JP2946440B2 - Reductive alkylation / reductive amination method - Google Patents

Reductive alkylation / reductive amination method

Info

Publication number
JP2946440B2
JP2946440B2 JP3307155A JP30715591A JP2946440B2 JP 2946440 B2 JP2946440 B2 JP 2946440B2 JP 3307155 A JP3307155 A JP 3307155A JP 30715591 A JP30715591 A JP 30715591A JP 2946440 B2 JP2946440 B2 JP 2946440B2
Authority
JP
Japan
Prior art keywords
reaction
hydrogen storage
hydrogen
storage alloy
reductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3307155A
Other languages
Japanese (ja)
Other versions
JPH0672968A (en
Inventor
稔 守田
功博 川崎
寛昭 小西
真美 川成
俊一 堂迫
栄記 出家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKIJIRUSHI NYUGYO KK
Original Assignee
YUKIJIRUSHI NYUGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKIJIRUSHI NYUGYO KK filed Critical YUKIJIRUSHI NYUGYO KK
Priority to JP3307155A priority Critical patent/JP2946440B2/en
Publication of JPH0672968A publication Critical patent/JPH0672968A/en
Application granted granted Critical
Publication of JP2946440B2 publication Critical patent/JP2946440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素貯蔵合金を用いる
還元的アルキル化・還元的アミノ化法に関する。本発明
の方法は、食品、医薬、農薬などの分野において利用さ
れる化成品の合成に際して有用である。
The present invention relates to a reductive alkylation / reductive amination method using a hydrogen storage alloy. INDUSTRIAL APPLICABILITY The method of the present invention is useful for synthesizing chemical products used in the fields of food, medicine, agrochemicals and the like.

【0002】[0002]

【従来の技術】還元的アルキル化法・還元的アミノ化法
は、アンモニアやアミンをアルデヒドやケトンなどのカ
ルボニル化合物で還元的にアルキル化する反応のこと
で、この反応をカルボニル化合物からみると還元的にア
ミノ化する反応となる。この反応については、還元方法
の違いによって大きく二つに分けられる。
2. Description of the Related Art Reductive alkylation and reductive amination are reactions in which ammonia and amines are reductively alkylated with carbonyl compounds such as aldehydes and ketones. It becomes a reaction to be aminated. This reaction is roughly divided into two depending on the difference in the reduction method.

【0003】一つは、ギ酸やホルムアミド、水素化ホウ
素ナトリウム、水素化シアノホウ素ナトリウムなどの還
元剤を用いる方法である。これは、1885年にロイカルト
がギ酸アンモニウムを用いて行ったアミンによるカルボ
ニル化合物の還元的アミノ化(アルキル化)反応として
発見された。そして、1892年にワーラッハがギ酸を用
い、反応条件を穏やかにして副反応を押さえ種々の系に
拡張した。その為、この反応はロイカルト−ワーラッハ
反応とも呼ばれている。しかし、この方法は還元剤の繰
り返し使用ができず、また還元剤と反応生成物との分離
がしばしば困難になるという問題点があった。
[0003] One is a method using a reducing agent such as formic acid, formamide, sodium borohydride, and sodium cyanoborohydride. This was discovered in 1885 as a reductive amination (alkylation) of carbonyl compounds with amines performed by Leukart using ammonium formate. Then, in 1892, Warrach used formic acid, moderated the reaction conditions, suppressed side reactions, and extended the system to various systems. For this reason, this reaction is also called a Leukart-Wallach reaction. However, this method has problems that the reducing agent cannot be used repeatedly and that it is often difficult to separate the reducing agent from the reaction product.

【0004】もう一つの方法は、白金やニッケル、コバ
ルトなどの金属触媒を用い、水素雰囲気下で接触還元す
る反応である。この反応は還元剤を使用する方法に比べ
て操作が簡便で反応生成物と触媒との分離が容易である
という利点がある。この時、パラジウム、ロジウム、白
金などの貴金属を用いた場合、触媒能が高く、低温・低
圧で反応が進行する。しかし、当然のことながら高価で
あり、産業上の利用においては適当でなかった。また、
ニッケル、コバルト、銅などの比較的安価な金属を用い
た場合、触媒能が低く、高温・高圧の条件を必要とする
為、反応容器を高価な耐熱耐圧容器とする必要があっ
た。
[0004] Another method is a reaction in which a catalytic reduction is carried out in a hydrogen atmosphere using a metal catalyst such as platinum, nickel or cobalt. This reaction has the advantage that the operation is simpler and the reaction product is easily separated from the catalyst as compared with the method using a reducing agent. At this time, when a noble metal such as palladium, rhodium, or platinum is used, the catalytic activity is high and the reaction proceeds at low temperature and low pressure. However, it is, of course, expensive and not suitable for industrial use. Also,
When a relatively inexpensive metal such as nickel, cobalt, or copper is used, the catalytic activity is low, and high temperature and high pressure conditions are required.

【0005】近年開発され、その応用が注目されている
水素貯蔵合金は、現在、自動車、ヒートポンプ及び室内
の冷暖房システムなどの分野で利用されているが、水素
貯蔵合金には、例えば LaNi5、MgNi、TiFeなどの多くの
種類があって、合金の水素貯蔵量、排出圧力及び排出温
度などの機能は、その構成金属によって大きく異なる
為、その利用に当たっては合金の選択が重要となる。
[0005] Hydrogen storage alloys that have been recently developed and are attracting attention for their applications are currently used in the fields of automobiles, heat pumps, and indoor air conditioning systems. Examples of hydrogen storage alloys include LaNi 5 and MgNi. , TiFe, etc., and the functions such as hydrogen storage amount, discharge pressure, and discharge temperature of the alloy vary greatly depending on the constituent metals thereof. Therefore, the selection of the alloy is important for its use.

【0006】ところで、水素貯蔵合金による水素化還元
反応の例としては、オレフィンの水素化還元、一酸化炭
素の水素化及びアンモニアの合成が「水素貯蔵合金デー
タブック」(与野書房1987年発行) において、さらに、
オレイン酸メチルの常圧水素化分解によるC18アルコー
ル生成反応については日本化学会(第54回春季年会1987
年開催) において報告されている。また、油脂の水素添
加(特開昭63−268799号) 、糖アルコールの製造(特願
平2−219100号) 、ジスルフィド結合の還元(特願平2
−277808号) 、脱保護法(特願平2−277809号) などに
ついても報告されている。
As an example of the hydrogenation reduction reaction using a hydrogen storage alloy, hydrogen reduction of olefins, hydrogenation of carbon monoxide, and synthesis of ammonia are described in “Hydrogen Storage Alloy Data Book” (Yono Shobo 1987). ,further,
Atmospheric pressure hydrogenolysis of methyl oleate to form C 18 alcohols is described in The Chemical Society of Japan (The 54th Annual Spring Meeting 1987)
Year). Also, hydrogenation of fats and oils (Japanese Patent Application Laid-Open No. 63-268799), production of sugar alcohols (Japanese Patent Application No. 2-219100), reduction of disulfide bonds (Japanese Patent Application No.
-277808) and the Deprotection Law (Japanese Patent Application No. 2-277809) have also been reported.

【0007】しかし、水素貯蔵合金を用いて還元的アル
キル化・還元的アミノ化を行った例についての報告は見
られない。
However, there is no report on the case where reductive alkylation / reductive amination was performed using a hydrogen storage alloy.

【0008】[0008]

【発明が解決しようとする課題】本発明は、接触還元を
用い、カルボニル基を有する化合物について還元的アル
キル化・還元的アミノ化を行うに当たり、反応性の高い
水素貯蔵合金を利用するため、従来の触媒を全く用いる
必要がなく、また、水素貯蔵合金から排出される大量の
水素を低圧で利用することができ、簡単な装置を用い
て、安全かつ安価に還元的アルキル化・還元的アミノ化
を行う方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention relates to the use of a highly reactive hydrogen storage alloy in performing reductive alkylation and reductive amination of a compound having a carbonyl group using catalytic reduction. No need to use any catalyst at all, and a large amount of hydrogen discharged from the hydrogen storage alloy can be used at low pressure. Using simple equipment, safe and inexpensive reductive alkylation / reductive amination It is an object of the present invention to provide a method for performing the above.

【0009】[0009]

【課題を解決するための手段】本発明は、カルボニル基
を有する化合物をアンモニアなどのアミノ化合物と共存
させ、還元的アルキル化・還元的アミノ化を行う際、M
(希土類元素もしくはCa元素を表す)及びNiを必須元素
とした六方晶のCaCu5型の結晶構造を有する化合物を主
相とする水素貯蔵合金を用い、該合金から放出される水
素で接触水素化を行い、還元的アルキル化・還元的アミ
ノ化を行うことを特徴とする。
According to the present invention, a compound having a carbonyl group is allowed to coexist with an amino compound such as ammonia to perform reductive alkylation and reductive amination.
(Representing rare earth element or Ca element) and catalytic hydrogenation with hydrogen released from the alloy using a hydrogen storage alloy whose main phase is a compound having hexagonal CaCu 5 type crystal structure with Ni as an essential element And performing reductive alkylation and reductive amination.

【0010】以下、本発明を詳しく説明する。本発明に
おいて用いられるカルボニル基を有する化合物として
は、ホルムアルデヒド、アセトアルデヒド、アセトン、
ベンズアルデヒドなど、多様な化合物が挙げられる。本
発明において用いられる水素貯蔵合金は、M(希土類元
素もしくはCa元素を表す)及びNiを必須元素とした六方
晶のCaCu5型の結晶構造を有する化合物を主相とする。
また、水素貯蔵合金に含まれるCaCu5型の結晶相は、50
重量%以上含まれ、残部は主相以外の金属間化合物、不
純物、添加元素などが第2相もしくは混合相として存在
する。
Hereinafter, the present invention will be described in detail. Examples of the compound having a carbonyl group used in the present invention include formaldehyde, acetaldehyde, acetone,
Various compounds, such as benzaldehyde, may be mentioned. The hydrogen storage alloy used in the present invention has, as a main phase, a compound having a hexagonal CaCu 5 type crystal structure containing M (representing a rare earth element or Ca element) and Ni as essential elements.
In addition, the CaCu 5- type crystal phase contained in the hydrogen storage alloy is 50%.
% Or more, with the balance being intermetallic compounds other than the main phase, impurities, additional elements, etc., present as a second phase or a mixed phase.

【0011】これらの水素貯蔵合金は、それ自体還元反
応に対する高い触媒能を有しているので、使用する合金
の種類と反応液の還元反応温度の設定により、20kg/cm2
未満の水素ガス圧力の条件で、高い反応率でかつ安全に
還元的アルキル化・還元的アミノ化を行うことが可能で
ある。この水素貯蔵合金を微粉化した後、0℃、もしく
はそれ以下の温度で水素雰囲気下、一定時間保持するこ
とにより水素を合金に吸蔵させる。
[0011] These hydrogen storage alloys themselves have a high catalytic activity for the reduction reaction. Therefore, depending on the type of the alloy used and the setting of the reduction reaction temperature of the reaction solution, 20 kg / cm 2 is required.
It is possible to safely perform reductive alkylation / reductive amination at a high conversion under a condition of a hydrogen gas pressure of less than. After the hydrogen storage alloy is pulverized, hydrogen is stored in the alloy at a temperature of 0 ° C. or lower in a hydrogen atmosphere for a certain period of time to absorb hydrogen.

【0012】本発明においては、反応溶液とこのあらか
じめ水素を吸蔵させた水素貯蔵合金を反応槽に入れ、脱
気後、攪拌しながら、反応液を一定の温度で保持する
か、ジャケット式によって、水素貯蔵合金を一定の温度
に保持することができるようにした棚段式カラムに水素
貯蔵合金を封入し、一定の温度に保持された反応液を循
環することにより還元的アルキル化・還元的アミノ化を
行う。
In the present invention, the reaction solution and the hydrogen storage alloy preliminarily storing hydrogen are put into a reaction tank, and after deaeration, the reaction solution is maintained at a constant temperature while stirring, or by a jacket method. The hydrogen storage alloy is sealed in a tray type column capable of holding the hydrogen storage alloy at a certain temperature, and the reductive alkylation and reductive amino acid are circulated by circulating the reaction solution maintained at a certain temperature. Perform the conversion.

【0013】反応後、水素ガス及び反応液を回収し、水
素貯蔵合金を冷却する。この水素貯蔵合金は、水素を再
循環することにより、次回の還元反応に繰り返し使用す
ることが可能である。なお、本発明は、水素貯蔵合金の
特性上、水素ガス圧力が20kg/cm2未満の条件で十分に反
応を行うことが可能であり、製造装置の保守安全上、有
利である。また、水素貯蔵合金は、耐食性、熱伝導性な
どの向上を意図して表面改質されたメッキ粉末、表面処
理粉末、銅やシリコンなどによるカプセル化合金なども
本発明に使用可能である。
After the reaction, the hydrogen gas and the reaction liquid are recovered, and the hydrogen storage alloy is cooled. This hydrogen storage alloy can be repeatedly used for the next reduction reaction by recycling hydrogen. The present invention is advantageous in terms of the characteristics of the hydrogen storage alloy, in that the reaction can be sufficiently performed under the condition that the hydrogen gas pressure is less than 20 kg / cm 2 , and is advantageous in terms of maintenance and safety of the manufacturing apparatus. As the hydrogen storage alloy, a plating powder, a surface treatment powder, and an encapsulated alloy of copper, silicon, or the like, which are surface-modified for the purpose of improving corrosion resistance and thermal conductivity, can be used in the present invention.

【0014】[0014]

【実施例】以下に実施例を示して本発明を具体的に説明
する。 実施例1 容量1リットルのデッドエンド式の反応容器に予め水素
を貯蔵させた50gの水素貯蔵合金CaNi5を入れておい
た。そして25℃、真空度750mmHgで5分間脱気し、冷却
したベンズアルデヒド109gを溶解したエタノール溶液15
0ml とアンモニア17gを溶解したエタノール溶液150ml
をそれぞれ容器内に注入した。その後、攪拌しながら反
応温度を25℃に調整した。この時の容器内の水素ガス圧
は6.0kg/cm2であった。40分後、GC−MSによって反
応液を分析したところ、ベンジルアミンとジベンジルア
ミンが、それぞれ生成していることを確認した。液体ク
ロマトグラフィーにより、それぞれの収率が81%、7%
であった。
The present invention will be specifically described below with reference to examples. Example 1 A dead end type reaction vessel having a capacity of 1 liter was charged with 50 g of a hydrogen storage alloy CaNi 5 in which hydrogen was stored in advance. Then, the mixture was degassed at 25 ° C. and a degree of vacuum of 750 mmHg for 5 minutes.
0ml and 17g ammonia dissolved 150ml ethanol solution
Was poured into each container. Thereafter, the reaction temperature was adjusted to 25 ° C. while stirring. At this time, the hydrogen gas pressure in the container was 6.0 kg / cm 2 . After 40 minutes, the reaction solution was analyzed by GC-MS, and it was confirmed that benzylamine and dibenzylamine were formed, respectively. By liquid chromatography, the yields were 81% and 7%, respectively.
Met.

【0015】実施例2 容量1リットルのデッドエンド式の反応容器に、予め水
素を貯蔵させた50gの水素貯蔵合金LaNi5を入れておい
た。そして、25℃、真空度750mmHgで5分間脱気し、冷
却した22重量%濃度の2,3−ジメトキシベンズアルデ
ヒドのメタノール溶液170mlと23重量%濃度のメチルア
ミンのメタノール溶液100mlを、それぞれ容器内に注入
した。その後、攪拌しながら反応温度を25℃に調整し
た。この時の容器内の水素ガス圧は、6.5kg/cm2 であっ
た。2時間後、GC−MSによって反応液を分析したと
ころ、N−メチル−2,3−ジメトキシベンジルアミン
が生成していることを確認し、液体クロマトグラフィー
により収率は88%であった。
Example 2 A dead end type reaction vessel having a capacity of 1 liter was charged with 50 g of a hydrogen storage alloy LaNi 5 in which hydrogen was stored in advance. Then, degassed at 25 ° C. and a degree of vacuum of 750 mmHg for 5 minutes, 170 ml of a cooled methanol solution of 22,3-dimethoxybenzaldehyde having a concentration of 22% by weight and 100 ml of a methanol solution of methylamine having a concentration of 23% by weight were each placed in a container. Injected. Thereafter, the reaction temperature was adjusted to 25 ° C. while stirring. At this time, the hydrogen gas pressure in the container was 6.5 kg / cm 2 . Two hours later, the reaction solution was analyzed by GC-MS. As a result, it was confirmed that N-methyl-2,3-dimethoxybenzylamine had been produced, and the yield was 88% by liquid chromatography.

【0016】実施例3 容量1リットルのデッドエンド式の反応容器に、予め水
素を貯蔵させた50gの水素貯蔵合金LaNi5を入れておい
た。そして、25℃、真空度750mmHgで5分間脱気し、冷
却した38重量%濃度のフェノキシアセトンのメタノール
溶液200ml と15重量%濃度のエタノールアミンのメタノ
ール溶液200mlをそれぞれ反応容器内に注入した。その
後、攪拌しながら反応温度を25℃に調整した。この時の
容器内の水素ガス圧は、6.0kg/cm2 であった。2時間
後、GC−MSによって反応液を分析したところ、1−
フェノキシ−2−(2−ヒドロキシエチルアミノ)プロ
パンが生成していることを確認し、液体クロマトグラフ
ィーにより、収率は61%であった。
Example 3 A dead end type reaction vessel having a capacity of 1 liter was charged with 50 g of hydrogen storage alloy LaNi 5 in which hydrogen was stored in advance. Then, the mixture was degassed at 25 ° C. and a vacuum of 750 mmHg for 5 minutes, and 200 ml of a methanol solution of phenoxyacetone having a concentration of 38% by weight and 200 ml of a methanol solution of ethanolamine having a concentration of 15% by weight were poured into the reaction vessel. Thereafter, the reaction temperature was adjusted to 25 ° C. while stirring. At this time, the hydrogen gas pressure in the container was 6.0 kg / cm 2 . Two hours later, when the reaction solution was analyzed by GC-MS, 1-
It was confirmed that phenoxy-2- (2-hydroxyethylamino) propane was generated, and the yield was 61% by liquid chromatography.

【0017】実施例4 容量1リットルのデッドエンド式の反応容器に予め水素
を貯蔵させた50gの水素貯蔵合金CaNi5を入れておい
た。そして25℃、真空度750mmHgで5分間脱気し、冷却
したベンズアルデヒド109gを溶解したメタノール溶液15
0mlとアンモニア8.5gを溶解したメタノール溶液150ml
をそれぞれ容器内に注入した。その後、攪拌しながら反
応温度を25℃に調整した。この時の容器内の水素ガス圧
は6.0kg/cm2であった。90分後、GC−MSによって反
応液を分析したところ、ジベンジルアミンがとベンジル
アミンが、それぞれ生成していることを確認し、液体ク
ロマトグラフィーにより、収率はそれぞれ80%、15%で
あった。
Example 4 A dead end type reaction vessel having a capacity of 1 liter was charged with 50 g of a hydrogen storage alloy CaNi 5 in which hydrogen was previously stored. Then, the mixture was degassed at 25 ° C. and a degree of vacuum of 750 mmHg for 5 minutes.
0 ml and methanol solution 150 g dissolved ammonia 8.5 g
Was poured into each container. Thereafter, the reaction temperature was adjusted to 25 ° C. while stirring. At this time, the hydrogen gas pressure in the container was 6.0 kg / cm 2 . After 90 minutes, the reaction mixture was analyzed by GC-MS. As a result, it was confirmed that dibenzylamine and benzylamine were formed, and the yields were 80% and 15%, respectively, by liquid chromatography. Was.

【0018】実施例5 容量1リットルのデッドエンド式の反応容器に、予め水
素を貯蔵させた50gの水素貯蔵合金LaNi4.3Al0.3を入
れておいた。そして、25℃、真空度750mmHgで5分間脱
気し、冷却した15重量%濃度のホルムアルデヒドのエタ
ノール溶液100ml と42重量%濃度のジフェニルアミンの
エタノール溶液200mlをそれぞれ容器内に注入した。そ
の後、攪拌しながら反応温度を25℃に調整した。この時
の容器内の水素ガス圧は6.7kg/cm2であった。40分後、
GC−MSによって反応液を分析したところ、メチルジ
フェニルアミンが生成していることを確認し、液体クロ
マトグラフィーにより、収率は62%であった。
Example 5 A dead-end type reaction vessel having a capacity of 1 liter was charged with 50 g of hydrogen storage alloy LaNi 4.3 Al 0.3 in which hydrogen had been stored in advance. Then, the mixture was degassed at 25 ° C. and a degree of vacuum of 750 mmHg for 5 minutes, and 100 ml of a 15% by weight ethanol solution of formaldehyde and 200 ml of a 42% by weight ethanol solution of diphenylamine were poured into the containers. Thereafter, the reaction temperature was adjusted to 25 ° C. while stirring. At this time, the hydrogen gas pressure in the container was 6.7 kg / cm 2 . 40 minutes later,
When the reaction solution was analyzed by GC-MS, it was confirmed that methyldiphenylamine was generated, and the yield was 62% by liquid chromatography.

【0019】[0019]

【発明の効果】以上述べたように、本発明により水素貯
蔵合金を用いて還元的アルキル化・還元的アミノ化を行
うと、水素貯蔵合金自体が高い触媒能を有するので、従
来のニッケルなどの触媒を必要とせずに、水素ガス圧20
kg/cm2未満の安全性の高い条件で、効率良く反応を行う
ことが可能であり、繰り返して反応に供することが可能
である。また、水素貯蔵合金は工業用の水素貯蔵装置に
比べて大量の水素ガスを貯蔵でき、しかも上述のように
低圧で作業できる。さらに、先に述べたような上昇流棚
段カラムを使用する場合には、反応溶液と水素貯蔵合金
の分離に対する負荷を大幅に軽減できるという操作上の
利点もある。
As described above, when reductive alkylation and reductive amination are performed using a hydrogen storage alloy according to the present invention, the hydrogen storage alloy itself has a high catalytic activity, and therefore, the conventional nickel storage material such as nickel is used. Hydrogen gas pressure 20 without the need for a catalyst
The reaction can be performed efficiently under highly safe conditions of less than kg / cm 2 , and the reaction can be repeatedly performed. Further, the hydrogen storage alloy can store a larger amount of hydrogen gas than an industrial hydrogen storage device, and can operate at a low pressure as described above. Further, when the upflow tray column as described above is used, there is an operational advantage that the load on the separation between the reaction solution and the hydrogen storage alloy can be greatly reduced.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 213/02 C07C 213/02 217/16 217/16 (72)発明者 堂迫 俊一 埼玉県浦和市北浦和5−15−39−616 (72)発明者 出家 栄記 埼玉県狭山市入間川1−6−6−802 (58)調査した分野(Int.Cl.6,DB名) C07C 209/26 C07B 31/00 C07B 43/04 C07C 211/27 C07C 211/54 C07C 213/02 C07C 217/16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07C 213/02 C07C 213/02 217/16 217/16 (72) Inventor Shunichi Dosako 5-15-Kitaura, Urawa-shi, Saitama 39-616 (72) Inventor Eiji Eiji 1-6-6-802 Irumagawa, Sayama City, Saitama Prefecture (58) Field surveyed (Int.Cl. 6 , DB name) C07C 209/26 C07B 31/00 C07B 43/04 C07C 211/27 C07C 211/54 C07C 213/02 C07C 217/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カルボニル基を有する化合物をアミノ化
合物と共存させ、還元反応によってアミンを得る際に、
M(希土類元素もしくはCa元素を表す)およびNiを必須
元素とした六方晶のCaCu5型の結晶構造を有する化合物
を主相とする水素貯蔵合金を用い、該合金から放出され
る水素で還元することを特徴とする還元的アルキル化・
還元的アミノ化法。
When a compound having a carbonyl group coexists with an amino compound and an amine is obtained by a reduction reaction,
Using a hydrogen storage alloy whose main phase is a compound having a hexagonal CaCu 5 type crystal structure with M (representing a rare earth element or Ca element) and Ni as essential elements, and reducing it with hydrogen released from the alloy Reductive alkylation characterized by that
Reductive amination method.
JP3307155A 1991-10-28 1991-10-28 Reductive alkylation / reductive amination method Expired - Lifetime JP2946440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3307155A JP2946440B2 (en) 1991-10-28 1991-10-28 Reductive alkylation / reductive amination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3307155A JP2946440B2 (en) 1991-10-28 1991-10-28 Reductive alkylation / reductive amination method

Publications (2)

Publication Number Publication Date
JPH0672968A JPH0672968A (en) 1994-03-15
JP2946440B2 true JP2946440B2 (en) 1999-09-06

Family

ID=17965695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3307155A Expired - Lifetime JP2946440B2 (en) 1991-10-28 1991-10-28 Reductive alkylation / reductive amination method

Country Status (1)

Country Link
JP (1) JP2946440B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE330946T1 (en) * 1999-11-11 2006-07-15 Nissan Chemical Ind Ltd METHOD FOR PRODUCING A BENZYLAMINE COMPOUND

Also Published As

Publication number Publication date
JPH0672968A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
CN107983400B (en) Reductive amination catalyst and preparation method thereof
US20020106527A1 (en) Promoted porous catalyst
EP2148741A1 (en) Activated base metal catalysts
EP2150343A1 (en) Activated base metal catalysts
JP2946440B2 (en) Reductive alkylation / reductive amination method
US5097073A (en) Production of aliphatic primary of secondary amine
JP3340439B2 (en) Method for catalytic hydrogenation of nitriles to amines in the presence of doped Raney nickel type catalysts
JP2946439B2 (en) Reductive amination of compounds with hydroxyl groups
JP3023809B2 (en) Method for hydrogenating and reducing cyclic organic compounds
JP2932330B2 (en) Method for hydrogenating and reducing nitrogen-containing compounds
JPH0672923A (en) Hydrogenation reduction of carbonyl compound
JP3018263B2 (en) Method for dehalogenating halogen compounds
US6114277A (en) Process for preparing cyano group-containing aromatic methylamines
JP3194051B2 (en) Method for dehydrogenation of hydroxyl group
US9643162B2 (en) Activated base metal catalysts
JPH0616580A (en) Process for hydrogenative reduction of compound having carbon-carbon multiple bond
EP0052511B1 (en) Production of p-phenylenediamine
Kurunina et al. Hydrogenation of para-nitrotoluene on catalytic systems containing oxides of rare earth elements
JP3541396B2 (en) Method for producing 4-aminodiphenylamine
CN1102456C (en) Regeneration process of catalyst for preparing metaphylene dimethylamine
JP3035753B2 (en) Desulfurization method for sulfur-containing compounds
JP2900949B2 (en) Method for producing sugar alcohol
KR0130060B1 (en) Process for chepreparation of neramethylene imine
JP2873876B2 (en) Deprotection method
JP2555423B2 (en) Method of hydrogenating edible fats and oils