JPH0656597A - Production of group ii-vi compound semiconductor single crystal - Google Patents
Production of group ii-vi compound semiconductor single crystalInfo
- Publication number
- JPH0656597A JPH0656597A JP21441692A JP21441692A JPH0656597A JP H0656597 A JPH0656597 A JP H0656597A JP 21441692 A JP21441692 A JP 21441692A JP 21441692 A JP21441692 A JP 21441692A JP H0656597 A JPH0656597 A JP H0656597A
- Authority
- JP
- Japan
- Prior art keywords
- group
- crystal
- single crystal
- compound semiconductor
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、融液から冷やして単結
晶体を製造するII−VI族化合物半導体単結晶の製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a II-VI group compound semiconductor single crystal by cooling a melt to produce a single crystal.
【0002】[0002]
【従来の技術】亜鉛とカルコゲン元素である硫黄、セレ
ン、テルル等の化合物である亜鉛化カルコゲナイド半導
体のうち、セレン化亜鉛(ZnSe)は、青色発光素子
用材料として有望視されており、実用化のためエピタキ
シャル成長等の研究が盛んに行われてきた。これらのエ
ピタキシャル成長は通常格子定数の比較的近いGaAs
基板が用いられている。これは、エピタキシャル成長に
使うことが出来るような良質のZnSe基板が得られて
いないためである。また、ZnSe基板は通常高抵抗で
あり発光素子で必要である導電性基板が容易に得られな
いことが大きな問題となっているためである。次に図8
においてブリッジマン法による従来のZnSe基板用結
晶作成方法について説明する。2. Description of the Related Art Among zinc-containing chalcogenide semiconductors, which are compounds of zinc and chalcogen elements such as sulfur, selenium, and tellurium, zinc selenide (ZnSe) is regarded as a promising material for blue light-emitting devices and is put to practical use. Therefore, researches such as epitaxial growth have been actively conducted. These epitaxial growths are usually made of GaAs, which has a relatively close lattice constant.
A substrate is used. This is because a high-quality ZnSe substrate that can be used for epitaxial growth has not been obtained. Another reason is that the ZnSe substrate usually has a high resistance, and a conductive substrate required for a light emitting element cannot be easily obtained, which is a big problem. Next, FIG.
A conventional method for forming a ZnSe substrate crystal by the Bridgman method will be described.
【0003】アルゴン等の不活性ガスを封入した円筒型
の高圧容器81の中に遮熱物82が配置されこの遮熱物
82の中に、主原料として多結晶ZnSe83、ドープ
原料としてGa単体84を充填した耐熱用容器85が配
置されている。86はこの耐熱容器85を支える軸、8
7は耐熱容器85を熱するヒーターである。まず、ヒー
ター87によって耐熱容器85を加熱しこれに充填され
た原材料を溶解する。次に、耐熱容器85を支えている
軸86を下げていくことによって原料を冷やす方向に熱
勾配を与えて単結晶化させ、単結晶体を得ている。A heat shield 82 is placed in a cylindrical high-pressure vessel 81 filled with an inert gas such as argon. In this heat shield 82, polycrystalline ZnSe 83 as a main material and Ga simple substance 84 as a doping material are used. A heat-resistant container 85 filled with is placed. 86 is a shaft for supporting the heat-resistant container 85, 8
A heater 7 heats the heat-resistant container 85. First, the heat-resistant container 85 is heated by the heater 87 to dissolve the raw materials filled therein. Next, by lowering the shaft 86 supporting the heat-resistant container 85, a thermal gradient is given in the direction of cooling the raw material to make it into a single crystal, and a single crystal is obtained.
【0004】耐熱容器の材料は、最も一般的にはグラフ
ァイトが使用されるが、単結晶材料によっては、その融
液と耐熱容器内壁との接触面で反応を生じたり、カーボ
ン等の不純物が単結晶体に多量に混入するため窒化ボロ
ン(BN)、pBN等のセラミック材料も使われる。Most commonly, graphite is used as the material for the heat-resistant container. However, depending on the single crystal material, a reaction may occur at the contact surface between the melt and the inner wall of the heat-resistant container, or impurities such as carbon may be generated. Ceramic materials such as boron nitride (BN) and pBN are also used because they are mixed in a large amount in the crystal body.
【0005】しかしながら、この様な従来の結晶成長手
法で得られるZnSe単結晶は高抵抗(1012Ωcm-1以
上)であり、通称Zn処理という熱処理すことによって
低抵抗化を図っても低キャリア濃度(1016-17 cm-3程
度)しか実現できなかった。However, the ZnSe single crystal obtained by such a conventional crystal growth method has a high resistance (10 12 Ωcm -1 or more), and even if a low resistance is achieved by heat treatment commonly called Zn treatment, a low carrier is obtained. Concentration (10 16-17 Only about cm -3 ) could be achieved.
【0006】[0006]
【発明が解決しようとする課題】上記したように従来の
結晶成長方法では、高抵抗、低キャリア濃度のII−VI族
化合物半導体結晶しか提供することができず、青色LE
Dに期待されるような高い導電性を示す基板を提供する
ことができないという問題がある。そこで本発明は、上
記問題点を解決し、低抵抗、高キャリア濃度で良好な導
電性を示すII−VI族化合物半導体単結晶の製造方法を提
供することを目的とする。As described above, the conventional crystal growth method can provide only the II-VI group compound semiconductor crystal having high resistance and low carrier concentration, and the blue LE
There is a problem that it is not possible to provide a substrate having high conductivity as expected for D. Therefore, it is an object of the present invention to solve the above problems and provide a method for producing a II-VI group compound semiconductor single crystal exhibiting good conductivity with low resistance and high carrier concentration.
【0007】[0007]
【課題を解決するための手段】上記目的を達成するため
に、第1の発明は、主原料として多結晶II−VI族化合物
半導体、及び副原料として前記II−VI族化合物半導体の
導電型を決定する不純物及びII族元素をルツボに収容す
る工程と、前記主原料及び副原料を前記ルツボ中で溶融
物にする工程と、前記溶融物を再結晶化して導電型を呈
するII−VI族化合物半導体単結晶を形成する工程とを具
備する事を特徴とするII−VI族化合物半導体単結晶の製
造方法を提供するものである。In order to achieve the above object, the first invention is to provide a polycrystalline II-VI group compound semiconductor as a main material and a conductivity type of the II-VI group compound semiconductor as an auxiliary material. A step of accommodating impurities and a group II element to be determined in a crucible, a step of converting the main raw material and the auxiliary raw material into a melt in the crucible, and a II-VI group compound having a conductivity type by recrystallizing the melt. A method for producing a II-VI group compound semiconductor single crystal, comprising the step of forming a semiconductor single crystal.
【0008】また、第2の発明は、主原料として多結晶
II−VI族化合物半導体、及び副原料として前記II−VI族
化合物半導体の導電型を決定する不純物、II族元素、及
びVI族元素をルツボに収容する工程と、前記主原料及び
副原料を前記ルツボ中で溶融物にする工程と、前記溶融
物を再結晶化して導電型を呈するII族化合物半導体単結
晶を形成する工程とを具備する事を特徴とするII族化合
物半導体単結晶の製造方法を提供するものである。The second invention is a polycrystalline material as a main raw material.
II-VI compound semiconductor, and impurities for determining the conductivity type of the II-VI compound semiconductor as a secondary material, a step of accommodating a II element, and a VI element in a crucible, the main material and the auxiliary material A method for producing a group II compound semiconductor single crystal, comprising: a step of forming a melt in a crucible; and a step of recrystallizing the melt to form a group II compound semiconductor single crystal exhibiting a conductivity type. Is provided.
【0009】[0009]
【作用】主原料として多結晶II−VI族化合物半導体と、
副原料としてII族元素、VI族元素、及びキャリア不純物
元素を出発原料とし、昇温過程で、先ず副原料であるII
族元素とVI族元素がその化合物の融点以下の温度で反応
し、この際キャリア不純物元素が同時に取り込まれる。
次に融点以上の温度で主原料であるII−VI族化合物多結
晶が融解する際前記反応後の副原料も同時に融解し、こ
の過程でキャリア不純物は高濃度で均一に取り込まれ
る。[Function] A polycrystalline II-VI group compound semiconductor as a main material,
As a starting material, a group II element, a group VI element, and a carrier impurity element are used as starting materials.
The group element and the group VI element react with each other at a temperature below the melting point of the compound, and the carrier impurity element is simultaneously taken in at this time.
Next, when the II-VI group compound polycrystal, which is the main raw material, is melted at a temperature equal to or higher than the melting point, the secondary raw material after the reaction is also melted at the same time, and in this process, the carrier impurities are uniformly incorporated at a high concentration.
【0010】なお、キャリア不純物はII族元素とVI族元
素の反応時に取り込まれるため、不純物として安定なサ
イトに入りやすい。このため高い活性化率を得ることが
できる。Since carrier impurities are taken in during the reaction between the group II element and the group VI element, they easily enter stable sites as impurities. Therefore, a high activation rate can be obtained.
【0011】また、副原料としてII族元素とキャリア不
純物のみを用いた場合、主原料である多結晶II−VI族化
合物の融点以下でこの主原料からVI族元素が蒸発するの
でこの蒸発したVI族元素と副原料であるII族元素が反応
しこの際キャリア不純物が同時に取り込まれるのであ
る。When only the group II element and the carrier impurities are used as the auxiliary materials, the group VI element is evaporated from the main raw material below the melting point of the polycrystalline II-VI group compound as the main raw material. The group II element and the group II element, which is an auxiliary material, react with each other and at the same time, carrier impurities are taken in.
【0012】[0012]
【実施例】以下、本発明の実施例を図面を参照しつつ、
詳細に説明する。実施例においては図8に示す装置を用
いて行った。Embodiments of the present invention will now be described with reference to the drawings.
The details will be described. In the examples, the apparatus shown in FIG. 8 was used.
【0013】まず、本発明の第1の実施例を説明する。
本実施例においてはn型導電性を示すII−VI族化合物半
導体単結晶としてZnSeを作成した。副原料の内、導
電型を決定する不純物としてIII 族元素であるGaを用
い出発原料としてGa金属を用いて行った。図1は図8
に示す装置の耐熱容器85の拡大図である。First, a first embodiment of the present invention will be described.
In this example, ZnSe was prepared as a II-VI group compound semiconductor single crystal exhibiting n-type conductivity. Among the auxiliary materials, Ga, which is a group III element, was used as an impurity that determines the conductivity type, and Ga metal was used as a starting material. FIG. 1 is FIG.
It is an enlarged view of the heat-resistant container 85 of the apparatus shown in FIG.
【0014】まず、この耐熱容器5に副原料としてIII
族単体であるGa金属11(0.2g)、II族単体であ
るZn金属12(1g)、VI族単体であるSe単体13
(1g)、主原料としてII−VI族化合物半導体であるZ
nSe多結晶14(120g)を焼結窒化ボロン(B
N)製のルツボに窒素置換されたグローブボック中で封
入した。First, III was used as an auxiliary material in the heat-resistant container 5.
Ga metal 11 (0.2 g) which is a group simple substance, Zn metal 12 (1 g) which is a group II simple substance, Se simple substance 13 which is a group VI simple substance
(1g), Z which is a II-VI group compound semiconductor as a main raw material
nSe polycrystal 14 (120 g) is sintered boron nitride (B
The crucible manufactured by N) was sealed in a nitrogen-substituted glove box.
【0015】次に、単結晶化のために用いた垂直ブリッ
ジマン法の加熱炉内を窒素で10〜350気圧の加圧範
囲内の一例として90気圧に加圧した後、加熱し原料の
融解を確認し、耐熱容器内85を1550℃に1時間保
ち、その後毎時10℃で徐冷を施し、固化させた。この
工程において前述の半導体原料の仕込量122.2gに
対し得られた単結晶体は121gであった。Next, the inside of the heating furnace of the vertical Bridgman method used for single crystallization is pressurized with nitrogen to 90 atm as an example of the pressurized range of 10 to 350 atm, and then heated to melt the raw material. Then, the inside of the heat-resistant container 85 was kept at 1550 ° C. for 1 hour, and then gradually cooled at 10 ° C./hour to solidify. In this step, the amount of the single crystal obtained was 121 g with respect to the amount of the semiconductor raw material charged of 122.2 g.
【0016】このようにして作成した、ZnSe単結晶
は、外観の色が無添加のものと比較するとより赤みがか
ったものに変化し、副原料としてZn金属、Se単体を
仕込まなかった従来の方法で作成した単結晶にみられた
ような金属状の析出物は結晶の表面及び内部共に見られ
なかった。The thus-prepared ZnSe single crystal changed its appearance color to a reddish one as compared with the additive-free one, and was prepared by the conventional method in which Zn metal and Se alone were not charged as auxiliary materials. Metal-like precipitates as found in the prepared single crystal were not found on the surface or inside of the crystal.
【0017】図2は本実施例により作成したZnSe結
晶中のGaの濃度分布の分析結果を示すグラフである。
横軸は得られた結晶魂の長さを比で表したものであり得
られる結晶魂のヘッド部を0、テイル部を1としたもの
である(以下同様)。縦軸はGa濃度を示す。FIG. 2 is a graph showing the results of analysis of the Ga concentration distribution in the ZnSe crystal prepared in this example.
The horizontal axis represents the length of the obtained crystal soul as a ratio, and the head portion of the obtained crystal soul is 0 and the tail portion is 1 (the same applies hereinafter). The vertical axis represents Ga concentration.
【0018】この様に結晶の直胴部で1018-20 cm-3のG
a濃度となっており均一に拡散している様子がみられ
た。比較のためにGa単体のみを添加したZnSe結晶
では結晶の底部でGaの高濃度含まれた金属物質の析出
がみられ、十分に活性化していなかった。In this way, the straight body of the crystal is 10 18-20 cm -3 G
It was a concentration of a and it was observed that the particles were uniformly dispersed. For comparison, in the ZnSe crystal in which only Ga was added, precipitation of a metal substance containing a high concentration of Ga was observed at the bottom of the crystal and it was not sufficiently activated.
【0019】次に本実施例によるZnSe結晶を溶融Z
n中で700℃で熱処理を施した。従来数十時間を要し
ていた熱処理時間がわずか1時間ですでにn型導電性を
示した。実験の結果700℃〜1200℃程度で良好な
特性を示したが、特に800℃〜900℃の範囲のもの
で特に高活性化率を示した。Next, the ZnSe crystal according to the present embodiment is melted Z
Heat treatment was performed at 700 ° C. in N. The heat treatment time, which conventionally required several tens of hours, was already 1 hour, and the n-type conductivity was already exhibited. As a result of the experiment, good characteristics were shown at about 700 ° C to 1200 ° C, but particularly high activation rate was shown in the range of 800 ° C to 900 ° C.
【0020】次に850℃で16時間熱処理を施した
後、結晶表面を鏡面研磨した本実施例によるZnSe結
晶のホール測定を行った。図3はこのZnSe結晶のキ
ャリア濃度を示すグラフである。横軸は結晶魂の長さで
あり比で表されている。縦軸はキャリア濃度を示す。Next, after heat treatment was carried out at 850 ° C. for 16 hours, hole measurement was performed on the ZnSe crystal according to this example in which the crystal surface was mirror-polished. FIG. 3 is a graph showing the carrier concentration of this ZnSe crystal. The horizontal axis is the length of the crystal soul, which is expressed as a ratio. The vertical axis represents the carrier concentration.
【0021】この様に結晶全体でキャリア濃度が10
18-20 cm-3以上を示しており、活性化率も50%以上で
あった。比較のためGa単体のみを添加したZnSe結
晶では、同一の熱処理を施してもキャリア濃度は1018cm
-3以下であり、活性化率も最大10%、ほとんどが1%
以下であった。Thus, the carrier concentration in the entire crystal is 10
18-20 cm -3 or more, and the activation rate was 50% or more. For comparison, in the ZnSe crystal added with only Ga, the carrier concentration is 10 18 cm even if the same heat treatment is performed.
-3 or less, activation rate is up to 10%, most are 1%
It was below.
【0022】以上の結果より本実施例によるZnSe化
合物半導体の製造方法ではGaが高い効率で添加される
ことが明らかである。Ga単体添加の場合、未反応で結
晶内部及び表面に高濃度のGa化合物として析出したも
のが、本実施例においては副原料の内Zn金属及びSe
単体が昇温過程の結合の際、効果的にGaを結晶中に取
り込み、Gaの高濃度添加、高活性化率が達成でき、高
いキャリア濃度のZnSe化合物半導体結晶を実現でき
た。From the above results, it is clear that Ga is added with high efficiency in the method of manufacturing a ZnSe compound semiconductor according to this embodiment. In the case of adding Ga alone, unreacted and precipitated high concentration Ga compound inside and on the surface of the crystal is not included in the auxiliary raw materials, Zn metal and Se.
When the simple substance was bonded during the temperature rising process, Ga was effectively taken into the crystal, a high concentration addition of Ga and a high activation rate could be achieved, and a ZnSe compound semiconductor crystal with a high carrier concentration could be realized.
【0023】本実施例では副原料として、Ga単体、Z
n単体、Se単体、を用いたが、副原料として、II族、
III 族の合金であるGa−Zn合金、III-VI族化合物で
あるGa3 Se2 化合物半導体を用いても同様の効果が
得られた。また、取扱が難しいがGa、Zn、Seをあ
らかじめ反応させて結晶成長時に添加しても同様の効果
がみられた。In this embodiment, Ga alone and Z are used as auxiliary materials.
n simple substance and Se simple substance were used.
Group III of Ga-Zn alloy is an alloy, similar effects with Ga 3 Se 2 compound semiconductors III-VI Group compound was obtained. Further, although it is difficult to handle, the same effect was observed when Ga, Zn, and Se were reacted in advance and added during crystal growth.
【0024】また、本実施例では副原料としてGa単
体、Zn単体、及びSe単体を同時に用いたが副原料と
してGa単体とZn単体、Ga単体とSe単体だけでも
同様の効果がみられた。Further, in the present embodiment, Ga simple substance, Zn simple substance and Se simple substance were used at the same time as the auxiliary raw materials. However, similar effects were observed even when only Ga simple substance and Zn simple substance or Ga simple substance and Se simple substance were used as auxiliary raw materials.
【0025】また、本実施例では主原料のII−VI族化合
物半導体として、ZnSeを例に挙げて説明したが、Z
nS、ZnSx Se1-x 、Zny Cd1-y Seでも同様
の効果がみられた。さらに、本実施例では導電型を決定
する元素であるIII 族元素としてGaを用いたが、同じ
III 族元素であるAl、Inでも同様の効果がみられ
た。In the present embodiment, ZnSe has been described as an example of the II-VI group compound semiconductor as the main raw material.
Similar effects were observed with nS, ZnS x Se 1-x , and Zn y Cd 1-y Se. Further, in this embodiment, Ga is used as the group III element which is the element that determines the conductivity type.
Similar effects were observed with Al and In which are group III elements.
【0026】次に、本発明の第2の実施例を説明する。
本実施例においてはp型導電性を示すII−VI族化合物半
導体単結晶としてZnSeを作成した。導電型を決定す
る不純物としてI 族元素であるLiを用い出発原料とし
てVI族元素を含むLi2 Se、Zn金属、及びSe単体
を用いて行った。本実施例は第1の実施例と結晶成長装
置及び方法はほぼ同一である為、図1を用いて説明す
る。Next, a second embodiment of the present invention will be described.
In this example, ZnSe was prepared as a II-VI group compound semiconductor single crystal exhibiting p-type conductivity. Li was used as a Group I element as an impurity that determines the conductivity type, and Li 2 Se containing a Group VI element, Zn metal, and Se alone were used as starting materials. Since the present embodiment has substantially the same crystal growth apparatus and method as the first embodiment, description will be made with reference to FIG.
【0027】まず原料は副原料としてI-VI族化合物半導
体であるLi2 Se11(0.2g)、II族単体である
Zn金属12(1g)、VI族単体であるSe単体13
(1g)、主原料としてII−VI族化合物半導体ZnSe
多結晶14(120g)を焼結窒化ボロン(BN)製の
耐熱容器5に窒素置換されたグローブボックス中で封入
した。First, as raw materials, Li 2 Se 11 (0.2 g) which is a group I-VI compound semiconductor as a subsidiary material, Zn metal 12 (1 g) which is a group II simple substance, and Se simple substance 13 which is a group VI simple substance.
(1 g), II-VI group compound semiconductor ZnSe as the main raw material
Polycrystal 14 (120 g) was sealed in a heat-resistant container 5 made of sintered boron nitride (BN) in a nitrogen-substituted glove box.
【0028】次に、単結晶化のために用いた垂直ブリッ
ジマン法の加熱炉内を窒素で90気圧に加圧した後、加
熱し原料の融解を確認し、図1で説明した耐熱容器5を
1550℃に1時間保ち、その後毎時10℃で徐冷を施
し、固化させた。この工程において一例の半導体原料の
仕込量は122.2gでこれらから得られた単結晶体は
121.2gであった。Next, the inside of the vertical Bridgman heating furnace used for single crystallization was pressurized to 90 atm with nitrogen and then heated to confirm the melting of the raw materials, and the heat-resistant container 5 described in FIG. Was maintained at 1550 ° C. for 1 hour, and then gradually cooled at 10 ° C./hour to solidify. In this step, the amount of the semiconductor raw material as an example was 122.2 g, and the amount of the single crystal obtained from them was 121.2 g.
【0029】この様にして作成した、ZnSe単結晶
は、外観の色が従来の無添加のものと比較するとより赤
みがかった色に変化したことから結晶中に有効に添加さ
れていることが外観からも明かであった。結晶の外観の
色は変化したものの透明感は損なわれておらず、金属状
の析出物は結晶の表面及び内部共に見られなかった。図
4は本実施例により作成したZnSe結晶中のLiの濃
度分布を示すグラフである。横軸は結晶魂の長さを比で
表し、縦軸はLiの濃度を表す。この様に結晶の直胴部
で1018-19 cm-3のLi濃度となっており、Li原子は均
一に拡散している様子がみられた。The ZnSe single crystal prepared in this manner changed its appearance color to a reddish color as compared with the conventional non-added one, so that it was confirmed that it was effectively added to the crystal. Was also clear. Although the appearance color of the crystals changed, the transparency was not impaired, and metallic precipitates were not seen on the surface or inside of the crystals. FIG. 4 is a graph showing the Li concentration distribution in the ZnSe crystal prepared in this example. The horizontal axis represents the length of the crystal soul as a ratio, and the vertical axis represents the concentration of Li. In this way, the straight body part of the crystal is 10 18-19 The Li concentration was cm −3 , and it was seen that Li atoms were uniformly diffused.
【0030】次に本実施例によるZnSe結晶をSe蒸
気中で700℃で熱処理を施した。従来数十時間を要し
ていた熱処理時間がわずか1時間ですでにp型導電性を
示した。実験の結果700℃〜1200℃程度で良好な
特性を示したが、特に800℃〜900℃の範囲のもの
で特に高活性化率を示した。Next, the ZnSe crystal according to this example was heat-treated at 700 ° C. in Se vapor. The heat treatment time, which conventionally required several tens of hours, was already 1 hour, and the p-type conductivity was already exhibited. As a result of the experiment, good characteristics were shown at about 700 ° C to 1200 ° C, but particularly high activation rate was shown in the range of 800 ° C to 900 ° C.
【0031】次に850℃で16時間熱処理を施した
後、結晶表面を鏡面研磨した本実施例によるZnSe結
晶のホール測定を行った。図5はこのZnSe結晶のキ
ャリア濃度を示すグラフである。横軸は結晶魂の長さを
比で表し、縦軸はキャリア濃度を表している。Next, after heat treatment was performed at 850 ° C. for 16 hours, hole measurement was performed on the ZnSe crystal according to the present example in which the crystal surface was mirror-polished. FIG. 5 is a graph showing the carrier concentration of this ZnSe crystal. The horizontal axis represents the length of the crystal soul as a ratio, and the vertical axis represents the carrier concentration.
【0032】この様に結晶全体でキャリア濃度が1017cm
-3以上を示しており、活性化率も50%以上であった。
比較のため副原料としてLi単体のみを添加したZnS
e結晶では、同一の熱処理を施してもキャリア濃度は10
17cm-3以下であり、活性化率も最大10%であり、ほと
んどが1%以下であった。Thus, the carrier concentration in the entire crystal is 10 17 cm
-3 or more, and the activation rate was 50% or more.
For comparison, ZnS added with only Li alone as an auxiliary material
In the case of e crystal, the carrier concentration is 10 even if the same heat treatment is applied.
It was 17 cm -3 or less, the activation rate was 10% at the maximum, and most of it was 1% or less.
【0033】以上の結果より本実施例により作成された
ZnSe結晶は、Liが高い効率で添加されていること
が明らかである。これは副原料としてLi単体のみの添
加の場合、金属Liの蒸気圧が高いため多結晶ZnSe
が溶融する前に蒸発してしまい、作製結晶中に有効に添
加されなかったためと考えられる。この様に本実施例に
よると比較的高い蒸気圧金属の添加も容易に行えるよう
になった。これは副原料であるZn単体及びSe単体
が、昇温過程の結合の際、効果的にLiを結晶中に取り
込み、Liの高濃度添加、高活性化率が達成でき、高い
キャリア濃度のp型ZnSe化合物半導体結晶を得る事
ができていると考えられる。From the above results, it is apparent that Li is added with high efficiency in the ZnSe crystal prepared in this example. This is because when only Li alone is added as an auxiliary material, the vapor pressure of metallic Li is high, so that polycrystalline ZnSe
It is thought that this was because it was evaporated before it melted and was not effectively added to the prepared crystals. As described above, according to the present embodiment, the relatively high vapor pressure metal can be easily added. This is because the simple substance Zn and the simple substance Se, which are the auxiliary materials, effectively incorporate Li into the crystal during the binding in the temperature rising process, and can achieve a high Li concentration and a high activation rate. It is considered that the type ZnSe compound semiconductor crystal can be obtained.
【0034】実施例では副原料としてLi2 Se、Zn
単体、Se単体、主原料としてZnSe多結晶を用いた
が、副原料としてLi2 Seの代わりに導電型を決定す
る元素として金属Li、II族元素を含むLi−Zn合金
を用いても同様の効果が得られた。また、取扱が難しい
がLi、Zn、Seをあらかじめ反応させて結晶成長時
に添加しても同様の効果がみられた。In the examples, Li 2 Se and Zn were used as auxiliary materials.
Although a simple substance, a simple substance of Se, and ZnSe polycrystal as the main raw material were used, the same effect can be obtained by using a Li—Zn alloy containing metal Li and a group II element as an element that determines the conductivity type instead of Li 2 Se as the auxiliary raw material. The effect was obtained. Moreover, although it is difficult to handle, the same effect was observed when Li, Zn, and Se were reacted in advance and added during crystal growth.
【0035】また、副原料としてLi単体、Zn単体、
及びSe単体を同時に用いず副原料としてLi単体とZ
n単体、或はLi単体とSe単体だけでも同様の効果が
みられた。As a raw material, Li alone, Zn alone,
And Se alone are not used at the same time, and Li alone and Z are used as auxiliary materials.
Similar effects were observed with only n, or only Li and Se.
【0036】また、本実施例ではII−VI族化合物半導体
として、ZnSeを例に挙げて説明したが、ZnS、Z
nSx Se1-x 、Zny Cd1-y Seでも同様の効果が
みられた。In this embodiment, ZnSe was taken as an example of the II-VI group compound semiconductor, but ZnS, Z
Similar effects were observed with nS x Se 1-x and Zn y Cd 1-y Se.
【0037】さらに、本実施例では導電型を決定する元
素であるI 族元素としてLiを用いたが、同じI 族元素
を含むNaK、Cs等の蒸気圧の高いアルカリ金属元素
でも同様の効果がみられた。Further, although Li is used as the group I element which is an element that determines the conductivity type in the present embodiment, the same effect can be obtained even with an alkali metal element containing the same group I element such as NaK and Cs having a high vapor pressure. It was seen.
【0038】次に、本発明の第3の実施例を説明する。
本実施例においてはp型導電性を示すII−VI族化合物半
導体単結晶としてZnSeを作成した。導電型を決定す
る不純物としてV 族元素であるNを用いNの化合物であ
るZnNを出発原料として用いて行った。本実施例は第
1の実施例と結晶成長装置及び方法はほぼ同一である
為、図1を用いて説明する。Next, a third embodiment of the present invention will be described.
In this example, ZnSe was prepared as a II-VI group compound semiconductor single crystal exhibiting p-type conductivity. This was performed using N, which is a group V element, as an impurity that determines the conductivity type, and ZnN, which is a compound of N, as a starting material. Since the present embodiment has substantially the same crystal growth apparatus and method as the first embodiment, description will be made with reference to FIG.
【0039】まず副原料としてII-V族化合物であるZn
N11(0.2g)、II族単体であるZn金属12(1
g)、VI族単体であるSe単体13(1g)、主原料と
してII−VI族化合物半導体であるZnSe多結晶14
(120g)を焼結窒化ボロン(BN)製の耐熱容器5
に窒素置換されたグローブボックス中で封入した。First, Zn which is a II-V group compound is used as an auxiliary material.
N11 (0.2 g), Zn metal 12 (1 as a group II simple substance)
g), Se simple substance 13 (1 g) which is a VI group simple substance, ZnSe polycrystal 14 which is a II-VI group compound semiconductor as a main raw material
Heat-resistant container 5 made of sintered boron nitride (BN) (120 g)
It was enclosed in a glove box whose atmosphere was replaced with nitrogen.
【0040】次に、単結晶化のために用いた垂直ブリッ
ジマン法の加熱炉内を窒素で90気圧に加圧した後、加
熱し原料の融解を確認し、耐熱容器内5を1550℃に
1時間保ち、その後毎時10℃で徐冷を施し、固化させ
た。この工程において一例の半導体原料の仕込量は12
2.2gでこれらから得られた単結晶体は121.2g
であった。Next, the interior of the vertical Bridgman heating furnace used for single crystallization was pressurized with nitrogen to 90 atm, and then heated to confirm the melting of the raw materials. It was kept for 1 hour, and then gradually cooled at 10 ° C./hour to be solidified. An example of the amount of semiconductor raw material charged in this step is 12
121.2 g of single crystal obtained from these at 2.2 g
Met.
【0041】この様にして作成した、ZnSe単結晶
は、外観の色が従来の無添加のものと比較するとより赤
みがかった色に変化したことから結晶中に有効に添加さ
れていることが外観からも明かであった。結晶の外観の
色は変化したものの透明感は損なわれていなかった。図
6は本実施例により作成したZnSe結晶中のNの濃度
分布を示すグラフである。横軸は結晶魂の長さを比で表
し、縦軸はN濃度を表している。この様に結晶の直胴部
で1017-18 cm-3のN濃度となっており、N原子は均一に
拡散している様子がみられた。The ZnSe single crystal prepared in this manner changed its appearance color to a reddish color as compared with the conventional additive-free one, so that it can be effectively added to the crystal from the appearance. Was also clear. Although the appearance color of the crystals changed, the transparency was not impaired. FIG. 6 is a graph showing the concentration distribution of N in the ZnSe crystal prepared in this example. The horizontal axis represents the length of the crystal soul as a ratio, and the vertical axis represents the N concentration. In this way, the straight body of the crystal is 10 17-18 The N concentration was cm −3 , and it was seen that N atoms were uniformly diffused.
【0042】次に本実施例によるZnSe結晶を溶融Z
n中で700℃で熱処理を施した。従来数十時間を要し
ていた熱処理時間がわずか1時間ですでにp型導電性を
示した。実験の結果700℃〜1200℃程度で良好な
特性を示したが、特に800℃〜900℃の範囲のもの
で特に高活性化率を示した。Next, the ZnSe crystal according to the present embodiment was melted Z
Heat treatment was performed at 700 ° C. in N. The heat treatment time, which conventionally required several tens of hours, was already 1 hour, and the p-type conductivity was already exhibited. As a result of the experiment, good characteristics were shown at about 700 ° C to 1200 ° C, but particularly high activation rate was shown in the range of 800 ° C to 900 ° C.
【0043】次に、850℃で16時間熱処理を施した
本実施例によるZnSe結晶の表面を鏡面研磨した後ホ
ール測定を行った。図7はこのZnSe結晶のキャリア
濃度を示すグラフである。横軸は結晶魂の長さを比で表
し、縦軸はキャリア濃度を表している。Next, after the surface of the ZnSe crystal according to this example, which had been heat-treated at 850 ° C. for 16 hours, was mirror-polished, hole measurement was performed. FIG. 7 is a graph showing the carrier concentration of this ZnSe crystal. The horizontal axis represents the length of the crystal soul as a ratio, and the vertical axis represents the carrier concentration.
【0044】この様に結晶全体でキャリア濃度が10
17-18 cm-3以上を示しており、活性化率も50%以上で
あった。比較のため窒素圧力90気圧下でも副原料とし
てZnN添加を行わなかったZnSe結晶では、Nの濃
度は測定限界である2ppm以下であり、キャリア濃度
もまったく測定できなかった。Thus, the carrier concentration in the entire crystal is 10
17-18 cm -3 or more, and the activation rate was 50% or more. For comparison, in a ZnSe crystal in which ZnN was not added as an auxiliary material even under a nitrogen pressure of 90 atm, the N concentration was 2 ppm or less, which was the measurement limit, and the carrier concentration could not be measured at all.
【0045】以上の結果より本実施例に作成されたZn
Se結晶は、Nが高い効率で添加されていることが明ら
かである。従来、雰囲気によるN単体添加の場合、Zn
Se融液にまったく反応しないため結晶中にまったく取
り込まれなかった。そのため作製結晶中に有効に添加さ
れなかったが、本実施例によると気体元素であるNの添
加も容易に行えるようになった。これは副原料であるZ
n単体及びSe単体が、昇温過程の結合の際、効果的に
Nを結晶中に取り込み、Gaの高濃度添加、高活性化率
が達成でき、高いキャリア濃度のZnSe化合物半導体
結晶を実現できたためである。From the above results, the Zn prepared in this example was
It is clear that Se crystals are doped with N at high efficiency. Conventionally, when N alone is added in the atmosphere, Zn
Since it did not react with the Se melt at all, it was not incorporated into the crystal at all. Therefore, it was not effectively added to the prepared crystal, but according to the present example, addition of N, which is a gas element, could be easily performed. This is an auxiliary material Z
When n and Se alone combine during the temperature rising process, N is effectively taken into the crystal, a high concentration of Ga and a high activation rate can be achieved, and a ZnSe compound semiconductor crystal with a high carrier concentration can be realized. It is due to the fact.
【0046】実施例では副原料としてZnN、Zn単
体、Se単体、主原料としてZnSe多結晶を用いた
が、導電型を決定するV 族元素であるNの代わりに同じ
V 元素であるAs、Pでも同様の効果が見られた。In the examples, ZnN, Zn simple substance, Se simple substance and ZnSe polycrystal as the main raw material were used as the sub raw materials, but the same is used instead of N which is the group V element for determining the conductivity type.
Similar effects were observed with As and P which are V elements.
【0047】また、本実施例ではII−VI族化合物半導体
として、ZnSeを例に挙げて説明したが、ZnS、Z
nSx Se1-x 、Zny Cd1-y Seでも同様の効果が
みられた。In this embodiment, ZnSe was taken as an example of the II-VI group compound semiconductor, but ZnS, Z
Similar effects were observed with nS x Se 1-x and Zn y Cd 1-y Se.
【0048】また、副原料を仕込む際、キャリア不純
物、II族元素、及びVI族元素は互いに隣接するように配
置することが望ましい。何故ならば、主原料である多結
晶II−VI族化合物の融点以下でこれらの副原料は反応す
るので互いに隣接する方が効果的に反応の進行を即すこ
とができるためである。なお好ましくはルツボの最下部
に副原料を配置しこの上に主原料を充填すると良い。何
故なら、温度が高い上層部で多結晶II−VI族化合物が溶
け副原料のII族元素、VI族元素が蒸発することを防ぐた
めである。さらに、キャリア不純物を1とすると副原料
のII族元素及びVI族元素は10以上とし、副原料全体を
1とすると主原料は100以上の割合が好ましい。ま
た、本発明の各実施例においてはブリッジマン法を使用
したがチョクラルスキー法、液体封止引き上げ法等他の
合成方法を使用しても良い。Further, when the auxiliary raw material is charged, it is desirable that the carrier impurities, the group II element, and the group VI element are arranged adjacent to each other. This is because these auxiliary raw materials react with each other below the melting point of the polycrystalline II-VI group compound which is the main raw material, so that the adjoining ones can effectively promote the progress of the reaction. It is preferable that the auxiliary raw material is arranged at the bottom of the crucible and the main raw material is filled on the auxiliary raw material. This is because the polycrystalline II-VI group compound is melted in the upper layer portion where the temperature is high, and the II-group element and the VI-group element as the auxiliary raw materials are prevented from evaporating. Further, when the carrier impurity is 1, the group II element and the group VI element of the auxiliary raw material are 10 or more, and when the total of the auxiliary raw material is 1, the main raw material is preferably 100 or more. Although the Bridgman method is used in each of the embodiments of the present invention, other synthetic methods such as the Czochralski method and the liquid sealing pulling method may be used.
【0049】[0049]
【発明の効果】以上説明したように本発明によれば、低
抵抗、高キャリア濃度で良好な導電性を示すII−VI族化
合物半導体単結晶を作成することができ、II−VI族化合
物半導体を用いた青色LEDに期待されるような良好な
導電性を示す基板を提供することができる。As described above, according to the present invention, a II-VI group compound semiconductor single crystal exhibiting a low resistance and a high carrier concentration and good conductivity can be prepared. It is possible to provide a substrate exhibiting good conductivity as expected for a blue LED using.
【図1】 本発明の第1、第2、及び第3の実施例に用
いた耐熱容器の断面図。FIG. 1 is a sectional view of a heat-resistant container used in the first, second, and third embodiments of the present invention.
【図2】 本発明の第1の実施例で作成したZnSe結
晶のGa濃度分布を表す図。FIG. 2 is a diagram showing a Ga concentration distribution of a ZnSe crystal prepared in Example 1 of the present invention.
【図3】 本発明の第1の実施例で作成したZnSe結
晶のキャリア濃度分布を表す図。FIG. 3 is a diagram showing a carrier concentration distribution of a ZnSe crystal prepared in the first example of the present invention.
【図4】 本発明の第2の実施例で作成したZnSe結
晶のLi濃度分布を表す図。FIG. 4 is a diagram showing a Li concentration distribution of a ZnSe crystal prepared in a second example of the present invention.
【図5】 本発明の第2の実施例で作成したZnSe結
晶のキャリア濃度分布を表す図。FIG. 5 is a diagram showing a carrier concentration distribution of a ZnSe crystal prepared in the second embodiment of the present invention.
【図6】 本発明の第3の実施例で作成したZnSe結
晶のN濃度分布を表す図。FIG. 6 is a diagram showing an N concentration distribution of a ZnSe crystal prepared in a third example of the present invention.
【図7】 本発明の第3の実施例で作成したZnSe結
晶のキャリア濃度分布を表す図。FIG. 7 is a diagram showing a carrier concentration distribution of a ZnSe crystal prepared in the third embodiment of the present invention.
【図8】 垂直ブリッジマン法による単結晶製造装置。FIG. 8 shows an apparatus for producing a single crystal by the vertical Bridgman method.
11 導電型を決定する元素を含む副原料。 12 副原料であるII族元素 13 副原料であるVI族元素 14 主原料 11 An auxiliary material containing an element that determines the conductivity type. 12 Group II element as an auxiliary material 13 Group VI element as an auxiliary material 14 Main material
Claims (2)
体、及び副原料として前記II−VI族化合物半導体の導電
型を決定する不純物及びII族元素をルツボに収容する工
程と、 前記主原料及び副原料を前記ルツボ中で溶融物にする工
程と、 前記溶融物を再結晶化して導電型を呈するII−VI族合物
半導体単結晶を形成する工程とを具備する事を特徴とす
るII−VI族化合物半導体単結晶の製造方法。1. A step of accommodating a polycrystalline II-VI group compound semiconductor as a main raw material, and an impurity and a group II element that determine a conductivity type of the II-VI group compound semiconductor as a sub-raw material in a crucible, the main raw material And a step of forming an auxiliary material into a melt in the crucible, and a step of recrystallizing the melt to form a II-VI group compound semiconductor single crystal exhibiting a conductivity type, II -Method for producing Group VI compound semiconductor single crystal.
体、及び副原料として前記II−VI族化合物半導体の導電
型を決定する不純物、II族元素、及びVI族元素をルツボ
に収容する工程と、 前記主原料及び副原料を前記ルツボ中で溶融物にする工
程と、 前記溶融物を再結晶化して導電型を呈するII−VI族化合
物半導体単結晶を形成する工程とを具備する事を特徴と
するII−VI族化合物半導体単結晶の製造方法。2. A step of accommodating, in a crucible, a polycrystalline II-VI group compound semiconductor as a main raw material, and impurities, a II group element, and a VI group element that determine the conductivity type of the II-VI group compound semiconductor as an auxiliary raw material. And a step of forming a melt of the main raw material and the auxiliary raw material in the crucible, and a step of recrystallizing the melt to form a II-VI group compound semiconductor single crystal exhibiting a conductivity type. A method for producing a II-VI group compound semiconductor single crystal, which is characterized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21441692A JPH0656597A (en) | 1992-08-12 | 1992-08-12 | Production of group ii-vi compound semiconductor single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21441692A JPH0656597A (en) | 1992-08-12 | 1992-08-12 | Production of group ii-vi compound semiconductor single crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0656597A true JPH0656597A (en) | 1994-03-01 |
Family
ID=16655432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21441692A Pending JPH0656597A (en) | 1992-08-12 | 1992-08-12 | Production of group ii-vi compound semiconductor single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0656597A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104152983A (en) * | 2014-08-01 | 2014-11-19 | 北京雷生强式科技有限责任公司 | Crucible for growing cadmium selenide crystal and growing method of cadmium selenide crystal |
-
1992
- 1992-08-12 JP JP21441692A patent/JPH0656597A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104152983A (en) * | 2014-08-01 | 2014-11-19 | 北京雷生强式科技有限责任公司 | Crucible for growing cadmium selenide crystal and growing method of cadmium selenide crystal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101451995B1 (en) | Process for producing ZnO single crystal according to method of liquid phase growth | |
JP4757029B2 (en) | Method for producing group III nitride crystal | |
Isshiki et al. | Wide-bandgap II-VI semiconductors: growth and properties | |
Rudolph et al. | Crystal growth of ZnSe from the melt | |
WO2016110385A1 (en) | METHOD FOR GROWING BETA PHASE OF GALLIUM OXIDE (β-Ga2O3) SINGLE CRYSTALS FROM THE MELT CONTAINED WITHIN A METAL CRUCIBLE | |
Galazka | Transparent semiconducting oxides: bulk crystal growth and fundamental properties | |
US4465527A (en) | Method for producing a group IIB-VIB compound semiconductor crystal | |
JP2009256155A (en) | Silicon carbide single crystal ingot and production method of the same | |
WO2021251349A1 (en) | Gaas ingot, method for manufacturing gaas ingot, and gaas wafer | |
Fitzpatrick | A review of the bulk growth of high band gap II–VI compounds | |
JP3087065B1 (en) | Method for growing liquid phase of single crystal SiC | |
Zlomanov et al. | Phase diagrams and growth of bulk lead chalcogenide crystals | |
JP2003206200A (en) | p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME | |
US3811963A (en) | Method of epitaxially depositing gallium nitride from the liquid phase | |
JPH0656597A (en) | Production of group ii-vi compound semiconductor single crystal | |
JP2000086398A (en) | P type gaas single crystal and its production | |
US5047112A (en) | Method for preparing homogeneous single crystal ternary III-V alloys | |
Triboulet | The growth of bulk ZnSe crystals | |
EP1013801A1 (en) | Process and apparatus for synthesizing and growing crystals | |
JP4784095B2 (en) | Compound semiconductor single crystal and method and apparatus for manufacturing the same | |
JPH07242500A (en) | Production of ii-vi compound semiconductor single crystal | |
JPH0557240B2 (en) | ||
JPH11268998A (en) | Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same | |
Kato et al. | Crystal Growth of Boron Monophosphide from Cu-Fluxed Melt | |
JP4778150B2 (en) | Manufacturing method of ZnTe-based compound semiconductor single crystal and ZnTe-based compound semiconductor single crystal |