JPH0616580A - Process for hydrogenative reduction of compound having carbon-carbon multiple bond - Google Patents

Process for hydrogenative reduction of compound having carbon-carbon multiple bond

Info

Publication number
JPH0616580A
JPH0616580A JP3307153A JP30715391A JPH0616580A JP H0616580 A JPH0616580 A JP H0616580A JP 3307153 A JP3307153 A JP 3307153A JP 30715391 A JP30715391 A JP 30715391A JP H0616580 A JPH0616580 A JP H0616580A
Authority
JP
Japan
Prior art keywords
carbon
compound
multiple bond
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3307153A
Other languages
Japanese (ja)
Inventor
Isahiro Kawasaki
功博 川崎
Minoru Morita
稔 守田
Hiroaki Konishi
寛昭 小西
Masami Kawanari
真美 川成
Shunichi Dosemari
俊一 堂迫
Sakanori Shukke
栄記 出家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP3307153A priority Critical patent/JPH0616580A/en
Publication of JPH0616580A publication Critical patent/JPH0616580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To carry out the hydrogenative reduction of a compound containing C-C multiple bond in high safety and efficiency and obtain the reduction product useful in the field of foods, pharmaceuticals, agricultural chemicals, etc., by reducing a compound having C-C multiple bond except for oil and fat using a specific hydrogen-occlusion alloy. CONSTITUTION:A compound having C-C multiple bond excluding oil and fat, e.g. the compound of formula I or II (R and R' are organic atomic group) is reduced by the catalytic hydrogenation using a hydrogen-occlusion alloy composed mainly of a compound having hexagonal CaCu5 crystal structure and containing M (rare earth element or Ca) and Ni as essential elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素貯蔵合金を用い
て、油脂を除く炭素−炭素多重結合を有する化合物を水
素化還元する方法に関する。本発明の方法は、食品、医
薬、農薬などの分野において利用される化成品の合成に
際して有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hydroreducing a compound having a carbon-carbon multiple bond excluding fats and oils using a hydrogen storage alloy. INDUSTRIAL APPLICABILITY The method of the present invention is useful in the synthesis of chemical products used in the fields of food, medicine, agricultural chemicals and the like.

【0002】[0002]

【従来の技術】水素添加による炭素−炭素多重結合を有
する化合物の還元反応については、水素雰囲気下で各種
の金属触媒を用いて行う方法が知られている。この反応
の際に用いる触媒としては、パラジウム、白金、ニッケ
ル、コバルト、銅などがある。これらのうち、パラジウ
ム及び白金は触媒としての活性が比較的高く、低温・低
圧下でも水素化反応を行うことができるが、ニッケル、
コバルト、銅などは触媒としての活性が低く、高温・高
圧条件下の反応を必要とする。パラジウムや白金などの
貴金属は再生が可能であるとはいえ高価であり、工業規
模で使用するには必ずしも適当でなかった。
2. Description of the Related Art Regarding the reduction reaction of a compound having a carbon-carbon multiple bond by hydrogenation, a method is known in which various metal catalysts are used in a hydrogen atmosphere. The catalyst used in this reaction includes palladium, platinum, nickel, cobalt, copper and the like. Among these, palladium and platinum have relatively high activity as a catalyst and can carry out hydrogenation reaction at low temperature and low pressure, but nickel,
Cobalt, copper, etc. have low activity as a catalyst and require a reaction under high temperature and high pressure conditions. Precious metals such as palladium and platinum, although renewable, are expensive and not always suitable for use on an industrial scale.

【0003】近年開発されその応用が注目されている水
素貯蔵合金は、現在、自動車、ヒートポンプ及び室内の
冷暖房システムなどの分野で利用されているが、水素貯
蔵合金には、例えば、LaNi5、MgNi、TiFeなどの多くの
種類があって、合金の水素貯蔵量、排出圧力及び排出温
度などの機能は、その構成金属によって大きく異なるた
め、その利用に当たっては合金の選択が重要となる。
Hydrogen storage alloys, which have been developed in recent years and are attracting attention for their applications, are currently used in the fields of automobiles, heat pumps, indoor air-conditioning systems, and the like. Examples of hydrogen storage alloys include LaNi 5 and MgNi. , TiFe, etc., and the functions of the alloy such as hydrogen storage amount, discharge pressure, discharge temperature, etc. differ greatly depending on the constituent metals, so the selection of the alloy is important for its use.

【0004】ところで、水素貯蔵合金による水素化還元
反応の例としては、オレフィンの水素化還元、一酸化炭
素の水素化及びアンモニアの合成が「水素貯蔵合金デー
タブック」(与野書房1987年発行)において、さらに、
オレイン酸メチルの常圧水素化分解によるC18アルコー
ル生成反応については日本化学会(第54回春季年会1987
年開催)において報告されている。また、油脂の水素添
加(特開昭63-268799号)、糖アルコールの製造(特願
平2-219100号)、ジスルフィド結合の還元(特願平2-27
7808号)、脱保護法(特願平2-277809号)などについて
も報告されている。
By the way, as an example of the hydrogenation reduction reaction using a hydrogen storage alloy, hydrogenation reduction of olefins, hydrogenation of carbon monoxide and synthesis of ammonia are described in "Hydrogen Storage Alloy Data Book" (published by Yono Shobo 1987). ,further,
Regarding the C 18 alcohol formation reaction by atmospheric pressure hydrogenolysis of methyl oleate, the Chemical Society of Japan (The 54th Annual Meeting of the Spring 1987)
Held annually). In addition, hydrogenation of fats and oils (JP-A-63-268799), production of sugar alcohol (Japanese Patent Application No. 2-219100), reduction of disulfide bond (Japanese Patent Application No. 2-27).
7808) and the deprotection law (Japanese Patent Application No. 2-277809).

【0005】しかし、水素貯蔵合金を用いて油脂以外の
炭素−炭素多重結合を有する化合物を水素化した例につ
いての報告は見られない。また、炭素−炭素三重結合を
有する化合物の還元や半還元に水素貯蔵合金は利用され
ていない。
However, no report has been found on an example of hydrogenating a compound having a carbon-carbon multiple bond other than fats and oils using a hydrogen storage alloy. Further, no hydrogen storage alloy is used for reduction or semi-reduction of a compound having a carbon-carbon triple bond.

【0006】[0006]

【発明が解決しようとする課題】本発明は、接触水素化
によって油脂を除く炭素−炭素多重結合を有する化合物
の水素化を行うに当たり、反応性の高い水素貯蔵合金を
利用するため、従来の還元触媒を全く用いる必要がな
く、また、水素貯蔵合金から排出される大量の水素を低
圧で利用することができ、高い還元率で安全かつ安価に
接触水素化による油脂類を除く炭素−炭素多重結合を有
する化合物の水素化を行う方法を提供することを課題と
する。
DISCLOSURE OF THE INVENTION The present invention utilizes a highly reactive hydrogen storage alloy in carrying out hydrogenation of a compound having a carbon-carbon multiple bond excluding fats and oils by catalytic hydrogenation. A carbon-carbon multiple bond that removes fats and oils by catalytic hydrogenation at a high reduction rate, safely and inexpensively, without using a catalyst at all, and capable of utilizing a large amount of hydrogen discharged from a hydrogen storage alloy at low pressure. It is an object to provide a method for hydrogenating a compound having

【0007】[0007]

【課題を解決するための手段】本発明は、炭素−炭素多
重結合に対し、接触水素化反応によって水素化する際
に、M(希土類元素もしくはCa元素を表す)及びNiを必
須元素とした六方晶のCaCu5 型の結晶構造を有する化合
物を主相とする水素貯蔵合金を用い、該合金から放出さ
れる水素で接触水素化を行い、還元することを特徴とす
る。
The present invention provides a hexagonal method in which M (representing a rare earth element or Ca element) and Ni are essential elements when hydrogenating a carbon-carbon multiple bond by a catalytic hydrogenation reaction. It is characterized in that a hydrogen storage alloy having a compound having a crystalline CaCu 5 type crystal structure as a main phase is used, and catalytic hydrogenation is performed with hydrogen released from the alloy to reduce the hydrogen.

【0008】以下、本発明を詳しく説明する。本発明に
おいて用いられる炭素−炭素多重結合を有する化合物と
しては、分子内に二重結合または三重結合を一個以上有
する不飽和化合物が挙げられ、特に次式 R−C≡C−R’(R及びR’は有機原子団を表す) あるいは R−CH=CH−R’(R及びR’は有機原子団を表
す) で表される化合物が好ましく例示される。
The present invention will be described in detail below. Examples of the compound having a carbon-carbon multiple bond used in the present invention include unsaturated compounds having one or more double bond or triple bond in the molecule, and particularly, the compound represented by the following formula R—C≡C—R ′ (R and R'represents an organic atomic group) or a compound represented by R-CH = CH-R '(R and R'represent an organic atomic group) is preferably exemplified.

【0009】本発明において用いられる水素貯蔵合金
は、M(希土類元素もしくはCa元素を表す)及びNiを必
須元素とした六方晶のCaCu5 型の結晶構造を有する化合
物を主相とする。具体的には CaNi5、LaNi5、LaNi4.2Al
0.8等が挙げられる。また、水素貯蔵合金内に含まれ
るCaCu5型の結晶相は、好ましくは50重量%以上含ま
れ、残部は主相以外の金属間化合物、不純物、添加元素
などが第2相もしくは混合相として存在する。
The hydrogen storage alloy used in the present invention has a main phase of a compound having a hexagonal CaCu 5 type crystal structure in which M (representing a rare earth element or Ca element) and Ni are essential elements. Specifically, CaNi 5 , LaNi 5 , LaNi 4.2 Al
0.8 etc. are mentioned. Further, the CaCu 5 type crystal phase contained in the hydrogen storage alloy is preferably contained in an amount of 50% by weight or more, and the balance contains intermetallic compounds other than the main phase, impurities, additional elements, etc. as the second phase or mixed phase. To do.

【0010】これらの水素貯蔵合金は、それ自体還元反
応に対する高い触媒能を有しているので、使用する合金
の種類と反応液の還元反応温度の設定により、20kg/cm2
未満の水素ガス圧力の条件で、高い還元率でかつ安全に
炭素−炭素多重結合を水素化することが可能である。こ
の水素貯蔵合金を微粉化した後、0℃もしくはそれ以下
の温度で水素雰囲気下、一定時間保持することにより水
素を合金に吸蔵させる。
Since these hydrogen storage alloys themselves have high catalytic ability for the reduction reaction, depending on the type of alloy used and the reduction reaction temperature of the reaction solution, 20 kg / cm 2
It is possible to safely hydrogenate a carbon-carbon multiple bond with a high reduction rate under a hydrogen gas pressure of less than. After pulverizing this hydrogen storage alloy, hydrogen is absorbed in the alloy by holding it at a temperature of 0 ° C. or lower in a hydrogen atmosphere for a certain period of time.

【0011】本発明においては、反応溶液とこのあらか
じめ水素を吸蔵させた水素貯蔵合金を反応槽に入れ、脱
気後、攪拌しながら反応液を一定の温度で保持するか、
ジャケット式によって、水素貯蔵合金を一定の温度に保
持することができるようにした、棚段式カラムに水素貯
蔵合金を封入し、一定の温度に保持された反応液を循環
することにより炭素−炭素多重結合の水素化を行う。
In the present invention, the reaction solution and the hydrogen storage alloy in which hydrogen has been occluded in advance are placed in a reaction tank, and after degassing, the reaction solution is kept at a constant temperature while stirring, or
Carbon-carbon by encapsulating the hydrogen storage alloy in a tray column, in which the hydrogen storage alloy can be kept at a constant temperature by a jacket method, and circulating the reaction solution kept at a constant temperature. Hydrogenation of multiple bonds is performed.

【0012】反応後、水素ガス及び反応液を回収し、水
素貯蔵合金を冷却する。この水素貯蔵合金は、水素を再
循環することにより、次回の還元反応に繰り返し使用す
ることが可能である。なお、本発明は、水素貯蔵合金の
特性上、水素ガス圧力が20kg/cm2未満の条件で十分に炭
素−炭素多重結合の水素化を行うことが可能であり、製
造装置の保守安全上、有利である。また、水素貯蔵合金
は、耐食性、熱伝導性などの向上を意図して表面改質さ
れたメッキ粉末、表面処理粉末、銅やシリコンなどによ
るカプセル化合金なども本発明に使用可能である。
After the reaction, the hydrogen gas and the reaction solution are recovered and the hydrogen storage alloy is cooled. This hydrogen storage alloy can be repeatedly used for the next reduction reaction by recycling hydrogen. Incidentally, the present invention, in the characteristics of the hydrogen storage alloy, hydrogen gas pressure is sufficient to perform hydrogenation of carbon-carbon multiple bonds under the condition of less than 20 kg / cm 2 , in terms of maintenance safety of the manufacturing equipment, It is advantageous. Further, as the hydrogen storage alloy, a plating powder surface-modified for the purpose of improving corrosion resistance, thermal conductivity, etc., a surface-treated powder, an encapsulated alloy of copper or silicon, etc. can be used in the present invention.

【0013】[0013]

【実施例】以下に実施例を示して本発明を具体的に説明
する。 実施例1 容量1リットルのデッドエンド式の反応容器に、予め水
素を貯蔵させた50gの水素貯蔵合金CaNi5を入れておい
た。そして、40℃、真空度750mmHgで5分間脱気し、冷
却した 0.5重量%濃度の2,5−ジメチル−ヘキサン−
3−イン−2,5−ジオール水溶液400ml を水素貯蔵合
金の入った反応容器内に注入した。その後攪拌しながら
反応温度を50℃に調整した。この時の反応容器内の水素
ガス圧は、6.5kg/cm2であった。3時間後、反応液から
触媒を除去し、減圧濃縮した。NMRによって、2,5
−ジメチル−2,5−ヘキサンジオールの生成を確認し
た。ガスクロマトグラフィーの結果から、反応は 100%
進行していることが確認された。
EXAMPLES The present invention will be specifically described with reference to the following examples. Example 1 In a dead-end type reaction vessel having a capacity of 1 liter, 50 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. Then, the mixture was degassed at 40 ° C. and a vacuum degree of 750 mmHg for 5 minutes, and cooled to a concentration of 0.5% by weight of 2,5-dimethyl-hexane-.
400 ml of an aqueous 3-yne-2,5-diol solution was poured into the reaction vessel containing the hydrogen storage alloy. Then, the reaction temperature was adjusted to 50 ° C. while stirring. The hydrogen gas pressure in the reaction vessel at this time was 6.5 kg / cm 2 . After 3 hours, the catalyst was removed from the reaction solution and concentrated under reduced pressure. 2,5 by NMR
-The formation of dimethyl-2,5-hexanediol was confirmed. Gas chromatography results show 100% reaction
It was confirmed that it was progressing.

【0014】実施例2 容量1リットルのデッドエンド式の反応容器に、予め水
素を貯蔵させた100gの水素貯蔵合金LaNi5を入れておい
た。そして、0℃、真空度750mmHgで3分間脱気し、冷
却したアリルアルコール100ml を水素貯蔵合金の入った
反応容器内に注入した。その後、攪拌しながら反応温度
を40℃に調整した。この時の反応容器内の水素ガス圧は
3.9kg/cm2 であった。4時間後、反応液から水素貯蔵合
金を濾別して蒸留したところ、沸点97.4℃の画分87mlを
得た。IR、NMRで測定し、この画分が目的のn−プ
ロピルアルコールであることを確認した。収率は87%で
あった。
Example 2 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy LaNi 5 in which hydrogen was stored in advance was placed. Then, the mixture was degassed at 0 ° C. and a vacuum degree of 750 mmHg for 3 minutes, and 100 ml of cooled allyl alcohol was injected into the reaction vessel containing the hydrogen storage alloy. Then, the reaction temperature was adjusted to 40 ° C. with stirring. At this time, the hydrogen gas pressure in the reaction vessel is
It was 3.9 kg / cm 2 . After 4 hours, the hydrogen storage alloy was filtered from the reaction solution and distilled to obtain 87 ml of a fraction having a boiling point of 97.4 ° C. It was confirmed by IR and NMR that this fraction was the target n-propyl alcohol. The yield was 87%.

【0015】実施例3 容量1リットルのデッドエンド式の反応容器に予め水素
を貯蔵させた100gの水素貯蔵合金LaNi4.2Al0.8を入れ
ておいた。そして、0℃、真空度750mmHgで2分間脱気
し、冷却した 0.5重量%ヘキサン−1−インのエタノー
ル溶液200mlを水素貯蔵合金の入った反応容器内に注入
した。その後、攪拌しながら反応温度を25℃に調整し
た。この時の反応溶液内の水素ガス圧は2.2kg/cm2 であ
った。1時間後、反応液を取り出し、蒸留し、沸点63.4
℃の画分1mlを得た。ガスクロマトグラフィーによって
分析し、1−ヘキセンが生成していることを確認した。
なお、収率は75%であった。
Example 3 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy LaNi 4.2 Al 0.8 in which hydrogen was stored in advance was placed. Then, the mixture was degassed for 2 minutes at 0 ° C. and a vacuum degree of 750 mmHg, and 200 ml of a cooled 0.5 wt% hexane-1-yne ethanol solution was injected into the reaction vessel containing the hydrogen storage alloy. Then, the reaction temperature was adjusted to 25 ° C. with stirring. The hydrogen gas pressure in the reaction solution at this time was 2.2 kg / cm 2 . After 1 hour, the reaction solution was taken out and distilled, and the boiling point was 63.4.
1 ml of a 0 ° C. fraction was obtained. Analysis by gas chromatography confirmed that 1-hexene had been produced.
The yield was 75%.

【0016】実施例4 容量1リットルのデッドエンド式の反応容器に、予め水
素を貯蔵させた100gの水素貯蔵合金CaNi5を入れておい
た。そして、25℃、真空度750mmHgで2分間脱気し、冷
却した 1.0重量%濃度のジフェニルアセチレンのメタノ
ール溶液200mlを水素貯蔵合金の入った反応容器内に注
入した。その後、攪拌しながら反応温度を60℃に調整し
た。この時の反応容器内の水素ガス圧は4.2kg/cm2 であ
った。1時間後、反応液の一部を取り出し、ガスクロマ
トグラフィーによって分析したところ、スチルベンゼン
が70%の収率で生成していることを確認した。さらに、
水素ガス圧10kg/cm2となるまで反応容器を加圧して反応
を行い、3時間後、触媒を濾別し、NMRによって1,
2−ジフェニルエタンの生成を確認した。なお、ガスク
ロマトグラフィーによって収率は88%であることを確認
した。
Example 4 In a dead-end type reaction vessel having a capacity of 1 liter, 100 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. Then, 200 ml of a 1.0% by weight concentration solution of diphenylacetylene in methanol, which had been degassed at 25 ° C. and a vacuum degree of 750 mmHg for 2 minutes, was poured into a reaction vessel containing a hydrogen storage alloy. Then, the reaction temperature was adjusted to 60 ° C. while stirring. The hydrogen gas pressure inside the reaction vessel at this time was 4.2 kg / cm 2 . After 1 hour, a part of the reaction solution was taken out and analyzed by gas chromatography, and it was confirmed that stilbenzene was produced in a yield of 70%. further,
The reaction was carried out by pressurizing the reaction vessel until the hydrogen gas pressure became 10 kg / cm 2, and after 3 hours, the catalyst was filtered off, and by NMR, 1,
Formation of 2-diphenylethane was confirmed. It was confirmed by gas chromatography that the yield was 88%.

【0017】実施例5 容量1リットルのデッドエンド式の反応容器に、予め水
素を貯蔵させた100gの水素貯蔵合金CaNi5を入れておい
た。そして、0℃、真空度750mmHgで2分間脱気し、冷
却した 2.0重量%濃度の2−クロロ−1−ブテン−3−
インのエタノール溶液300ml を水素貯蔵合金の入った反
応容器内に注入した。その後、攪拌しながら反応温度を
10℃に調整した。この時の反応容器内の水素ガス圧は1.
5kg/cm2 であった。1時間後、反応液から触媒を濾別
し、NMRによって分析したところ、3−クロロ−1−
ブチンが生成していることを確認した。なお、ガスクロ
マトグラフィーにより収率は78%であることを確認し
た。
Example 5 In a dead-end type reaction vessel having a volume of 1 liter, 100 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed. Then, it was degassed at 0 ° C. and a vacuum degree of 750 mmHg for 2 minutes, and cooled to a 2.0 wt% concentration of 2-chloro-1-butene-3-.
300 ml of ethanol solution of in was injected into the reaction vessel containing the hydrogen storage alloy. Then, adjust the reaction temperature while stirring.
The temperature was adjusted to 10 ° C. At this time, the hydrogen gas pressure inside the reaction vessel is 1.
It was 5 kg / cm 2 . After 1 hour, the catalyst was filtered off from the reaction solution and analyzed by NMR to find that it was 3-chloro-1-
It was confirmed that butyne was produced. In addition, it was confirmed by gas chromatography that the yield was 78%.

【0018】実施例6 容量1リットルのデッドエンド式の反応容器に予め水素
を貯蔵させた130gの水素貯蔵合金CaNi5 を入れておい
た。そして、0℃、真空度750mmHg で1分間脱気し、冷
却した 5.0重量%濃度の2,3−ジメチル−1,3−ブ
タジエンのメタノール溶液500mlを水素貯蔵合金の入っ
た反応容器内に注入した。その後、攪拌しながら反応温
度を10℃に調整した。この時の反応容器内の水素ガス圧
は、0.3kg/cm2であった。30分後、反応液から触媒を濾
別し、NMRによって分析したところ、2,3−ジメチ
ル−1−ブテンが生成していることを確認した。なお、
ガスクロマトグラフィーにより収率は69%であることを
確認した。
Example 6 130 g of hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance was placed in a dead end type reaction vessel having a volume of 1 liter. Then, 500 ml of a 5.0 wt% concentration solution of 2,3-dimethyl-1,3-butadiene in methanol, which had been degassed at 0 ° C. and a vacuum degree of 750 mmHg for 1 minute, was poured into a reaction vessel containing a hydrogen storage alloy. . Then, the reaction temperature was adjusted to 10 ° C while stirring. At this time, the hydrogen gas pressure in the reaction vessel was 0.3 kg / cm 2 . After 30 minutes, the catalyst was filtered off from the reaction solution and analyzed by NMR. As a result, it was confirmed that 2,3-dimethyl-1-butene was produced. In addition,
It was confirmed by gas chromatography that the yield was 69%.

【0019】[0019]

【発明の効果】以上述べたように、本発明により水素貯
蔵合金を用いて炭素−炭素多重結合の水素化を行うと、
水素貯蔵合金自体が高い触媒能を有するので、従来のニ
ッケルなどの触媒を必要とせずに、水素ガス圧20kg/cm2
未満の安全性の高い条件で、効率良く炭素−炭素多重結
合の水素化を行うことが可能であり、繰り返して反応に
供することが可能である。
As described above, when the hydrogen storage alloy according to the present invention is used to hydrogenate a carbon-carbon multiple bond,
Since the hydrogen storage alloy itself has a high catalytic ability, the hydrogen gas pressure is 20 kg / cm 2 without the need for conventional catalysts such as nickel.
It is possible to efficiently hydrogenate the carbon-carbon multiple bond under the condition of high safety of less than, and it is possible to repeatedly perform the reaction.

【0020】また、水素貯蔵合金は工業用の水素貯蔵装
置に比べて大量の水素ガスを貯蔵でき、しかも上述のよ
うに低圧で作業でき、従来の触媒であるPd、Ptよりもは
るかに安価である。さらに、先に述べたような上昇流棚
段カラムを使用する場合は、反応溶液と水素貯蔵合金の
分離に対する負荷を大幅に軽減できるという操作上の利
点もある。さらに、反応物によっては反応の際に水素圧
温度などをコントロールすることによって位置選択的あ
るいは立体選択的な炭素−炭素多重結合の水素化も可能
である。
Further, the hydrogen storage alloy can store a large amount of hydrogen gas as compared with an industrial hydrogen storage device, can operate at a low pressure as described above, and is much cheaper than conventional catalysts Pd and Pt. is there. Further, when the upflow tray column as described above is used, there is an operational advantage that the load on the separation of the reaction solution and the hydrogen storage alloy can be significantly reduced. Further, depending on the reactants, regioselective or stereoselective hydrogenation of carbon-carbon multiple bonds can be achieved by controlling the hydrogen pressure temperature during the reaction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C07C 11/107 9280−4H 15/18 9280−4H 17/06 9280−4H 21/22 9280−4H 29/17 8827−4H 31/10 6958−4H // C22C 19/00 F (72)発明者 堂迫 俊一 埼玉県浦和市北浦和5−15−39−616 (72)発明者 出家 栄記 埼玉県狭山市入間川1−6−6−802─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C07C 11/107 9280-4H 15/18 9280-4H 17/06 9280-4H 21/22 9280-4H 29/17 8827-4H 31/10 6958-4H // C22C 19/00 F (72) Inventor Shunichi Dosako 5-15-39-616 Kitaurawa, Urawa City, Saitama Prefecture (72) Inventor Keiki Sayama, Saitama Prefecture 1-6-6-802, Iruma River, Ichi

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 油脂を除く炭素−炭素多重結合を有する
化合物を水素化して還元する際に、M(希土類元素もし
くはCa元素を表す)およびNiを必須元素とした六方晶の
CaCu5型の結晶構造を有する化合物を主相とする水素貯
蔵合金を用いて、該合金から放出される水素で炭素−炭
素多重結合を接触水素化して還元することを特徴とする
炭素−炭素多重結合を有する化合物の水素化還元方法。
1. A hexagonal crystal containing M (representing a rare earth element or Ca element) and Ni as essential elements when hydrogenating and reducing a compound having a carbon-carbon multiple bond except fats and oils.
A carbon-carbon multiplex characterized by using a hydrogen storage alloy having a compound having a CaCu 5 type crystal structure as a main phase, and catalytically hydrogenating and reducing a carbon-carbon multiple bond with hydrogen released from the alloy. A method for hydrogenating a compound having a bond.
【請求項2】 炭素−炭素多重結合を有する化合物が、
次式で表される化合物である請求項1記載の水素化還元
方法。 R−C≡C−R’(R及びR’は有機原子団を表す)
2. A compound having a carbon-carbon multiple bond,
The hydrogenation reduction method according to claim 1, which is a compound represented by the following formula. R-C = C-R '(R and R'represent an organic atomic group)
【請求項3】 炭素−炭素多重結合を有する化合物が、
次式で表される化合物である請求項1記載の水素化還元
方法。 R−CH=CH−R’(R及びR’は有機原子団を表
す)
3. A compound having a carbon-carbon multiple bond,
The hydrogenation reduction method according to claim 1, which is a compound represented by the following formula. R-CH = CH-R '(R and R'represent an organic atomic group)
JP3307153A 1991-10-28 1991-10-28 Process for hydrogenative reduction of compound having carbon-carbon multiple bond Pending JPH0616580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3307153A JPH0616580A (en) 1991-10-28 1991-10-28 Process for hydrogenative reduction of compound having carbon-carbon multiple bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3307153A JPH0616580A (en) 1991-10-28 1991-10-28 Process for hydrogenative reduction of compound having carbon-carbon multiple bond

Publications (1)

Publication Number Publication Date
JPH0616580A true JPH0616580A (en) 1994-01-25

Family

ID=17965672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3307153A Pending JPH0616580A (en) 1991-10-28 1991-10-28 Process for hydrogenative reduction of compound having carbon-carbon multiple bond

Country Status (1)

Country Link
JP (1) JPH0616580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948375A (en) * 2010-09-05 2011-01-19 中南大学 Method for preparing cyclohexanone or cyclohexanol by recovering phenol
CN109574806A (en) * 2017-09-29 2019-04-05 中国科学院大连化学物理研究所 A kind of method that hexin glycol catalytic hydrogenation prepares hexylene glycol

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948375A (en) * 2010-09-05 2011-01-19 中南大学 Method for preparing cyclohexanone or cyclohexanol by recovering phenol
CN109574806A (en) * 2017-09-29 2019-04-05 中国科学院大连化学物理研究所 A kind of method that hexin glycol catalytic hydrogenation prepares hexylene glycol
CN109574806B (en) * 2017-09-29 2021-10-29 中国科学院大连化学物理研究所 Method for preparing hexanediol by catalytic hydrogenation of hexynediol

Similar Documents

Publication Publication Date Title
JP3023809B2 (en) Method for hydrogenating and reducing cyclic organic compounds
US5097073A (en) Production of aliphatic primary of secondary amine
JPH0616580A (en) Process for hydrogenative reduction of compound having carbon-carbon multiple bond
US6472575B2 (en) Process for producing adamantane
JP2932330B2 (en) Method for hydrogenating and reducing nitrogen-containing compounds
JPH0672923A (en) Hydrogenation reduction of carbonyl compound
JP2946439B2 (en) Reductive amination of compounds with hydroxyl groups
CN112125782B (en) Method for preparing high-purity nerol and geranial by hydrogenating citral
JP3018263B2 (en) Method for dehalogenating halogen compounds
JP3194051B2 (en) Method for dehydrogenation of hydroxyl group
JP2946440B2 (en) Reductive alkylation / reductive amination method
JPH0374651B2 (en)
JP3016727B2 (en) Modified Raney nickel catalyst and method for producing diol compound using the catalyst
US5739404A (en) Process for preparing a mixture of amino-methyl-cyclohexanes and diamino-methyl-cyclohexanes
US6031140A (en) Process for producing isocamphyl cyclohexanoles
JP4733906B2 (en) Method for converting cyclododecane-1,2-dione to cyclododecanone
JP3035753B2 (en) Desulfurization method for sulfur-containing compounds
JP2555423B2 (en) Method of hydrogenating edible fats and oils
JP3939340B2 (en) Hydrogenation method in plate heat exchanger
CN102824915A (en) Catalyst for preparing lower-carbon glycols through hydrogenolysis of C5 and C6 sugar alcohol mixture and preparation method of catalyst
JPH0513935B2 (en)
CN114570376B (en) Catalyst for synthesizing menthone and method for synthesizing menthone
CN101209967A (en) Method for preparing linalyl acetate from dehydrolinalool
JPS63268799A (en) Method for hydrogenating fat or oil
JPH02261897A (en) Method for low temperature hydrogenation of oil or fat