JP3194051B2 - Method for dehydrogenation of hydroxyl group - Google Patents

Method for dehydrogenation of hydroxyl group

Info

Publication number
JP3194051B2
JP3194051B2 JP04045592A JP4045592A JP3194051B2 JP 3194051 B2 JP3194051 B2 JP 3194051B2 JP 04045592 A JP04045592 A JP 04045592A JP 4045592 A JP4045592 A JP 4045592A JP 3194051 B2 JP3194051 B2 JP 3194051B2
Authority
JP
Japan
Prior art keywords
hydroxyl group
hydrogen storage
reaction
storage alloy
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04045592A
Other languages
Japanese (ja)
Other versions
JPH05213809A (en
Inventor
稔 守田
功博 川崎
寛昭 小西
真美 川成
俊一 堂迫
栄記 出家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP04045592A priority Critical patent/JP3194051B2/en
Publication of JPH05213809A publication Critical patent/JPH05213809A/en
Application granted granted Critical
Publication of JP3194051B2 publication Critical patent/JP3194051B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素貯蔵合金を用い
て、有機化合物の水酸基を脱水素化して酸化する方法に
関する。本発明の方法は、食品、医薬、農薬等の分野に
おいて利用される化成品の合成に際して有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for oxidizing hydroxyl groups of organic compounds by dehydrogenation using a hydrogen storage alloy. INDUSTRIAL APPLICABILITY The method of the present invention is useful for synthesizing chemical products used in the fields of food, medicine, agrochemicals and the like.

【0002】[0002]

【従来の技術】脱水素化反応による酸化は、古くから過
マンガン酸カリウム、硝酸、クロム酸等の酸化剤を用い
て行われてきた。また、パラジウム、白金、マンガン、
ニッケル等を用いた接触脱水素化反応も有機合成の一手
段として広く用いられている。酸化剤を用いる方法は操
作が簡便で収率も良いが、生成物と試薬との分離がしば
しば困難となる。さらに産業上、繰り返しの利用ができ
ず、ランニングコストが高くなるという問題がある。一
方、接触脱水素化反応の場合、パラジウムや白金等の触
媒としての活性が比較的高いものを用いると、生成した
アルデヒドはさらに一酸化炭素と炭化水素とに分解され
てしまう。このような理由から、接触脱水素化反応を行
う場合は通常、銅、銀、亜鉛等の触媒を用いて行うが、
150 ℃以上の比較的高い温度条件での反応を必要とす
る。
2. Description of the Related Art Oxidation by a dehydrogenation reaction has long been carried out using an oxidizing agent such as potassium permanganate, nitric acid, chromic acid and the like. Also, palladium, platinum, manganese,
A catalytic dehydrogenation reaction using nickel or the like is also widely used as a means of organic synthesis. The method using an oxidizing agent is simple in operation and good in yield, but it is often difficult to separate a product from a reagent. In addition, there is a problem in industrial use that repetitive use is not possible and running cost is increased. On the other hand, in the case of the catalytic dehydrogenation reaction, if a catalyst having a relatively high activity such as palladium or platinum is used, the generated aldehyde is further decomposed into carbon monoxide and hydrocarbon. For this reason, when the catalytic dehydrogenation reaction is performed, it is usually performed using a catalyst such as copper, silver, and zinc.
Requires reaction at relatively high temperature conditions of 150 ° C or higher.

【0003】近年開発されその応用が注目されている水
素貯蔵合金は、現在、自動車、ヒートポンプ及び室内の
冷暖房システム等の分野で利用されているが、水素貯蔵
合金には、例えば LaNi5、MgNi、TiFeなど多くの種類が
あって、合金の水素貯蔵量、排出圧力及び排出温度など
の機能は、その構成金属によって大きく異なるため、そ
の利用に当たっては合金の選択が重要となる。
[0003] The recently developed a hydrogen storage alloy which the application has been noted that currently, automobile, have been used in the fields such as heat pump and the indoor cooling and heating systems, the hydrogen storage alloy, for example LaNi 5, MgNi, There are many types such as TiFe, and the functions such as hydrogen storage amount, discharge pressure and discharge temperature of alloys vary greatly depending on the constituent metals thereof. Therefore, selection of the alloy is important for its use.

【0004】ところで、水素貯蔵合金による水素化還元
反応の例としては、オレフィンの水化還元、一酸化炭素
の水素化及びアンモニアの合成が「水素貯蔵合金データ
ブック」(与野書房1987年発行)において、さらにオレ
イン酸メチルの常圧水素化分解によるC18アルコール生
成反応については日本化学会(第54回春季年会1987年開
催)において報告されている。また油脂の水素添加(特
開昭63-268799 号)、糖アルコールの製造(特願平2-21
9100号)、ジスルフィド結合の還元(特願平2-277808
号)、脱保護法(特願平2-277809号)等についても報告
されている。
[0004] As an example of a hydrogenation reduction reaction using a hydrogen storage alloy, hydration reduction of olefins, hydrogenation of carbon monoxide, and synthesis of ammonia are described in "Hydrogen Storage Alloy Data Book" (published by Yono Shobo 1987). Further, the C18 alcohol formation reaction by atmospheric pressure hydrogenolysis of methyl oleate has been reported in the Chemical Society of Japan (held at the 54th Annual Spring Meeting 1987). Hydrogenation of fats and oils (Japanese Patent Application Laid-Open No. 63-268799), production of sugar alcohols (Japanese Patent Application No. 2-21)
No. 9100), reduction of disulfide bonds (Japanese Patent Application No. 2-277808)
No.) and the Deprotection Law (Japanese Patent Application No. 2-277809).

【0005】しかし、水素貯蔵合金を用いて脱水素した
反応は、油脂を用いたもののみであり(特開平2−1827
91号) 、水酸基の脱水素化反応を行った例についての報
告は見られない。
However, the reaction of dehydrogenation using a hydrogen storage alloy is only a reaction using fats and oils (JP-A-2-1827).
No. 91), there is no report on the case of performing a dehydrogenation reaction of a hydroxyl group.

【0006】[0006]

【発明が解決しようとする課題】本発明は、水酸基を脱
水素化して酸化を行うに当たり、反応性の高い水素貯蔵
合金を利用して、従来の触媒を用いる必要がなく、安全
かつ安価に接触脱水素化反応を行う方法を提供すること
を課題とする。
SUMMARY OF THE INVENTION The present invention utilizes a highly reactive hydrogen storage alloy for dehydrogenating and oxidizing a hydroxyl group, and does not require the use of a conventional catalyst, and provides safe and inexpensive contact. It is an object to provide a method for performing a dehydrogenation reaction.

【0007】[0007]

【課題を解決するための手段】本発明は、M(希土類元
素もしくはCa元素を表す)及びNiを必須元素とした六方
晶のCaCu5 型の結晶構造を有する化合物を主相とする水
素貯蔵合金を用い、水酸基を有する有機化合物の水酸基
を脱水素化して酸化することを特徴とする。以下、本発
明を詳しく説明する。
SUMMARY OF THE INVENTION The present invention provides a hydrogen storage alloy comprising, as a main phase, a compound having a hexagonal CaCu 5- type crystal structure containing M (representing a rare earth element or Ca element) and Ni as essential elements. And dehydrogenating and oxidizing the hydroxyl group of the organic compound having a hydroxyl group. Hereinafter, the present invention will be described in detail.

【0008】本発明において用いられる水素貯蔵合金
は、M(希土類元素もしくはCa元素を表す)及びNiを必
須元素とした六方晶のCaCu5 型の結晶構造を有する化合
物を主相とする。また、水素貯蔵合金内に含まれるCaCu
5 型の結晶相は、50重量%以上含まれ、残部は主相以外
の金属間化合物、不純物、添加元素などが、第2相もし
くは混合相として存在する。これらの水素貯蔵合金は、
使用する合金の種類と反応を行う温度条件を適切に設定
することにより、20kg/cm2未満の圧力条件で、安全に接
触脱水素化反応を行うことが可能である。
The main component of the hydrogen storage alloy used in the present invention is a compound having a hexagonal CaCu 5 type crystal structure containing M (representing a rare earth element or Ca element) and Ni as essential elements. In addition, CaCu contained in the hydrogen storage alloy
The type 5 crystal phase is contained in an amount of 50% by weight or more, and the remainder contains intermetallic compounds, impurities, and additional elements other than the main phase as a second phase or a mixed phase. These hydrogen storage alloys
By appropriately setting the type of alloy to be used and the temperature conditions for the reaction, it is possible to safely perform the catalytic dehydrogenation reaction under a pressure condition of less than 20 kg / cm 2 .

【0009】この水素貯蔵合金を微粉化した後、0℃も
しくはそれ以下の温度で、一定時間保持することによっ
て水素を合金に吸蔵させた後、減圧することによって水
素を合金から排出させる。本発明において用いられる水
酸基を有する有機化合物としては、1級水酸基もしくは
2級水酸基を有する化合物なら何でもよく、例としてエ
タノール、1−ブタノール等の1級アルコール、イソブ
タノール、シクロヘキサノール等の2級アルコール等が
挙げられる。
After the hydrogen storage alloy is pulverized, hydrogen is absorbed into the alloy by holding the alloy at a temperature of 0 ° C. or lower for a certain period of time, and then the hydrogen is discharged from the alloy by reducing the pressure. As the organic compound having a hydroxyl group used in the present invention, any compound having a primary or secondary hydroxyl group may be used, and examples thereof include primary alcohols such as ethanol and 1-butanol, and secondary alcohols such as isobutanol and cyclohexanol. And the like.

【0010】本発明においては、反応液とこの予め水素
を排出させた水素貯蔵合金を反応槽に入れ、攪拌しなが
ら反応液を適切な温度条件に保持して反応させるか、ジ
ャケット式によって水素貯蔵合金を適切な温度条件に保
持し得るようにした棚段式カラムに水素貯蔵合金を封入
し、適切な温度条件に保持された反応液を循環させるこ
とにより、水酸基の脱水素化反応を行う。
In the present invention, the reaction solution and the hydrogen storage alloy from which hydrogen has been discharged in advance are put into a reaction tank, and the reaction solution is maintained at an appropriate temperature while stirring, or the reaction is carried out. The dehydrogenation reaction of the hydroxyl group is performed by enclosing the hydrogen storage alloy in a tray column capable of holding the alloy at an appropriate temperature condition and circulating the reaction solution maintained at the appropriate temperature condition.

【0011】反応後、反応液を回収し、水素貯蔵合金を
冷却する。この水素貯蔵合金は、水素を排出させ再循環
することにより、次回の脱水素化反応に繰り返し使用す
ることが可能である。なお、本発明は、水素貯蔵合金の
特性上、圧力が20kg/cm2未満の条件で水酸基の脱水素化
反応を行うことが可能であり、製造装置の保守安全上、
有利である。また、水素貯蔵合金は、耐食性、熱伝導性
などの向上を意図して表面改質されたメッキ粉末、表面
処理粉末、銅やシリコンなどによるカプセル化合金など
も本発明に使用可能である。
After the reaction, the reaction solution is recovered, and the hydrogen storage alloy is cooled. This hydrogen storage alloy can be repeatedly used for the next dehydrogenation reaction by discharging and recycling hydrogen. The present invention, the nature of the hydrogen storage alloy, the pressure is able to perform the dehydrogenation reaction of the hydroxyl groups at the conditions of less than 20 kg / cm 2, the production apparatus maintenance safety,
It is advantageous. Further, as the hydrogen storage alloy, a plating powder, a surface treatment powder, and an encapsulated alloy of copper, silicon, or the like, which are surface-modified for the purpose of improving corrosion resistance, thermal conductivity, and the like, can also be used in the present invention.

【0012】[0012]

【発明の効果】以上述べたように、本発明により水素貯
蔵合金を用いて水酸基の脱水素化反応を行うと、従来の
ニッケル等の触媒を必要とせずに、圧力20kg/cm2未満
で、温度100 ℃以下という安全性の高い条件で、脱水素
化反応を行うことが可能であり、かつ繰り返して反応に
供することが可能である。また、水素貯蔵合金は工業用
の水素貯蔵装置に比べて大量の水素ガスを貯蔵でき、し
かも上述のように低圧で作業できる。さらに、先に述べ
たような上昇流棚段式カラムを使用する場合には、反応
液と水素貯蔵合金の分離に対する負荷を大幅に軽減でき
るという操作上の利点もある。
As described above, when a hydroxyl group is dehydrogenated by using a hydrogen storage alloy according to the present invention, a pressure of less than 20 kg / cm 2 can be obtained without using a conventional catalyst such as nickel. The dehydrogenation reaction can be carried out under a highly safe condition of a temperature of 100 ° C. or less, and the reaction can be repeatedly performed. Further, the hydrogen storage alloy can store a larger amount of hydrogen gas than an industrial hydrogen storage device, and can operate at a low pressure as described above. Further, when the upflow tray column as described above is used, there is an operational advantage that the load on the separation of the reaction solution and the hydrogen storage alloy can be greatly reduced.

【0013】[0013]

【実施例】以下に実施例を示して本発明を具体的に説明
する。 実施例1 容量1リットルのデッドエンド式反応容器に、予め水素
を排出させた50gの水素貯蔵合金CaNi5 を入れておい
た。そして、40℃、真空度750mmHg で10分間脱気し、10
重量%濃度のエタノール水溶液200ml を容器内に注入し
た。その後、攪拌しながら反応温度を40℃に調整した。
このときの容器内の圧力は1.1kg/cm2 であった。4時間
後、GC−MSにより、反応液を分析したところ、アセ
トアルデヒドが生成していることを確認した。さらに高
速液体クロマトグラフィーによる分析でも、アセトアル
デヒドであることを支持していた。このときの収率は10
%であった。
The present invention will be specifically described below with reference to examples. Example 1 A dead end type reaction vessel having a capacity of 1 liter was charged with 50 g of a hydrogen storage alloy CaNi 5 from which hydrogen had been discharged in advance. Then, deaerate at 40 ° C and a vacuum of 750 mmHg for 10 minutes.
200 ml of a weight% ethanol aqueous solution was poured into the container. Thereafter, the reaction temperature was adjusted to 40 ° C. while stirring.
At this time, the pressure in the container was 1.1 kg / cm 2 . After 4 hours, the reaction solution was analyzed by GC-MS, and it was confirmed that acetaldehyde was generated. Analysis by high performance liquid chromatography also supported that it was acetaldehyde. The yield at this time is 10
%Met.

【0014】実施例2 容量1リットルのデッドエンド式反応容器に、予め水素
を排出させた50gの水素貯蔵合金LaNi5 を入れておい
た。そして、40℃、真空度750mmHg で10分間脱気し、10
重量%濃度のイソプロピルアルコール水溶液200ml を容
器内に注入した。その後、攪拌しながら反応温度を40℃
に調整した。このときの容器内の圧力は、1.2kg/cm2
あった。4時間後、GC−MSにより、反応液を分析し
たところ、アセトンが生成していることを確認した。さ
らに高速液体クロマトグラフィーによる分析でも、アセ
トンであることを支持していた。このときの収率は27%
であった。
EXAMPLE 2 A dead end type reaction vessel having a capacity of 1 liter was charged with 50 g of a hydrogen storage alloy LaNi 5 from which hydrogen had been discharged in advance. Then, deaerate at 40 ° C and a vacuum of 750 mmHg for 10 minutes.
200 ml of an aqueous solution of isopropyl alcohol having a concentration of weight% was injected into the container. Thereafter, the reaction temperature was raised to 40 ° C while stirring.
Was adjusted. At this time, the pressure in the container was 1.2 kg / cm 2 . After 4 hours, the reaction solution was analyzed by GC-MS, and it was confirmed that acetone was generated. Analysis by high performance liquid chromatography also supported that it was acetone. The yield at this time is 27%
Met.

【0015】実施例3 容量1リットルのデッドエンド式反応容器に予め水素を
排出させた50gの水素貯蔵合金LaNi4.3Al0.7を入れて
おいた。そして、40℃、真空度750mmHg で10分間脱気
し、5重量%濃度のシクロヘキサノール水溶液200ml を
容器内に注入した。その後、攪拌しながら反応温度を40
℃に調整した。この時の容器内の圧力は1.1kg/cm2 であ
った。4時間後、GC−MSによって反応液を分析した
ところ、シクロヘキサノンが生成していることを確認し
た。さらに高速液体クロマトグラフィーによる分析で
も、シクロヘキサノンであることを支持していた。この
ときの収率は5%であった。
Example 3 A dead end type reaction vessel having a capacity of 1 liter was charged with 50 g of a hydrogen storage alloy LaNi 4.3 Al 0.7 from which hydrogen had been discharged in advance. Then, the mixture was degassed at 40 ° C. and a degree of vacuum of 750 mmHg for 10 minutes, and 200 ml of a 5% by weight aqueous solution of cyclohexanol was poured into the container. Thereafter, the reaction temperature was raised to 40 while stirring.
Adjusted to ° C. At this time, the pressure in the container was 1.1 kg / cm 2 . After 4 hours, the reaction solution was analyzed by GC-MS, and it was confirmed that cyclohexanone was generated. Furthermore, the analysis by high-performance liquid chromatography supported that it was cyclohexanone. At this time, the yield was 5%.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 49/08 C07C 49/08 A 49/403 49/403 A (72)発明者 堂迫 俊一 埼玉県浦和市北浦和5−15−39−616 (72)発明者 出家 栄記 埼玉県狭山市入間川71−6−6−802 (56)参考文献 特開 平2−182791(JP,A) 特開 昭60−258135(JP,A) 特許66989(JP,C2) 特許66990(JP,C2) (58)調査した分野(Int.Cl.7,DB名) C07C 1/00 - 409/44 C07B 31/00 - 63/04 B01J 21/00 - 38/74 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C07C 49/08 C07C 49/08 A 49/403 49/403 A (72) Inventor Shunichi Dosako 5-Kitaura, Urawa-shi, Saitama 15-39-616 (72) Inventor Eiji Eiji 71-6-802 Irumagawa, Sayama-shi, Saitama (56) References JP-A-2-1822791 (JP, A) JP-A-60-258135 (JP, A) ) Patent 66989 (JP, C2) Patent 66990 (JP, C2) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 1/00-409/44 C07B 31/00-63/04 B01J 21 / 00-38/74

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 M(希土類元素もしくはCa元素を表
す)およびNiを必須元素とした六方晶のCaCu5 型の結晶
構造を有する化合物を主相とする水素貯蔵合金を用い、
水酸基を有する有機化合物の水酸基を脱水素化して酸化
することを特徴とする水酸基の脱水素化方法。
1. A hydrogen storage alloy having a main phase of a compound having a hexagonal CaCu 5 type crystal structure containing M (representing a rare earth element or Ca element) and Ni as essential elements,
A method for dehydrogenating a hydroxyl group, comprising dehydrating and oxidizing a hydroxyl group of an organic compound having a hydroxyl group.
【請求項2】 水酸基を有する有機化合物が1級アルコ
ールである請求項1に記載の水酸基の脱水素化方法。
2. The method for dehydrogenating a hydroxyl group according to claim 1, wherein the organic compound having a hydroxyl group is a primary alcohol.
【請求項3】 水酸基を有する有機化合物が2級アルコ
ールである請求項1に記載の水酸基の脱水素化方法。
3. The method for dehydrogenating a hydroxyl group according to claim 1, wherein the organic compound having a hydroxyl group is a secondary alcohol.
JP04045592A 1992-01-31 1992-01-31 Method for dehydrogenation of hydroxyl group Expired - Fee Related JP3194051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04045592A JP3194051B2 (en) 1992-01-31 1992-01-31 Method for dehydrogenation of hydroxyl group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04045592A JP3194051B2 (en) 1992-01-31 1992-01-31 Method for dehydrogenation of hydroxyl group

Publications (2)

Publication Number Publication Date
JPH05213809A JPH05213809A (en) 1993-08-24
JP3194051B2 true JP3194051B2 (en) 2001-07-30

Family

ID=12581119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04045592A Expired - Fee Related JP3194051B2 (en) 1992-01-31 1992-01-31 Method for dehydrogenation of hydroxyl group

Country Status (1)

Country Link
JP (1) JP3194051B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159212A (en) * 2008-12-11 2010-07-22 Daicel Chem Ind Ltd Method for separating alcohol

Also Published As

Publication number Publication date
JPH05213809A (en) 1993-08-24

Similar Documents

Publication Publication Date Title
Blum et al. Catalytically reactive (η4-tetracyclone)(CO) 2 (H) 2Ru and related complexes in dehydrogenation of alcohols to esters
JP3187868B2 (en) Method for producing saturated alcohol from aldehydes
US2137407A (en) Catalytic hydrogenation process
EP0057007B1 (en) Process for the production of glycollic acid esters
US4923837A (en) Hydrogenation catalyst
JPS5915021B2 (en) Method for producing catalyst containing nickel and/or cobalt and zinc oxide
JP3194051B2 (en) Method for dehydrogenation of hydroxyl group
JP3023809B2 (en) Method for hydrogenating and reducing cyclic organic compounds
US4783559A (en) Process of reduction of aldehydes and ketones
JP2023533579A (en) Process for preparing copper-based hydrogenation catalysts, catalysts prepared therewith and uses
JP2932330B2 (en) Method for hydrogenating and reducing nitrogen-containing compounds
US1275405A (en) Hydrogenation of fats and oils.
CN1047375C (en) Saturation hydrogenation method for olefines or aromatic hydrocarbon
JP3018263B2 (en) Method for dehalogenating halogen compounds
JPH0672923A (en) Hydrogenation reduction of carbonyl compound
CN1234701C (en) Method for producing tetrahydrofuran
JP2946439B2 (en) Reductive amination of compounds with hydroxyl groups
Zhuang et al. Liquid phase hydrogenation of phenol to cyclohexenone over a Pd–La–B amorphous catalyst
JP2946440B2 (en) Reductive alkylation / reductive amination method
JPH0616580A (en) Process for hydrogenative reduction of compound having carbon-carbon multiple bond
EP0358420A2 (en) Method of producing 1-(4'-isobutylphenyl) ethanol
JP3035753B2 (en) Desulfurization method for sulfur-containing compounds
JP4733906B2 (en) Method for converting cyclododecane-1,2-dione to cyclododecanone
CN1048423C (en) Catalyst for hydrogenation of acetone to synthesize methyl-isobutyl ketone, and its prepn. method
JP2900949B2 (en) Method for producing sugar alcohol

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees