ° C. while stirring. At this time, the hydrogen gas pressure in the reaction vessel was 18 kg / cm 2 . After 4 hours, the main product in the reaction solution was separated by HPLC and confirmed by IR and NMR. It was confirmed that the desired 1,2-diethoxycarbonylpyrrolidine was produced in a yield of 69%. confirmed.

【0025】実施例15 容量が1リットルのデッドエンド式の反応容器に、予め
水素を貯蔵させた200gの水素貯蔵合金LaNi5 を入れ
る。これに0℃、真空度750mmHg で5分間脱気した後、
冷却した10重量%の濃度のピリジンのシクロヘキサン溶
液100ml を反応容器内に注入した。その後、攪拌しなが
ら反応温度を80℃に調整した。この時、反応容器内の水
素ガス圧力は、29kg/cm2であった。6時間後、HPLC
にて反応液中の主生成物を分取し、IR、NMRで確認
したところ、76%の収率で目的のピぺリジンが生成して
いることを確認した。
Example 15 In a dead-end type reaction vessel having a volume of 1 liter, 200 g of hydrogen storage alloy LaNi 5 in which hydrogen was stored in advance was placed. After degassing for 5 minutes at 0 ° C and vacuum degree of 750mmHg,
100 ml of a cooled 10% strength by weight solution of pyridine in cyclohexane were injected into the reaction vessel. Then, the reaction temperature was adjusted to 80 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel was 29 kg / cm 2 . After 6 hours, HPLC
When the main product in the reaction solution was collected by and confirmed by IR and NMR, it was confirmed that the desired piperidine was produced in a yield of 76%.

【0026】[0026]

【発明の効果】以上述べたように、本発明により水素貯
蔵合金を用いて芳香族化合物や複素環式化合物等の環状
有機化合物の水素化還元を行うと、水素貯蔵合金自体が
高い触媒能を有するので従来のニッケルなどの触媒を必
要とせずに、水素ガス圧30kg/cm2未満の安全性の高い条
件で、効率良く環状有機化合物の水素化還元を行うこと
が可能であり、繰り返して反応に供することが可能であ
る。また、水素貯蔵合金は水素貯蔵装置に比べて大量の
水素ガスを貯蔵でき、しかも上述のように低圧で作業で
きる。更に、先に述べたような上昇流棚段カラムを使用
する場合には、反応溶液と水素貯蔵合金の分離に対する
負荷を大幅に軽減できるという操作上の利点もある。
As described above, when the hydrogen storage alloy according to the present invention is used for hydrogenation reduction of a cyclic organic compound such as an aromatic compound or a heterocyclic compound, the hydrogen storage alloy itself has a high catalytic ability. Since it does not require conventional catalysts such as nickel, it is possible to efficiently carry out hydrogenation reduction of cyclic organic compounds under conditions of high safety with a hydrogen gas pressure of less than 30 kg / cm 2 , and iterative reaction. It is possible to use it. Further, the hydrogen storage alloy can store a large amount of hydrogen gas as compared with the hydrogen storage device, and can operate at a low pressure as described above. Further, when the upflow tray column as described above is used, there is an operational advantage that the load on the separation of the reaction solution and the hydrogen storage alloy can be significantly reduced.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 5/11 13/12 9280−4H 13/18 9280−4H 13/26 9280−4H 13/48 9280−4H 13/58 9280−4H 13/60 9280−4H 37/00 39/17 9159−4H 51/36 61/08 8827−4H 209/72 211/36 9280−4H C07D 207/16 8314−4C 295/02 307/08 307/24 // C07B 61/00 300 (72)発明者 堂迫 俊一 埼玉県浦和市北浦和5−15−39−616 (72)発明者 出家 栄記 埼玉県狭山市入間川1−6−6−802Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display area C07C 5/11 13/12 9280-4H 13/18 9280-4H 13/26 9280-4H 13/48 9280-4H 13/58 9280-4H 13/60 9280-4H 37/00 39/17 9159-4H 51/36 61/08 8827-4H 209/72 211/36 9280-4H C07D 207/16 8314-4C 295/02 307 / 08 307/24 // C07B 61/00 300 (72) Inventor Shunichi Dosako 5-15-39-616 Kitaurawa, Urawa-shi, Saitama Prefecture (72) Inventor Eiki Eiki 1-6-6 Irumagawa, Sayama-shi, Saitama Prefecture −802

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一つ以上の二重結合を有する環状有機化
合物を水素化還元する際に、M(希土類元素もしくはC
a元素を表す)およびNiを必須元素とした六方晶のC
aCu5 型の結晶構造を有する化合物を主相とする水素
貯蔵合金を用い、該合金から放出される水素で接触水素
化して一つ以上の二重結合を還元することを特徴とする
環状有機化合物の水素化還元方法。
1. When hydrogenating a cyclic organic compound having one or more double bonds, M (rare earth element or C
a representing the element a) and hexagonal C containing Ni as an essential element
A cyclic organic compound characterized by using a hydrogen storage alloy having a compound having an aCu 5 type crystal structure as a main phase, and catalytically hydrogenating with hydrogen released from the alloy to reduce one or more double bonds. Hydrogenation reduction method.
【請求項2】 一つ以上の二重結合を有する環状有機化
合物が芳香族化合物である請求項1に記載の環状有機化
合物の水素化還元方法。
2. The method for hydrogenating and reducing a cyclic organic compound according to claim 1, wherein the cyclic organic compound having one or more double bonds is an aromatic compound.
【請求項3】 一つ以上の二重結合を有する環状有機化
合物が複素環式化合物あるいはそれらの誘導体である請
求項1に記載の環状有機化合物の水素化還元方法。
3. The method for hydrogenating and reducing a cyclic organic compound according to claim 1, wherein the cyclic organic compound having one or more double bonds is a heterocyclic compound or a derivative thereof.
JP3355680A 1991-12-24 1991-12-24 Method for hydrogenating and reducing cyclic organic compounds Expired - Lifetime JP3023809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3355680A JP3023809B2 (en) 1991-12-24 1991-12-24 Method for hydrogenating and reducing cyclic organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3355680A JP3023809B2 (en) 1991-12-24 1991-12-24 Method for hydrogenating and reducing cyclic organic compounds

Publications (2)

Publication Number Publication Date
JPH0656702A true JPH0656702A (en) 1994-03-01
JP3023809B2 JP3023809B2 (en) 2000-03-21

Family

ID=18445222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3355680A Expired - Lifetime JP3023809B2 (en) 1991-12-24 1991-12-24 Method for hydrogenating and reducing cyclic organic compounds

Country Status (1)

Country Link
JP (1) JP3023809B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102572C (en) * 2000-09-15 2003-03-05 中国石油化工股份有限公司 Process for hydrogenating benzoic acid
JP2003064011A (en) * 2001-08-29 2003-03-05 Dainippon Ink & Chem Inc Method for producing 6-hydroxytetralin
JP2009531426A (en) * 2006-03-27 2009-09-03 キャタリティック・ディスティレイション・テクノロジーズ Hydrogenation of aromatic compounds
CN103904308A (en) * 2014-03-06 2014-07-02 燕山大学 Method for improving electrochemical performance of hydrogen storage alloy through application of nickel/polypyrrole
CN109996784A (en) * 2016-11-29 2019-07-09 巴斯夫欧洲公司 Method for stablizing the diaminocyclohexane that at least monoalkyl replaces
CN111100015A (en) * 2018-10-29 2020-05-05 中国科学院大连化学物理研究所 Method for preparing aliphatic amine compound

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1102572C (en) * 2000-09-15 2003-03-05 中国石油化工股份有限公司 Process for hydrogenating benzoic acid
JP2003064011A (en) * 2001-08-29 2003-03-05 Dainippon Ink & Chem Inc Method for producing 6-hydroxytetralin
JP2009531426A (en) * 2006-03-27 2009-09-03 キャタリティック・ディスティレイション・テクノロジーズ Hydrogenation of aromatic compounds
CN103904308A (en) * 2014-03-06 2014-07-02 燕山大学 Method for improving electrochemical performance of hydrogen storage alloy through application of nickel/polypyrrole
CN109996784A (en) * 2016-11-29 2019-07-09 巴斯夫欧洲公司 Method for stablizing the diaminocyclohexane that at least monoalkyl replaces
JP2019535796A (en) * 2016-11-29 2019-12-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for stabilizing at least monoalkyl-substituted diaminocyclohexane
CN111100015A (en) * 2018-10-29 2020-05-05 中国科学院大连化学物理研究所 Method for preparing aliphatic amine compound
CN111100015B (en) * 2018-10-29 2021-04-23 中国科学院大连化学物理研究所 Method for preparing aliphatic amine compound

Also Published As

Publication number Publication date
JP3023809B2 (en) 2000-03-21

Similar Documents

Publication Publication Date Title
CN1800121A (en) Method for preparing cyclohexyl bezene through highly-selectively catalytic hydrogenation for biphenyl
JP3023809B2 (en) Method for hydrogenating and reducing cyclic organic compounds
JPH0753510A (en) Purification of epsilon-caprolactam
CN1037362C (en) Large specific surface amorphous alloy and its preparation
US5097073A (en) Production of aliphatic primary of secondary amine
JP2009046398A (en) Naphthalenes hydrogenation catalyst
JP2932330B2 (en) Method for hydrogenating and reducing nitrogen-containing compounds
JPH1112338A (en) Production of polyalcohol resin
JP2001354598A (en) Method of producing adamantane
EP0243816A2 (en) Intermetallic compounds, hydrides thereof and process for preparing same
JPH0672923A (en) Hydrogenation reduction of carbonyl compound
JP3018263B2 (en) Method for dehalogenating halogen compounds
JPH0616580A (en) Process for hydrogenative reduction of compound having carbon-carbon multiple bond
JP2946440B2 (en) Reductive alkylation / reductive amination method
JPH0374651B2 (en)
JP3194051B2 (en) Method for dehydrogenation of hydroxyl group
CN1234701C (en) Method for producing tetrahydrofuran
JP3161789B2 (en) Hydrogenated fullerene and method for producing the same
Louvar et al. Hydroalkylation of aromatic compounds
JP4733906B2 (en) Method for converting cyclododecane-1,2-dione to cyclododecanone
JPH0687796A (en) Reductive amination of hydroxylated compound
Solomina et al. Prospects of catalytic reduction of aromatic nitrocompounds by hydrogen
DE2246754C3 (en) Use of a hydride of a titanium-nickel alloy as a catalyst for the hydrogenation and dehydrogenation of organic compounds
JPH06306021A (en) Production of 4-aminodiphenylamine
JP3035753B2 (en) Desulfurization method for sulfur-containing compounds