JPH0655160B2 - Method for decolorizing and desalting molasses - Google Patents

Method for decolorizing and desalting molasses

Info

Publication number
JPH0655160B2
JPH0655160B2 JP13446686A JP13446686A JPH0655160B2 JP H0655160 B2 JPH0655160 B2 JP H0655160B2 JP 13446686 A JP13446686 A JP 13446686A JP 13446686 A JP13446686 A JP 13446686A JP H0655160 B2 JPH0655160 B2 JP H0655160B2
Authority
JP
Japan
Prior art keywords
molasses
alcohol
concentration
sugar
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13446686A
Other languages
Japanese (ja)
Other versions
JPS6352899A (en
Inventor
貞夫 宮城
修 貴村
堅市 大城
守広 太田
隆一 宜野座
Original Assignee
第一製糖株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一製糖株式会社 filed Critical 第一製糖株式会社
Priority to JP13446686A priority Critical patent/JPH0655160B2/en
Publication of JPS6352899A publication Critical patent/JPS6352899A/en
Publication of JPH0655160B2 publication Critical patent/JPH0655160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は製糖工場の製造工程中途の糖蜜、又は廃糖蜜の
高効率高脱色脱塩精製法に関するものであり、詳しくは
糖蜜に水及び水酸化カルシウムを加えて、濃度調整及び
高アルカリ調整し、更に55〜65℃に加温してからこ
れにエチルアルコールを加えて高アルコール含有下で凝
集沈殿物を生成されてから沈降分離、遠心分離、又は
過操作等により凝集物質を除去して脱色清澄化した後
に、炭酸ガスを飽充し形成された炭酸カルシウムを過
して軟化とpHの中性域への再調整を行い、その後に多重
効用缶、又は浸透気化式アルコール膜分離濃縮装置、或
いは超音波振動式アルコール分離濃縮装置と多重効用缶
との組合わせ分離濃縮設備によりアルコールを分離濃縮
回収再循環使用し、一方糖蜜の方は限外過膜、又はル
ーズRO領域の透過性を示すマイナス荷電性高分子逆浸
透複合膜等により残存高分子色素類を分離するが、分離
した色素、ゴム質物等は第一工程のアルコール混合凝集
工程にリサイクルすることにより、色素成分等は再凝集
固形化分離除去しつつ、糖分のみを再回収する方式によ
り系外への糖分損失を防止しつつ、95%以上の高脱色
率を達成し、そのまま、或いは更に必要に応じて少量の
活性炭や合成吸着樹脂等により、仕上げ脱色し、更に電
気透析装置により仕上げ脱塩するのを特徴とする糖蜜の
高脱色脱塩精製法に関するものである。
TECHNICAL FIELD The present invention relates to a highly efficient and highly decolorizing desalination purification method for molasses in the middle of the manufacturing process of a sugar factory or waste molasses, and more specifically to molasses containing water and water. Calcium oxide is added to adjust the concentration and alkali, and after heating to 55 to 65 ° C, ethyl alcohol is added to this to form a coagulated precipitate in the high alcohol content, and then sedimentation and centrifugation. , Or after deagglomeration and clarification by removing the agglomerates by over-operation, etc., carbon dioxide gas is filled to pass through the formed calcium carbonate to soften and readjust the pH to the neutral range, and then multiplex. The effect can or pervaporation type alcohol membrane separation and concentration device, or the combination of ultrasonic vibration type alcohol separation and concentration device and multiple effect can separates and concentrates alcohol for recycling and reuse, while molasses Residual polymer dyes are separated by ultra-permeation membrane or negatively charged polymer reverse osmosis composite membrane showing permeability in loose RO region. Separated dyes, rubbery substances, etc. are mixed with alcohol in the first step. By recycling into the process, while removing and reaggregating and solidifying and separating the pigment components, the system recovers only sugars while preventing loss of sugars to the outside of the system, and achieves a high decolorization rate of 95% or more, The present invention relates to a method for highly destaining and desalting and refining molasses, characterized by performing final destaining with a small amount of activated carbon, synthetic adsorption resin or the like as it is, and further with desalting with an electrodialysis device.

(従来技術) 甘蔗、甜菜を原料とする製糖、或いは原料糖の精製に於
いては糖結晶の分離母液である糖蜜は、通常、糖結晶が
経済的に晶析回収しうるまで3回以上数回に亘つて繰返
し、煎糖分離を行つて得られるものであり、通常かかる
操作を複数回繰返し行うと糖蜜中の糖分は徐々に減少し
て行く反面、蔗糖以外の色素、無機塩類、多糖類、ゴム
質物、還元糖、蛋白質等が濃縮されて来て煎糖による糖
回収操作が経済的に限度に来た末に工程系外に排出され
て来るものであるが、これには通常蔗糖が30%内外、
還元糖、オリゴ糖を含めると尚50%以上もの糖類を含
有しているものであり、製糖工場に於ける糖分その他有
価物損失の最大のものとなつている。
(Prior art) Sugar production from sugar cane, sugar beet, or molasses, which is a mother liquor for separating sugar crystals in the purification of sugar as a raw material, is usually performed three times or more until sugar crystals can be economically crystallized and recovered. It is obtained by repeating decoction and separating the decoction over a number of times.Usually, when such an operation is repeated a plurality of times, the sugar content in molasses gradually decreases, while pigments other than sucrose, inorganic salts, and polysaccharides. , Rubber substances, reducing sugars, proteins, etc. are concentrated, and after the sugar recovery operation by decoction has reached the economical limit, it is discharged to the outside of the process system. 30% inside and outside,
When reducing sugars and oligosaccharides are included, it still contains more than 50% of sugars, which is the largest loss of sugar and other valuables in sugar factories.

廃糖蜜には、このように多量の有価物が含有されている
反面、上記の通り色素、無機塩類等多量の不純物も含有
され、苦味、辛味、渋味が強く、又極めて粘稠な物質で
あり精製処理が極めて難しく、特に微生物難分離成分と
言われる大量の色素成分の除去と公害防止処分に多大な
処理コストを要する所から、現在、産業廃棄物に等しい
低価格で販売処分されている現状であり、これまで主と
して高度な精製処理を必要としなくとも利用が可能な発
酵工業や飼料業界等で専ら安価な原料として活用されて
来たものであるが、近年機能性の高い高分子膜やイオン
交換樹脂等が開発されるようになり、ようやくコスト的
にも糖分やアミノ酸類の再回収や可食化を可能とするよ
うな高効率、無公害精製処理法の開発研究が取り上げら
れるようになつて来た。
Waste molasses contains a large amount of valuable substances, but it also contains a large amount of impurities such as pigments and inorganic salts as described above, and it has a strong bitterness, pungency, astringency, and is an extremely viscous substance. Yes, it is extremely difficult to purify, and in particular, it requires a large treatment cost to remove a large amount of pigment components, which are said to be difficult to isolate microorganisms, and to dispose of pollution, so it is currently sold at a low price equivalent to industrial waste. At present, it has been mainly used as an inexpensive raw material in the fermentation industry, feed industry, etc., which can be used without requiring advanced purification treatment, but in recent years it has been a highly functional polymer film. The development of ion-exchange resins, etc. will finally cover the research and development of high-efficiency, pollution-free refining treatment methods that will enable recovery of sugars and amino acids and their edible costs even at low cost. To become It was.

このような現状を背景として、最近多くの糖蜜処理法が
開発提案されてはいるが、しかし、その多くは色素の除
去を敬遠するか、除去するにしても不充分な脱色処理で
あるか、或いは多量の活性炭やイオン交換樹脂再生薬剤
を必要とする為に高コストであつたり、或いは公害防止
対策上から高COD含有希薄廃液の濃縮焼却、又は海洋
投棄の為に多量のエネルギー消費若しくは高額の運搬コ
ストを負担せざるを得ないような高コスト処理法が多
く、風味並びに目視イメージ共によい高品質の複合糖や
可食糖蜜等の低コスト製造並びに有用成分の高効率、低
コスト再回収法としては、尚、多くの問題を残している
と言える。
Against this background, many molasses treatment methods have recently been developed and proposed. However, most of them refrain from removing pigments, or whether they are insufficient decolorizing treatments even if they are removed. Alternatively, a large amount of activated carbon or ion exchange resin regenerating agent is required, which is high in cost, or from the viewpoint of pollution prevention measures, a large amount of energy is consumed or a large amount of energy is consumed due to the concentrated incineration of a high COD-containing dilute waste liquid or the ocean dumping. There are many high-cost treatment methods that have to bear the transportation cost, low-cost production of high-quality complex sugar and edible molasses, etc. with good flavor and visual image and high-efficiency, low-cost recovery method of useful ingredients However, it can be said that many problems remain.

(問題点を解決した手段及び作用) 我々はこのような実情に鑑み資源の有効再利用の観点か
ら、主として色素や、その他無機塩類、ゴム質物等、大
量の不純物を効率除去出来る低コスト精製法について鋭
意研究した結果、公害防止対策上からも欠点が少なくし
かも有用な糖、アミノ酸は高回収しつつ不要な不純物の
みを効率的に無公害除去出来る高脱色脱塩精製法を考案
完成するに至つた。
(Means and actions for solving problems) From the viewpoint of effective reuse of resources, in view of such circumstances, we have mainly adopted a low-cost purification method that can efficiently remove a large amount of impurities such as pigments, other inorganic salts and rubber substances. As a result of diligent research, we have devised and completed a highly decolorizing desalination purification method that has few drawbacks in terms of pollution control measures and that can efficiently remove only unnecessary impurities while efficiently recovering useful sugars and amino acids. Ivy.

即ち本発明に於いて従来技術の問題点を解決改良した主
要な点は以下の諸点にある。
That is, in the present invention, the following are the main points in which the problems of the prior art are solved and improved.

(1)従来、糖液、特に廃糖蜜の如き不純物の多い糖液を
脱色清浄する目的で限外過等、膜分離(過)する場
合、糖分を30%以上も含有する過残液(濃縮液)が
処理液量の20〜30%も発生し系外に除去される為、
多量の不利用糖分が発生する結果となる所から過精度
そのものは極めて秀れたものがありながらも、尚、その
糖分回収率の悪さが1つの大きな欠点であつたが、本発
明ではアルコール凝集沈降分離法と、膜過法とを組合
わせることにより、一旦アルコール凝集分離清浄された
液でも更にこれを膜過すると、その膜過濃縮残液中
の高分子色素やゴム質物等はもう1度アルコールで再凝
集するようになるので、第一段目のアルコール凝集沈降
槽にこれらをリサイクルさえすれば、これらはいくらで
も再処理可能となる所から限外過、又はルーズRO
過と言うような厳しい過処理を行いながらも、尚、糖
分をほぼ100%回収出来ると言う糖液膜過操作に於
ける画期的な方式を見出し、従来の欠点を克服解消しえ
たこと。
(1) Conventionally, when the membrane separation (excess) such as ultrafiltration is performed for the purpose of decolorizing and purifying sugar solutions, especially sugar solutions containing a large amount of impurities such as molasses, excess liquid containing 30% or more of sugar (concentrated Liquid) is generated as much as 20 to 30% of the processing liquid amount and removed outside the system.
Although some of the over-precision itself is extremely excellent in that it results in the generation of a large amount of unused sugar, its poor sugar recovery rate is one of the major drawbacks. By combining the sedimentation separation method and the membrane filtration method, once the liquid that has been coagulated and separated by alcohol is passed through this membrane, the polymer dye and rubbery substances in the membrane overconcentration residual liquid are removed again. Since it will be re-agglomerated with alcohol, as long as they are recycled to the alcohol coagulation settling tank of the first stage, they can be re-processed as much as possible.
We found an epoch-making method for sugar liquid membrane over-operation that can recover almost 100% of sugars while performing a severe over-treatment.

(2)廃糖蜜のような高色素含有糖液を100%近く完全
脱色せんとする場合、従来は膜分離やケイソード過等
での脱色率が通常50〜70%を超える事が不可能であ
つた為に、その後の仕上げ脱色剤として大量の活性炭や
合成吸着樹脂を必要とし、その再生に多額のコストを要
する所から残念ながらこれまで廃糖蜜を直接完全脱色し
て大量の無色或いは淡色の高品質可食糖蜜を得る実用技
術は開発されてなかつたが、本発明では廃糖蜜のような
色価(スタンマー色価=st.CV値)が2,000以上と言う
ような高色価不純糖液であつてもアルコール凝集分離脱
色+膜過の組合わせ処理により系外への糖損失なしに
95%以上の高脱色率が達成可能となる為に、仮にこの
アルコール凝集脱色、膜過の組合わせ処理により処理
された淡色糖蜜を更に活性炭等により仕上げ完全脱色す
るとしても、例えば限外過のみの単独分離脱色してか
ら活性炭脱色する場合に比べれば、その活性炭の所要量
は1/5〜1/10以下で済み、大幅な活性炭使用削減が可能
であること。
(2) When a high-pigment sugar solution such as molasses is to be completely decolorized near 100%, it has been conventionally impossible to achieve a decolorization rate of 50 to 70% due to membrane separation or sodium silicate. Therefore, a large amount of activated carbon or synthetic adsorption resin is required as a finishing decolorizing agent after that, and it requires a large amount of cost to regenerate it. Practical technology for obtaining quality edible molasses has not been developed, but in the present invention, a high color value impure sugar liquid having a color value (stunker color value = st.CV value) of 2,000 or more like molasses is used. Even if it is possible to achieve a high decolorization rate of 95% or more without loss of sugar to the outside of the system by the combined treatment of alcohol coagulation / separation decolorization and membrane filtration, it is assumed that this combination of alcohol coagulation decolorization and membrane filtration is performed. The light-colored molasses treated by Even if the finish is completely decolorized by, for example, the required amount of activated carbon is 1/5 to 1/10 or less compared with the case of decolorizing the activated carbon after the single separation and decolorization only for the ultrafiltration, and the use of the activated carbon is greatly reduced. Is possible.

(3)従来、糖蜜を通常の処理法で脱色清浄処理した後で
K−A式電気透析脱塩する場合、糖液中の色素、その他
の有機アニオン物質が多量に残留している為に一方のア
ニオン交換膜が短期間に汚染されてしまうと言う問題が
ある所から現在プラス、マイナスの電極を頻繁に交互に
変えることにより汚染防止する方法とか、或いは希釈
液、又は濃縮液のpHを2〜3附近まで下げて透析して汚
染防止する為に蔗糖分解の危険が高い、或いは濃縮液の
別途利用がしにくくなる等、種々の問題点がある所から
実用上種々の特別対策が必要であるが、本発明法で処理
された糖液の場合、既に高脱色、高脱有機アニオンされ
ている為にそのまま或いは若干の仕上げ脱色処理さえす
ればK−A式電気透析装置に適用しても無理なく適用が
可能になること。
(3) Conventionally, when KA electrodialysis desalting is performed after decolorizing and cleaning treatment of molasses by a usual treatment method, one of the two is due to a large amount of pigments and other organic anion substances remaining in the sugar solution. Since there is a problem that the anion exchange membrane of the above is contaminated in a short period of time, there is currently a method of preventing the contamination by frequently alternating the positive and negative electrodes, or the pH of the diluting solution or the concentrating solution is set to 2 It is necessary to take various special measures for practical use because there are various problems such as high risk of sucrose decomposition to lower the dialysis level to around 3 to prevent contamination and prevent the separate use of the concentrate. However, in the case of the sugar solution treated by the method of the present invention, since it has already been highly decolorized and highly deorganized anions, it can be applied to a KA type electrodialysis apparatus as it is or if it is subjected to a slight decolorization treatment. It can be applied easily.

(4)高処理効率が達成(純糖率アツプが30〜40ポイ
ント)出来る為に、例えば廃糖蜜の如き低純度糖蜜から
でも、更に2段煎糖が楽々と実施可能となり高品質の糖
結晶が高率回収可能となるばかりでなく、可食糖蜜、或
いは粉末複合糖としても風味、目視イメージ共によく、
又健康食品素材としても申し分のない淡色複合糖製品の
製造が可能となること。
(4) Since high processing efficiency can be achieved (pure sugar ratio up is 30-40 points), even two-stage decoction can be easily performed even from low-purity molasses such as waste molasses, and high quality sugar crystals can be obtained. Not only can it be collected at a high rate, but it also has good flavor and visual image as edible molasses or powdered complex sugar,
In addition, it will be possible to manufacture light-colored complex sugar products that are perfect as health food materials.

(5)高価なエチルアルコールを大量に再循環使用する
為、これまでのアルコール分離濃縮技術に於けるような
エネルギー多消費の状況からすれば糖液とアルコールの
分離に大量のエネルギーが必要となり、コスト上大きな
問題となる所であろうが、最近はバイオマスアルコール
利用研究の進展のお蔭により多くの有望な省エネルギー
型アルコール分離濃縮技術(例えば浸透気化式アルコー
ル膜分離濃縮装置や超音波振動式アルコール分離濃縮装
置等々)が開発されるようになつたこと、更に本発明の
場合大量のアルコールを再循環使用するとは言え再循環
アルコールの濃度が70〜80%と言う中濃度でよい為
に、この種、従来からの親水性有機溶媒を用いる凝集沈
殿清浄法に於けるエネルギー多消費型を大幅な省エネル
ギータイプに改良した為にアルコール分離エネルギーに
よるコストプツシユが問題とならなくなつたこと。
(5) Since a large amount of expensive ethyl alcohol is recirculated and used, a large amount of energy is required to separate sugar liquid and alcohol in view of the high energy consumption situation in the conventional alcohol separation and concentration technology, Although it may be a big problem in terms of cost, many promising energy-saving alcohol separation / concentration technologies (for example, pervaporation type alcohol membrane separation / concentration device and ultrasonic vibration type alcohol separation) have been made possible thanks to the progress of research on biomass alcohol utilization. Concentrators, etc.) have been developed, and in the case of the present invention, although a large amount of alcohol is recirculated and used, the concentration of recirculated alcohol is 70 to 80%, which is a medium concentration. , Improved the energy-consuming type in the conventional coagulation-sedimentation cleaning method using hydrophilic organic solvent to a drastic energy-saving type It Kosutoputsushiyu by alcohol separation energy has ceased become a problem.

(6)微生物難分解性成分とされる糖蜜特有の高分子色素
類やゴム質物等を凝集固形化無公害除去出来る為に、従
来のような濃度の薄い大量の高COD含有色素液を濃縮
焼却する為の大量のエネルギーを必要とせず、又、特別
な排水処理装置も必要とせずに廃糖蜜のような産業廃棄
物に等しい低価格高色素糖蜜をも食用として大量高度有
効利用が可能になること等々である。
(6) Concentrated incineration of a large amount of pigment liquid containing high COD, which has a low concentration as in the past, because the high-molecular-weight pigments unique to molasses, which are difficult to decompose microorganisms, and rubber substances can be aggregated and solidified without pollution. It does not require a large amount of energy to do so, nor does it require a special wastewater treatment device, and it is possible to use a large amount of highly efficient edible low-price high-pigment molasses equivalent to industrial waste such as molasses. And so on.

以下本発明の構成並びに特徴について更に詳細に説明す
る。
The configuration and features of the present invention will be described in more detail below.

まず前段としてあらかじめ糖蜜のBxを50〜60%程度
に希釈し、これに13〜15%程度の石灰乳を加えてpH
を11.0〜12.5好ましくは約12.0に調整する。
First, as a first step, dilute molasses Bx to about 50-60% in advance and add about 13-15% lime milk to this to adjust the pH.
Is adjusted to 11.0 to 12.5, preferably about 12.0.

通常、アルカリ調整剤としてはNaOH,KOH,Na2Co3等も考
えられるが、特にここで水酸化カルシウムとして特定し
た理由は次による。
Usually, NaOH, KOH, Na 2 Co 3 and the like can be considered as the alkali modifier, but the reason why it is specified as calcium hydroxide here is as follows.

即ちNaOH,KOH等は通常、高価な上に造蜜性が高いと言う
難点があり、蔗糖の回収を目的とする場合望ましいもの
ではない。
That is, NaOH, KOH, etc. are usually expensive and have a high syrup-forming property, which is not desirable for the purpose of recovering sucrose.

その点、水酸化カルシウムは安価な上に上記の欠点がな
く、更に次工程で生ずる粘性スラツジを抱蔵して取扱操
作が極めて容易になるという適正もある所から、この場
合のアルカリ調整剤としては水酸化カルシウムが極めて
望ましいと言える。
In that respect, calcium hydroxide is inexpensive and does not have the above-mentioned drawbacks. Furthermore, since it is appropriate that the viscous sludge generated in the next step is contained and the handling operation becomes extremely easy, it is suitable as an alkali adjusting agent in this case. It can be said that calcium hydroxide is highly desirable.

尚、pHを強アルカリ域に調整する理由は第1表からも分
るように高pHに調整する程糖純度の向上が見られ、又脱
色率も高pH程、良好となるからである。
The reason why the pH is adjusted to the strong alkaline region is that the higher the pH is, the higher the sugar purity can be seen, and the decolorization rate is better as the pH is higher, as can be seen from Table 1.

次にこの希釈pH調整剤糖蜜を60℃程度に加温後、これ
に対して70〜95容量(VOL)%エチルアルコールを9
5VOL%濃度換算にて希釈前原糖蜜量当り2.0〜12.0倍量
好ましくは固形分濃度(ブリツクス,Bx)55調整済糖
蜜に対して80%エチルアルコールを約6倍量加えて混
合急速攪拌する。
Next, after heating the diluted pH adjuster molasses to about 60 ° C., 70 to 95 volume (VOL)% ethyl alcohol was added to the solution.
2.0 to 12.0 times the amount of raw molasses before dilution in terms of 5 VOL% concentration, preferably about 60 times 80% ethyl alcohol is added to solid content concentration (Brix, Bx) 55 adjusted molasses, and mixed and stirred rapidly.

混合時の糖蜜温度は25〜70℃、望ましくは55〜6
5℃の範囲が糖損失が少なく脱色効率がよい。
Molasses temperature at the time of mixing is 25 to 70 ° C, preferably 55 to 6
Within the range of 5 ° C, sugar loss is small and decolorization efficiency is good.

ところで、ここでの糖蜜の濃度とアルコール濃度は上記
の通り、特に厳密な限定がある訳ではなく、又その比率
もそれぞれの濃度によつて変えられうるものであり、要
するに糖蜜固形分:水:純アルコール分の混合された状
態で全混合液量に対して、それぞれ糖蜜固形分5〜10
%、水分15〜35%、純アルコール分55〜80%の
混合範囲内であればよく、この混合比内の場合に比較的
少ないアルコール量でより高い清浄脱色効果が得られ、
更に又スラツジへの糖損失量を比較的少なくすることが
出来る。
By the way, the concentration of molasses and the concentration of alcohol here are not particularly limited as described above, and the ratio can be changed depending on the respective concentrations. In short, molasses solid content: water: Molasses solids content 5-10 for the total amount of mixed liquid in the state of mixing pure alcohol
%, Water content 15 to 35%, and pure alcohol content 55 to 80% within a mixing range, and in the case of this mixing ratio, a higher clean decolorizing effect can be obtained with a relatively small amount of alcohol.
Furthermore, the amount of sugar loss to the sludge can be made relatively small.

つまり、ここでのそれぞれの混合割合の機能的意味は糖
分を極力溶解しうるだけの必要最少適当量の水分量が確
保されている必要があることと、しかも尚、水に溶解し
やすい色素、その他の不純物類を凝集沈澱せしめうる機
能を同時発揮しうるだけのアルコール分が必要であり、
この割合がいずれかに片寄り過ぎると、例えばアルコー
ル分を多くしすぎると不純物の除去性はよくなるが、一
方、糖のスラツジへの損失量が多くなり、又、一方、逆
の場合、糖を溶解しうるだけの充分量以上の水分量が多
くなつてアルコール量が少なくなると、糖ロスは少なく
なるが、一方清浄脱色効果は悪化すると言つた相反する
面があり、いずれも適当に満足しうる混合範囲が上記の
混合範囲であると解釈すべきである。
In other words, the functional meaning of each mixing ratio here is that it is necessary to secure a necessary and minimum amount of water necessary to dissolve sugar as much as possible, and yet, a dye that is easily dissolved in water, It is necessary to have an alcohol content capable of simultaneously exhibiting the function of coagulating and precipitating other impurities,
If this ratio is too biased to either side, for example, if the alcohol content is too high, the removal of impurities will be improved, but on the other hand, the loss amount of sugar to the sludge will be increased, and, on the other hand, in the opposite case, the sugar content will be reduced. When the amount of water is large enough to dissolve it and the amount of alcohol decreases, the sugar loss decreases, but on the other hand, the decolorizing effect on cleanliness deteriorates. It should be understood that the mixing range is the above-mentioned mixing range.

尚、ここでの含有水はブリツクス希釈水から来てもよい
し、又、アルコール希釈水の方から来てもよく、従つて
糖蜜濃度、アルコール濃度は相対的なものなのである。
The water contained here may come from the Brix diluted water or the alcohol diluted water, so that the molasses concentration and the alcohol concentration are relative.

扨て、この混合により直ちに凝集沈澱物が生成して来る
ので、これを沈澱槽や遠心分離機等を一段、又は二段シ
リーズに組合わせて除去脱色清浄する。
As a result of this mixing, an agglomerated precipitate is immediately formed by this mixing, and this is removed and decolorized and purified by combining a settling tank, a centrifuge or the like in a one-stage or two-stage series.

しかし、ここに得られる糖、アルコール混合清澄液は強
アルカリ性の上に残留カルシウム分も多く、次工程のア
ルコール分離回収操作時の効用缶スケール附着防止、又
は膜汚染防止上からも、或いは又還元糖分解防止上から
も前以て軟化処理並びに中性域へのpHの再調整処理をす
る必要がある。その方法としては、Hcl,H2SO4等の鉱酸
を用いて中和する方法等も考えられるが、低ランニング
コストの観点から考えると、煙道ガス等の炭酸ガスを飽
充過する方法が最も好適である。因みに50℃の条件
下、アルコール逸散防止器付飽充槽で炭酸ガスを飽充
し、過すると残留カルシウム分も固形分当り約35,000
PPMから7,000PPM程度まで軟化処理が可能である。
However, the sugar-alcohol mixed clarified liquid obtained here has a strong alkalinity and a large amount of residual calcium content, so that it can be attached to the effect can scale during the alcohol separation and recovery operation in the next step, or from the viewpoint of preventing membrane contamination, or it can also be reduced. In order to prevent sugar decomposition, it is necessary to perform softening treatment and pH readjustment treatment to neutral range in advance. As a method for this, a method of neutralizing with a mineral acid such as Hcl or H 2 SO 4 may be considered, but from the viewpoint of low running cost, a method of saturing carbon dioxide gas such as flue gas. Is most preferred. By the way, under the condition of 50 ° C, carbon dioxide gas is filled in the satiety tank with alcohol escape prevention device, and if it exceeds, the residual calcium content is also about 35,000 per solid content.
Softening treatment is possible from PPM to about 7,000PPM.

扨て、このようにして軟化、pH再調整処理して得られた
糖アルコール混合液からのアルコールの分離濃縮回収が
必要となるが、この操作は実際の工程に於いては既に前
述した如く、最近はバイオマスアルコールからの省エネ
ルギー型アルコール分離濃縮技術の研究が、種々意欲的
に試みられるようになつて来た結果、いくつかの有望な
技術、例えば浸透気化法によるアルコール膜分離濃縮や
超音波振動のキヤビテーシヨンにより高濃度アルコール
を低コスト分離濃縮する方法等、既にこれらは実際に実
用化の段階になりつつあると言われており、本方法の場
合に於いても、好適に適用可能である。
In this way, it is necessary to separate, concentrate and recover the alcohol from the sugar alcohol mixture obtained by softening and pH re-adjusting treatment in this way, but this operation is as described above in the actual process. Recently, various researches on energy-saving alcohol separation / concentration technology from biomass alcohol have been carried out eagerly, and as a result, some promising technologies such as alcohol membrane separation / concentration by pervaporation method and ultrasonic vibration have been developed. It is said that these are already in the stage of practical application, such as a method for separating and concentrating high-concentration alcohol at low cost by the above-mentioned cavitation, and it can be suitably applied even in the case of this method.

一応、本実験に於いても小型のアルコール膜分離濃縮装
置を用いてアルコール分離を確認しつつある所である
が、現在、装置能力が小さい所から実験としては、主と
してこれらの諸特徴を想定しつつ、エバポレーターを用
いてアルコール分離濃縮して研究を進めた訳であるが、
通常、浸透気化法によるアルコール膜分離濃縮に於いて
はトータル量は相当に減少するとは言え、それのみでは
完全にはアルコール分離は不可能であり、普通5〜15
%程度はアルコール分が残留するものである。
For the time being, in this experiment, alcohol separation is being confirmed using a small-sized alcohol membrane separation / concentrator, but at present, these characteristics are mainly assumed from the fact that the equipment capacity is small. At the same time, the research was advanced by separating and concentrating alcohol using an evaporator.
Normally, although the total amount is significantly reduced in the alcohol membrane separation and concentration by the pervaporation method, it is not possible to completely separate the alcohol by itself.
Alcohol content remains about%.

従つて高価なアルコールを完全に糖液から分離回収する
には、更に蒸留装置が必要であるが、多くの実験結果か
らアルコール分の許容残留濃度となる濃縮度はブリツク
スが35%以上(アルコール残留%、0.35%)50%
(0.07%)以下、望ましくは40〜45%程度に蒸留濃
縮する必要があることが分つた。(第3図参照) と言うのはエチルアルコールは大変に高価なものであ
り、極力高回収する必要がある。
Therefore, in order to completely separate and recover the expensive alcohol from the sugar solution, a distillation apparatus is required, but from the results of many experiments, the concentration of the residual residual concentration of alcohol is 35% or more (Bruc %, 0.35%) 50%
It has been found that it is necessary to concentrate by distillation to (0.07%) or less, preferably about 40 to 45%. (Refer to Fig. 3) The reason is that ethyl alcohol is very expensive and it is necessary to recover it as much as possible.

が、しかし100%完全回収しようとして無制限に高濃
度濃縮すれば、ある濃度段階からはアルコール回収量は
微量となる反面、やたらに水分のみが多くなり、エネル
ギーが不経済となつて来るからである。
However, if 100% complete recovery is carried out without restriction and concentrated to a high concentration, the amount of alcohol recovered will be very small from a certain concentration stage, but only a large amount of water will be added and energy will be uneconomical. .

そこで最適蒸留濃縮度を求めるべく第二工程処理液のア
ルコール混合糖液について徐々にアルコールを蒸留分離
して行き、Bx25附近から5BxきざみでそれぞれBx30、
35、40、45、50、60とサンプリングして行つ
て残留アルコール%を測定した所、第3図の通りとな
り、Bx30附近までは0.6〜0.7%程度もアルコール分が残
留し、その損失量は無視しえない量であるがBx40あたり
からは、残留アルコールは0.20%程度に減少し、許容濃
度となる特性があることが判明した。
Therefore, in order to obtain the optimum distillation concentration, the alcohol is gradually distilled and separated from the alcohol mixed sugar solution of the second step treatment liquid, and Bx30 is added from Bx25 to Bx30 in increments of 5Bx, respectively.
35, 40, 45, 50, 60 were sampled and the residual alcohol% was measured. The result is as shown in Fig. 3. Until around Bx30, 0.6 to 0.7% of the alcohol remained, and the amount of loss was Although not negligible, it was found that from around Bx40, the residual alcohol decreased to about 0.20%, and there was a characteristic that it became an allowable concentration.

従つて、ここでのアルコール回収の為の濃縮度合はエネ
ルギー経済性や、次工程での過の難易等を総合的に勘
案するとBx40〜45%程度が最もベターな濃度であろう
と思われる。
Therefore, it is considered that the concentration degree for alcohol recovery here is Bx40-45%, which is the best concentration, when comprehensively considering energy economy and excessive difficulty in the next step.

扨て、ここまでの一連の操作により廃糖蜜であれば通
常、脱色率が80〜83%達成され、廃糖蜜原液色価
(St.CV値)2,000〜3,500程度からSt.CV250〜350
程度まで脱色されて、淡赤褐色となり、色素成分のほ
か、泡成分をはじめ多糖類、ガム質物、硫酸根等の無機
塩類等も大部分除去されて、糖純度も純糖率が22〜2
5ポイントも上昇する等、この第一、第二、第三工程に
よるアルコール処理のみでも著しい清浄効果が発揮され
る。(第1、第2、第4表参照) ところで、限外過システムはその優秀な懸濁物質除去
性能の面から、これまで、既に純水製造や醸造部門、そ
の他多くの部門で採用され多大な貢献をしている所か
ら、同様に、多くの過操作を必要とする製糖部門でも
この過システムが有用であるはずであり大いに活用さ
れそうであるが、実際には現在の所それ程普及を見てな
いのは何故であろうか。
In the case of molasses, the decolorization rate of 80 to 83% is usually achieved by the series of operations up to this point, and the molasses undiluted solution color value (St.CV value) of about 2,000 to 3,500 to St.CV 250 to 350.
It is decolorized to a light reddish brown color, and in addition to the pigment component, most of the foam component, polysaccharides, gum substances, inorganic salts such as sulfate radicals, etc. are also removed, and the sugar purity and the pure sugar percentage are 22 to 2.
A significant cleaning effect can be achieved by only the alcohol treatment in the first, second and third steps, such as an increase of 5 points. (See Tables 1, 2 and 4) By the way, the ultrafiltration system has already been adopted in the pure water production and brewing departments and many other departments because of its excellent suspended solid removal performance. In the same way, it seems that this over-system should be useful and will be greatly utilized in the sugar production sector, which requires a lot of over-operation, but in reality, it has become so popular now. Why didn't I see it?

それには色々な理由が考えられるが、その内最も大きな
理由の一つは糖液を限外過する場合、その分画過濃
縮排除液中の糖純度がそれ程低下せず、結局、排除濃縮
液(全液量の1/5〜1/6量)への糖損失が無視出来ないと
言う所に大きな欠点があるからであろうと思われる。
There are various possible reasons for this, but one of the biggest reasons is that when the sugar solution is passed through the ultrafiltration, the sugar purity in the fractional overconcentration exclusion solution does not decrease so much, and in the end, the exclusion concentration solution. This is probably because there is a major drawback in that the sugar loss to (1/5 to 1/6 of the total liquid volume) cannot be ignored.

本発明の大きな特徴の一つはこの糖液をルーズRO過
や、限外過等高度膜分離過する場合の欠点を克服解
消しうる点にある。
One of the major characteristics of the present invention is that it can overcome and overcome the drawbacks of loose RO filtration and ultrafiltration such as ultrafiltration.

即ち本発明では、この排除されて来る濃縮残液を第一工
程のpH調整槽にリサイクルすることによつて糖の回収が
図られ得るからである。
That is, in the present invention, sugar can be recovered by recycling the removed concentrated residual liquid to the pH adjusting tank in the first step.

と言うのは、今の所如何なる作用機作の故にそうなるの
か、理論的には不明であるが、例えばこれまでの一連の
操作と同じBx55の糖蜜をその6倍量の80%エタノール
と混合して、一旦凝集沈降分離並びにアルコール分離し
た清澄液を分子分画1万相当のダイナミツク膜で色素等
高分子類を高圧限外過して得られる分画濃縮残液を先
にアルコール混合凝集沈降させた時と全く同一濃度、同
一量のアルコールと混合して見ると、不思議にもこれら
の濃縮高分子類は第1回目のアルコール混合時には凝集
分離しなかつたにも拘らず、限外過して透過しなかつ
たものは再度又アルコール凝集沈澱して来る不思議な性
質があることが判明したからである。(第8図参照) このように、本発明での限外過、或いは逆浸透過シ
ステムではアルコール凝集処理という工程と組合せるこ
とによつて、従来限外過システムの持つ所の糖回収が
悪いと言う欠点を克服解消した所に大きな特徴があるの
である。
It is theoretically unknown what kind of mechanism of action is so far, but for example, mixing the same Bx55 molasses as the series of operations up to now with 6 times the amount of 80% ethanol. Then, the clear liquid, which has been once separated by coagulation sedimentation and separated by alcohol, is subjected to high-pressure ultrafiltration of dyes and other polymers with a dynamic membrane equivalent to a molecular fraction of 10,000. When mixed with the same concentration and the same amount of alcohol as when they were allowed to stand, it is mysterious that these concentrated polymers did not aggregate and separate during the first alcohol mixing, but they passed through the ultra-high temperature. This is because it was found that those that did not permeate due to coagulation again had a mysterious property of causing alcohol coagulation and precipitation again. (See FIG. 8) As described above, in the ultrafiltration or reverse osmosis permeation system of the present invention, by combining with the process of alcohol coagulation treatment, the conventional ultrafiltration system has poor sugar recovery. There is a great feature in overcoming the drawbacks and solving them.

ところで、第一、第二、第三、第四工程処理により処理
液の色はスタンマー色価で70〜150となつて、どす
黒かつた糖蜜の色が淡赤褐色明澄になり、目視イメージ
が相当に改善され、又、風味、甘味度も相当向上して来
るが辛味、渋味が若干残り、直接可食、又は電流効率の
よいカチオン、アニオン交換膜を組合せて用いるK−A
式電気透析用フイード液としては色素、アニオン等の残
留が若干認められ、特にアニオン交換膜汚染防止上から
は塩類濃縮液の低pH調整の必要がある等、尚不十分であ
り、一層の仕上げ脱色、脱アニオンが望まれる。
By the way, the color of the treatment liquid by the first, second, third, and fourth step treatment becomes a stummer color value of 70 to 150, and the color of the dull black and molasses becomes a pale reddish brown clear, and the visual image is Significantly improved, and flavor and sweetness have also been improved considerably, but a slight pungent and astringent taste remains, and edible directly or used in combination with a current efficient cation or anion exchange membrane.
Some residual dyes, anions, etc. were observed in the feed solution for electrodialysis, and it was still insufficient to adjust the pH of the salt concentrate to prevent contamination of the anion exchange membrane. Decolorization and deanion are desired.

そのような改善法としては種々の面で粒状活性炭脱色が
望ましい。
As such an improvement method, granular activated carbon decolorization is desirable in various aspects.

このような観点から脱色過工程の次工程として粒状炭
カラムを使用し、膜過工程から得られ、濃縮したBx50
%の清澄液を粒状炭カラム通液した所、スタンマー色価
150のものを同20程度まで脱色するのに粒状炭1
当り6倍量の6の糖液を通液出来た。
From this viewpoint, a granular charcoal column was used as the next step of the decolorization step, and the Bx50 concentrated and obtained from the membrane pass step was used.
% Clear fluid was passed through a granular charcoal column. Granular charcoal 1 was used to decolorize a Stanmer color value of 150 to about 20.
It was possible to pass 6 times as much sugar solution as 6 times.

一方、これに対して同一分子分画の膜で限外過のみし
てスタンマー色価が810となつたものを同じ粒状炭で
脱色した所、粒状炭1当り僅かに1.2しか通液出来
ず、アルコール処理+限外過(UF)処理液は、単独
UF処理のみの、処理液に対してその粒状炭所要量は約
1/5で済むことになり、粒状炭の再生コストを大幅にコ
ストダウンすることが可能となる。
On the other hand, when the film with the same molecular fraction was subjected to ultrafiltration only and the stummer color value was 810 and decolorized with the same granular charcoal, only 1.2 per 1 granular charcoal could be passed, Alcohol treatment + ultrafiltration (UF) treatment liquid is a single UF treatment only.
It will be only 1/5, and it will be possible to significantly reduce the cost of recycling granular coal.

又、粒状炭処理脱色糖液は純糖率が約5ポイントも上昇
し、渋味が完全に抜け、風味が著しく改善された。
In addition, the granular sugar-treated decolorizing sugar solution had a pure sugar rate increased by about 5 points, the astringent taste was completely eliminated, and the flavor was remarkably improved.

以上の四工程により処理して得られる透明糖蜜は可食蜜
としては僅かに辛味があるとはいえ甘味度、風味共に素
晴らしく液状のままでも、或いは粉末乾燥をすればその
ままでも料理用、漬物用、佃煮用等、種々の用途が考え
られ十分実用に供し得るものであるが、しかし、未だ灰
分含量が高く、糖の再結晶回収、又は製菓用等の面から
は更に灰分レベルを下げる方が望ましいと思われる。
The transparent molasses obtained by the above four steps has a slightly spicy taste as an edible honey, but it has an excellent sweetness and flavor and remains in a liquid state, or it can be dried as it is for cooking or pickling. Although it can be put to practical use for various purposes such as Tsukudani, it is still high in ash content, so it is better to lower the ash level from the viewpoint of sugar recrystallization recovery, confectionery, etc. Seems desirable.

ところで廃糖蜜のような高色素、フミン酸等の多い高塩
類含有液の脱塩法としては、既にカチオン交換膜と中性
膜を組合わせて用いるTD式電気透析法が無理なく好適
に適用出来ることについては特許公報58-53920号にて本
発明者等が証明した所であるが、今回の如く、既に95
%以上も脱色されており、仮に、更に活性炭等で完全脱
色するとしても低コストで済む場合であれば、TD式電
気透析法を用いるのは如何にも勿体なく、むしろこのよ
うな場合の方法としては電流効率が高く、高脱塩のしや
すいカチオン交換膜とアニオン交換膜とを組合わせて用
いるK−A電気透析法が望ましいと言えるだろう。そこ
で、粒状炭カラムより得られた淡色清澄糖液(Bx40)を
カチオン交換膜とアニオン交換膜とを20対組合わせ
て、セル電圧0.6V、205分間電気透析した所、電流
効率95.3%、脱塩率84%、純糖率アツプ14ポイント
と高効率、高脱塩出来ることが確認出来た。
By the way, as a desalting method for a liquid containing a high pigment such as molasses and a high salt content such as humic acid, a TD-type electrodialysis method which already uses a combination of a cation exchange membrane and a neutral membrane can be suitably applied. This is what the present inventors have proved in Japanese Patent Publication No. 58-53920.
% Or more, and if even if it is completely decolorized with activated carbon, etc., at a low cost, it is unavoidable to use the TD electrodialysis method, and rather as a method in such a case. It can be said that the KA electrodialysis method using a combination of a cation exchange membrane and an anion exchange membrane, which has high current efficiency and is easily desalted, is desirable. Therefore, 20 pairs of cation exchange membranes and anion exchange membranes were combined with the pale clear sugar solution (Bx40) obtained from the granular charcoal column and electrodialysis was performed for 205 minutes at a cell voltage of 0.6V. It was confirmed that the salt rate was 84% and the pure sugar rate was up to 14 points, and high efficiency and high desalination were possible.

実施例1 甘蔗糖工場の廃糖蜜を採取し、これをあらかじめ石灰乳
でpH7.0に調整し、ブルツクス度55%に希釈して5,000
rpm、10分間遠心分離してスラツジを除去した。
Example 1 Waste molasses of a cane sugar factory was collected, adjusted to pH 7.0 with lime milk in advance, and diluted to 55% Burutxus to 5,000.
The sludge was removed by centrifugation at rpm for 10 minutes.

この遠心分離液1ずつをサンプルとして、それぞれに
13%石灰乳を添加し、pHを7.0,8.0,9.0,10.0,11.
0,12.0,13.0に調整し、これを60℃に加温してから
それぞれ80%エチルアルコールを6(6倍量)ずつ
混合攪拌し、生じて来る凝集沈澱物を東洋紙NO.2で
過してスラツジを除去し、得られた清澄、糖アルコー
ル混合液をロータリーエバボレーターで蒸留濃縮した
所、表1、及び第1図の通りの結果が得られた。
13% lime milk was added to each of the centrifugation liquids 1 as a sample, and the pH was 7.0, 8.0, 9.0, 10.0, 11.
It was adjusted to 0, 12.0 and 13.0, and this was heated to 60 ° C., and then 6% (6 times the volume) of 80% ethyl alcohol was mixed and stirred, and the resulting coagulated precipitate was passed over Toyo Paper NO. Then, the sludge was removed, and the resulting clear and sugar alcohol mixture solution was concentrated by distillation with a rotary evaporator. The results shown in Table 1 and FIG. 1 were obtained.

該表に示す通り、調整pHが高くなる程純糖率アツプは向
上し、pH12.0の箇所で純糖率アツプ、脱色率ともに最高
の清浄効果を示すことが分る。
As shown in the table, it can be seen that the higher the adjusted pH is, the higher the pure sugar rate up is, and that the pure sugar rate up and the decolorization rate show the highest cleaning effect at a pH of 12.0.

尚、pH12.0を超えた所から蔗糖の分解が認められ、pH調
整は12.5を限度とすべきと考える。
Degradation of sucrose was observed at a pH above 12.0, and pH adjustment should be limited to 12.5.

実施例2.(アルコール濃度別清浄効果試験) 廃糖蜜をブリツクス55に希釈して遠心分離し、スラツ
ジ除去後の分離液をブリツクス50に希釈し、これにBx
14の石灰乳を添加し、pHを12.0に調整してから800m
ずつのサンプルを7ケ用意し、それぞれ60℃に加温
してから、これに対して別にそれぞれ60%,65%,
70%,75%,80%,85%,90%濃度に調整し
てあつた5.6(7倍量)のエチルアルコールを急速混
合攪拌し、それぞれ生成したスラツジを東洋紙NO.2
で過し、ロータリーエバポレーターでBx51〜60程
度まで濃縮し完全にアルコールを除去してから分析した
所、第2表の結果を得た。
Example 2. (Cleaning effect test according to alcohol concentration) Waste molasses was diluted in Brix 55 and centrifuged, and the separated liquid after sludge removal was diluted in Brix 50, and Bx was added to this.
800m after adjusting the pH to 12.0 by adding 14 lime milk
Prepare 7 samples of each, and heat each to 60 ℃, then separate 60%, 65%,
Adjusted to 70%, 75%, 80%, 85%, 90% concentration, and rapidly mixed and stirred atsushi 5.6 (7 times amount) of ethyl alcohol.
Then, the mixture was concentrated to about Bx51 to 60 by a rotary evaporator to completely remove alcohol, and the results were shown in Table 2.

上表から分かる通り、糖蜜ブリツクスを一定にし、これ
に等倍量のアルコールを混合して行く場合、アルコール
含有濃度が高くなつて行くにつれて糖純度も脱色率も向
上して行くことが分かる。
As can be seen from the above table, when the molasses brix is kept constant and an equal amount of alcohol is mixed, the sugar purity and the decolorization rate are improved as the alcohol content concentration is increased.

しかし、全混合液量に対して純アルコール分が75%を
超えるあたりから糖の損失量が増加する傾向があり、混
合含有%は80%程度が限度である。
However, the amount of sugar loss tends to increase when the pure alcohol content exceeds 75% with respect to the total amount of the mixed liquid, and the mixed content% is limited to about 80%.

実施例3.(混合時の糖蜜温度別清浄効果試験) アルコール混合凝集沈澱清浄する際に、温度の清浄効果
に対する影響効果を調べる為に、廃糖蜜をブリツクス5
0度に希釈した遠心分離液サンプル6を採取し、これ
に13%の石灰乳を加えてpH12.0に調整し、これから8
00mずつの7サンプルを作成し、それぞれ20℃,
30,40,50,60,70,80℃に加温してから
等しく75%エチルアルコールを4.8ずつ(6倍量)
混合、凝集沈澱させてからロータリーエバポレーターで
ブリツクス45%程度まで蒸留濃縮してアルコールを除
去してから分析した所、それぞれ第2図の通りとなつ
た。
Example 3. (Cleaning effect test by molasses temperature at the time of mixing) In the case of alcohol mixed coagulation sedimentation cleaning, waste molasses was treated with Brix 5 in order to examine the effect of temperature on the cleaning effect.
Take the centrifuge sample 6 diluted to 0 degrees and adjust it to pH 12.0 by adding 13% lime milk to it.
7 samples of 00m each are made, 20 ℃,
After heating to 30, 40, 50, 60, 70, 80 ℃, 75% ethyl alcohol 4.8 each (6 times amount)
After mixing and coagulating and precipitating, the mixture was distilled and concentrated to about 45% Brix by a rotary evaporator to remove alcohol, and then analyzed. The results are as shown in FIG.

上図から分かる通り、脱色率のみを考えれば高温ほどよ
いと言えるが、しかし、70℃あたりから還元糖の分解
が激しくなると共に灰分の増加も大きくなる傾向があ
り、種々勘案した場合55〜65℃附近が最もベターと
考えられる。
As can be seen from the above figure, it can be said that a higher temperature is better if only the decolorization rate is considered, but from around 70 ° C the decomposition of reducing sugars becomes more vigorous and the ash content also tends to increase. It is considered to be the best around ℃.

実施例4. アルコールに混合する際の糖蜜の濃度は清浄効果にそれ
程関係はない。
Example 4. The concentration of molasses when mixed with alcohol is not significantly related to the cleaning effect.

清浄効果に関係のあるフアクターはpHと温度そして「固
形分:水:アルコール」の混合比である。
Factors relevant to the cleaning effect are pH, temperature and the "solids: water: alcohol" mixing ratio.

これを証明する為に糖蜜量とアルコール量を全く一定量
にしたままで各段階のBxに希釈する為の水を逆にアルコ
ール希釈水として使用し、混合比をほゞ一定にした場合
の清浄試験結果を第3表に示す。
In order to prove this, the water used to dilute Bx at each stage while keeping the molasses amount and alcohol amount at the same amount was used as the alcohol dilution water, and the cleaning ratio was kept almost constant. The test results are shown in Table 3.

上表の通り「固形分:水:アルコール」の混合比が大体
一定でありさえすれば希釈Bxに拘りなく、その清浄効果
(純糖率アツプ,色価)は殆ど同じである。
As shown in the above table, as long as the mixing ratio of “solid content: water: alcohol” is roughly constant, the cleaning effect (up of pure sugar rate, color value) is almost the same regardless of diluted Bx.

実施例5. 原糖工場の廃糖蜜をブリツクス55に希釈して、サンプ
ル1を10ポリバケツに採取し、これに13%石灰
乳を加えてpH12.0に調整した後に80%エタノール6
を混合攪拌した所、凝集沈澱物質が直ちに生じて来た。
Example 5. Waste molasses of a raw sugar factory was diluted in Brix 55, Sample 1 was collected in 10 poly buckets, 13% lime milk was added thereto to adjust to pH 12.0, and then 80% ethanol 6 was added.
When the mixture was mixed and stirred, an agglomerated precipitate material was immediately generated.

約10分間静置してから傾斜法にてスラツジを除去し、
清浄な上澄糖アルコール混合液を得た。
After leaving it for about 10 minutes, remove the sludge by the tilt method.
A clean supernatant sugar alcohol mixture was obtained.

これを2分割し、一方の3をロータリーエバポレータ
ーでブリツクス54.93まで蒸留濃縮してアルコールを除
去して、これをアルコール清浄サンプルとし、又、一方
の3は内径50m/m×長さ1,500m/mのジヤケツト付ガ
ラスカラムに移し60℃の温水で保温しつつ、pHメータ
ーの投込式電極をカラム内に挿入してコントロールしつ
つ、炭酸ガスを吹込みpH8.0になつた所でガス吹込を終
了し、形成された炭酸カルシウムを東洋紙NO.2で真
空過した後ロータリーエバポレーターで以てBx31.20
になる迄蒸留してアルコールを完全に除去し、分析に供
した所第4表の結果を得た。
This was divided into two, one of the three was distilled and concentrated to 54.93 by a rotary evaporator to remove alcohol, and this was used as an alcohol-clean sample. One of the three was an inner diameter of 50 m / m x length of 1,500 m / m. Transfer to a glass column with a jacket and keep it warm with 60 ° C hot water, insert a pH meter injecting electrode into the column to control, and inject carbon dioxide gas to a pH of 8.0 to inject gas. Finished and vacuum formed calcium carbonate with Toyo Paper No.2 and then Bx31.20 with a rotary evaporator.
Alcohol was completely removed by distillation until it became, and the results shown in Table 4 were obtained when subjected to analysis.

原蜜の分析値も比較掲載する。The analysis value of raw honey is also posted for comparison.

実施例6. 甘蔗廃糖蜜を60Bxに希釈して遠心分離し、その分離液
を更にブリツクス度、25%に希釈し、その1.4を採
取し、これに14%石灰乳を加えてpH12.0に調整した後
に92%エチルアルコール2.8(2倍量)を混合攪拌
し、凝集沈澱物を除去せずにそのまま続けて炭酸ガスを
飽充してpHを8.0に再調整してから生成された凝集沈澱
物、及び炭酸カルシウム等を東洋紙NO.2で真空過
してスラツジを除去し、清浄な糖アルコール混合液を得
た。
Example 6. Cane molasses was diluted to 60 Bx and centrifuged, and the separated liquid was further diluted to 25% in Brix degree, 1.4 was collected, and 14% lime milk was added thereto to adjust the pH to 12.0. After the adjustment, 92% ethyl alcohol 2.8 (2 times amount) was mixed and stirred, and the aggregated precipitate was formed after the aggregated precipitate was not removed and the carbon dioxide gas was saturated to re-adjust the pH to 8.0. The product, calcium carbonate and the like were passed through a vacuum on Toyo Paper No. 2 to remove sludge, and a clean sugar alcohol mixed liquid was obtained.

これをロータリーエバポレーターで蒸留してブリツクス
度46.35%の濃縮液を得た。
This was distilled with a rotary evaporator to obtain a concentrate having a Brix degree of 46.35%.

ここに得られた濃縮液を分析した所、下表の通りとなつ
た。
The concentrated liquid thus obtained was analyzed and found to be as shown in the table below.

上記分析結果からも分かるようにアルコールを混合し、
凝集沈澱物が懸濁状態のままで続けて炭酸ガスを飽充し
てpHを調整過する当該方法は、実施例3、及び4の方
法と比較した場合、過分離操作が1回で済む上に、処
理液の灰分レベルが低く、還元糖の分解も少ないと言う
利点がある反面、脱色率が若干悪く、マグネシウムの除
去率も悪い、又、スラツジ量が多くなる、得られる処理
液の純糖率の変動が大きいと言う傾向があり、蔗糖の回
収を目的とするか、発酵用原液清浄を目的とするかによ
り、いずれの方法を選択するか決定すればよいと思われ
る。
As you can see from the above analysis results, mix alcohol,
This method, in which the aggregated precipitate is continuously filled with carbon dioxide gas in a suspended state and the pH is adjusted over, requires only one over-separation operation as compared with the methods of Examples 3 and 4. In addition, while the ash level of the treatment liquid is low and the decomposition of reducing sugar is small, the decolorization rate is slightly poor, the removal rate of magnesium is poor, and the amount of sludge is large. There is a tendency that the fluctuation of the sugar rate is large, and it seems that the method to be selected should be decided depending on whether the purpose is to recover sucrose or to purify the stock solution for fermentation.

実施例7. 実施例5と同一の処理法によりアルコール混合、凝集、
沈澱分離及び炭酸飽充過処理した廃糖蜜の処理液(Bx
40.50,A・pty56.50,St.CV292)を約13.5作成し、こ
れをサンプルとしてシーエス・エンジニアリング社製逆
浸透過装置(ポンプ:キャピタル高圧プランジヤーR
O−31A,モジユール:日東電工製逆浸透膜モジユー
ル,マイナス荷電性合成高分子複合膜NTR-7410-S2,有
効膜面積1.25m2)を用いて360分間,20kg/cmで透
過処理した所、7.5の透過液と6の濃縮液(濃縮倍
率2.25)が得られたので、これの分析値を第6表に、又
ラボ用限外過装置(日東電工製Uw−1A型:モジユ
ールNTU-3000-P18型,有効膜面積0.76m2,チユーブラ
ー)を用いてBx35の遠心分離液を限外過した時の透過
液、及び濃縮液の分析値を第7表に掲載する。
Example 7. Alcohol mixing, coagulation, by the same treatment method as in Example 5,
Treatment liquid for waste molasses that has undergone precipitation separation and carbonic acid satiety treatment (Bx
40.50, A ・ pty56.50, St.CV292) was made about 13.5, and this was used as a sample for reverse osmosis permeation equipment (pump: Capital High Pressure Plunger R manufactured by CS Engineering)
O-31A, module: Nitto Denko reverse osmosis membrane module, negatively charged synthetic polymer composite membrane NTR-7410-S2, effective membrane area 1.25 m 2 ) permeation treatment at 20 kg / cm for 360 minutes, Since a permeate of 7.5 and a concentrate of 6 (concentration of 2.25) were obtained, the analytical values of these were shown in Table 6 and the laboratory ultrafiltration device (Uw-1A manufactured by Nitto Denko: Module NTU-3000). -Table 18 shows the analytical values of the permeated liquid and the concentrated liquid when the Bx35 centrifuge liquid was ultrafiltered using P18 type, effective membrane area 0.76 m 2 , tuber).

前ページの表から分る通り、アルコール凝集分離清浄
と、膜過を組合せて処理すると、原蜜の色価(St,C
V)2,155からSt.CV77まで脱色されて、そのトータル脱
色率は96.43%と、通常の処理法では信じ難いような超
高脱色を行うことが可能となる。
As you can see from the table on the previous page, when the combined treatment of alcohol coagulation separation cleaning and membrane filtration is performed, the color value of raw honey (St, C
V) 2,155 to St.CV77 are decolorized, and the total decolorization rate is 96.43%, which makes it possible to perform ultra-high decolorization that is hard to believe by ordinary processing methods.

この色価レベルは原糖工場の清浄汁、又はローシラツプ
の色価レベル100〜120程度よりもはるかに低く、又、全
くコロイドを含まない清澄なシラツプであり、従つてこ
のレベルからは原糖の色価レベル(St.CV20)迄の脱
色を仮に活性炭や骨炭等を使用して行うとしても、その
使用量は僅かに処理シラツプ量の1/6〜1/10程度と少な
く、無色のシラツプを得ることも容易である。尚、前ペ
ージ記載の膜過濃縮液が第一工程のpH調整槽にリサイ
クルして処理可能かどうかを検証する為に該液に石灰乳
を加え、pH12.0に再調整してから80%アルコールを6
倍量混合し、再凝集沈澱物を東洋紙NO.2で過し、
メイン操作と同じくロータリーエバポレーターでアルコ
ール分と一部の水分を蒸留除去して得た濃縮液を分析し
た所、第8表の通りであり、純糖率、色価等から言つて
も全く問題なく再処理可能であることが分かる。
This color value level is much lower than the color value level of 100 to 120 of clean juice or raw syrup of a raw sugar factory, and it is a clear syrup containing no colloid at all. Even if decolorization up to the color value level (St.CV20) is performed using activated carbon or bone charcoal, the amount used is slightly less than 1/6 to 1/10 of the amount of treated syrup, and colorless syrup is used. It's also easy to get. In addition, in order to verify whether or not the membrane over-concentrated liquid described on the previous page can be recycled and processed in the pH adjusting tank in the first step, lime milk is added to the liquid to adjust the pH to 12.0, and then 80%. 6 alcohol
Mix twice the amount, pass the re-aggregated precipitate with Toyo Paper No.2,
The concentrated liquid obtained by distilling off the alcohol and a part of the water with a rotary evaporator as in the main operation was analyzed and the results are shown in Table 8. There is no problem in terms of pure sugar rate and color value. It turns out that it can be reprocessed.

実施例8. 実施例5と同一処理法によりアルコール混合・凝集・沈
澱分離、炭酸飽充処理液(ブリツクス36.39,purity54.
70,Ash/100Bx11.32,pH8.8,St.CV347)をルーズRO
マイナス荷電複合膜でルーズRO過した透過液(Bx3
0.51,purity54.18,Ash/100Bx13.63,pH8.71,St.CV14
4,濃縮比2.85)を5採取し、カチオン交換膜(旭化
成工業AciplexCK-1)とポリビニールアルコール中性膜
(台糖製N−4)を20対組合わせた膜面積57.6dm2
ラボ用電気透析装置を用い、セル電圧1.8V,180分
間電気透析(脱塩率78.29%)した。
Example 8 By the same treatment method as in Example 5, alcohol mixing / aggregation / precipitation separation and carbonic acid saturating treatment liquid (Brix 36.39, purity 54.
70, Ash / 100Bx11.32, pH8.8, St.CV347) loose RO
Permeate that passed loose RO with negatively charged composite membrane (Bx3
0.51, Purity54.18, Ash / 100Bx13.63, pH8.71, St.CV14
4, 5 concentration ratio 2.85), 5 pairs of cation exchange membrane (Asahi Kasei Aciplex CK-1) and polyvinyl alcohol neutral membrane (N-4 manufactured by Taito Co., Ltd.) are combined for lab electricity with a membrane area of 57.6dm 2. Using a dialysis device, electrodialysis (desalting rate: 78.29%) was performed for 180 minutes at a cell voltage of 1.8V.

その結果を無処理廃糖蜜の分析値と共に第9表に比較掲
載した。
The results are shown in Table 9 together with the analysis value of untreated molasses.

この表から分かるように、無処理廃糖蜜を基準にして比
較すると、純糖率アツプが30.86ポイント,脱色率95.35
%,脱灰率80.0%,Cao/100Bx除去率85.01%,Mgo/100B
x除去率96.34%と言う抜群の清浄効果が得られ、またそ
の処理液の風味も素晴らしいものであつた。
As can be seen from this table, when compared with untreated waste molasses as a standard, the pure sugar rate up is 30.86 points and the decolorization rate is 95.35.
%, Demineralization rate 80.0%, Cao / 100Bx removal rate 85.01%, Mgo / 100B
x An excellent cleaning effect with a removal rate of 96.34% was obtained, and the flavor of the treatment liquid was also excellent.

実施例9. 実施例5と同一処理法により甘蔗廃糖蜜をアルコール混
合、凝集、沈澱、分離、炭酸飽充過処理した処理液
(ブリツクス35.16,A.pty55.20,pH8.83,RS/100Bx(%)
12.40,Ash/100Bx(%)11.74,St.CV336)を日東電工製の
マイナス荷電性、ルーズRO膜(NTR-7410-S2)で、Bx3
5,40℃,濃縮比3.37倍の条件逆浸透過した所、Bx2
7.72,A.pty54.40,pH8.94,RS/100Bx13.12%,Ash/100
Bx12.12%,St.CV100の透過液とBx36.06,Apty57.30,p
H8.94,RS/100Bx10.72,Ash/100Bx9.48%,St.CV725の
濃縮液が得られた。
Example 9. Treated solution obtained by mixing cane sugar molasses with alcohol, coagulating, precipitating, separating, and carbonic acid saturation treatment by the same treatment method as in Example 5 (Brix 35.16, A.pty55.20, pH8.83, RS / 100Bx (%)
12.40, Ash / 100Bx (%) 11.74, St.CV336) with Nitto Denko's negatively charged loose RO membrane (NTR-7410-S2), Bx3
Bx2, where reverse osmosis was carried out at 5, 40 ° C, concentration ratio 3.37 times
7.72, A.pty54.40, pH8.94, RS / 100Bx13.12%, Ash / 100
Permeate of Bx12.12%, St.CV100 and Bx36.06, Apty57.30, p
A concentrated solution of H8.94, RS / 100Bx10.72, Ash / 100Bx9.48%, St.CV725 was obtained.

ここに得られた透過液を一旦、保存の為にBx52まで濃
縮してあつたものから6.4採取し、塩酸でpHを6.8に調
整してからカチオン交換膜(旭化成工業製AciplexCK-
1)とアニオン交換膜(旭化成工業製A−201)を2
1対組合わせた有効膜面積60.48dm2のラボ用電気透析装
置を用い、セル電圧0.5V,220分間でK−A式電気
透析(脱塩率78.38%)した所、下記の結果が得られ
た。その運転記録の一部を第10表に、又、その分析結
果を第11表に掲載する。
The permeated liquid obtained here was once concentrated to Bx52 for storage, 6.4 was collected from the collected, and the pH was adjusted to 6.8 with hydrochloric acid, and then the cation exchange membrane (Aciplex CK-
1) and anion exchange membrane (A-201 manufactured by Asahi Kasei Corporation) 2
Using a lab electrodialyzer with an effective membrane area of 60.48 dm 2 combined in a pair, KA electrodialysis (desalination rate 78.38%) at a cell voltage of 0.5 V for 220 minutes gave the following results. It was Part of the operation record is shown in Table 10, and the analysis result is shown in Table 11.

上記第10,11表からも分かる通り廃糖蜜の如き色素
成分等大量のアニオン有機物含有糖液でも95%以上も
の色素成分が除去され、ルーズRO過と言う高精度で
全高分子コロイド類を除去してから電気透析すれば被処
理糖液pHの低下も殆ど起さずに透析が可能となり、又、
アニオン交換膜の汚染防止も可能となる。
As can be seen from Tables 10 and 11, 95% or more of the pigment components are removed even with a large amount of anionic organic substance-containing sugar solution such as pigment components such as molasses, and all polymer colloids are removed with a high precision called loose RO filtration. If electrodialysis is performed after that, dialysis can be performed with almost no decrease in the pH of the sugar solution to be treated.
It is also possible to prevent contamination of the anion exchange membrane.

(注) 甘蔗廃糖蜜の場合は還元糖とアミノ酸の含有量が多く、
pHが8.0以上のアルカリ域で電気透析する場合、着色し
て来る傾向がある所から本実施例に於いても一応炭酸飽
充過液pHは8.6であつたが、塩酸を用いて更にpH6.8ま
で再調整してからED処理を行つた。
(Note) Sugar cane molasses contains a large amount of reducing sugars and amino acids,
When electrodialyzing in an alkaline region having a pH of 8.0 or more, the carbonic acid saturate liquid pH was 8.6 in the present example because it tends to be colored, but the pH was further adjusted to pH 6. After readjusting to 8, ED treatment was performed.

実施例10. 甘蔗廃糖蜜をBx55に希釈し、60℃加温してから80%
アルコール6倍量を混合凝集沈降清浄し、更に炭酸ガス
飽充過後、アルコール分離した濃縮液をBx40にしてT
DL(株)製自己排除性ダイナセラム膜モジユール(D
C0305,膜面積0.16m2×2)を用いて高圧限外過(2
0kg/cm)して得た透過液を、東洋カルゴン(株)製C
AL粒状活性炭を用いてSV=1,60℃の条件下、活
性炭当りBx43.04のものをResin当り8倍量通液処理して
脱色率68.5%脱色した脱色液6採取し、カチオン交換
膜(旭化成工業製AciplexCK−1)とアニオン交換膜
(旭化成工業製A−201)を21対組合わせた膜面積60.
48dm2のラボ用電気透析装置を用い、セル電圧0.6V,2
05分間電気透析した所、脱灰率75.59(脱塩率では84.
91%)電流効率95.3%,純糖率アツプポイント14.76と
高効率,高脱塩出来ることが確認出来た。その結果は第
12表に示す。
Example 10. Sugar cane molasses was diluted to Bx55, heated at 60 ° C, and then heated to 80%.
Six times the amount of alcohol was mixed, coagulated, sedimented, and cleaned, and after carbon dioxide gas satiety, the concentrated solution separated with alcohol was made Bx40 and
Self-exclusion dynacellum membrane module (D)
C0305, membrane area 0.16m 2 × 2) and high pressure ultrafiltration (2
(0 kg / cm) was used as the permeated liquid, and was manufactured by Toyo Calgon Co., Ltd. C
Under conditions of SV = 1,60 ° C. using AL granular activated carbon, Bx43.04 per activated carbon was passed through 8 times per resin for decolorization rate of 68.5%, and decolorization solution 6 was collected and cation exchange membrane ( Asahi Kasei's Aciplex CK-1) and anion exchange membrane (Asahi Kasei's A-201) 21 pairs of membrane area 60.
Using a 48 dm 2 laboratory electrodialyzer, cell voltage 0.6 V, 2
After electrodialysis for 05 minutes, the demineralization rate was 75.59 (the desalination rate was 84.
It was confirmed that the current efficiency was 95.3% and the pure sugar rate uppoint was 14.76, indicating high efficiency and high desalination. The results are shown in Table 12.

【図面の簡単な説明】[Brief description of drawings]

第1図は調整pHと脱色率及び純糖率アツプポイントとの
関係を示す図であり、第2図はアルコール混合凝集沈澱
する際の、温度の清浄効果に対する影響を示す図であ
り、第3図は蒸発濃縮度(ブリツクス)と残留アルコー
ル%との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the adjusted pH, the decolorization rate and the up point of the pure sugar rate, and FIG. 2 is a diagram showing the influence of the temperature on the cleaning effect when alcohol coagulation / precipitation is performed. The figure is a diagram showing the relationship between the evaporation concentration (Brix) and the residual alcohol%.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】糖蜜に水及び水酸化カルシウムを加えて3
0〜80重量%の固形分濃度(ブリツクス)とpHを11.0
〜12.5の範囲内のpHに調整し、更にこれを25〜70℃
の範囲内の温度に調整後、調節済糖蜜に対しエチルアル
コールを95容量%濃度エチルアルコール換算量にて希
釈前糖蜜容量の2.0〜12.0倍相当量を混合攪拌して、糖
蜜固形分5〜10重量%、水分15〜35重量%、純ア
ルコール分55〜80重量%の混合物を調製し、生成す
る凝集沈澱懸濁物質を別することにより脱色清浄する
第一工程と、この第一工程処理液に炭酸ガスを飽充して
pH7.0〜9.0の範囲に再調整し形成される炭酸カルシウム
を分離してCaOとして7,000ppm以下にする第二工程と、
更に第二工程処理液をそのまま、又は更に鉱酸を用いて
pHを7.0〜5.0まで再調整してからアルコール分及び一部
の水分を分離濃縮することにより糖液濃度をブリツクス
35〜50%に濃縮する工程を第三工程とし、続いて第
三工程処理濃縮液をルーズRO領域の透過性を示すマイ
ナス荷電性合成高分子逆浸透複合膜、又は分子分画約1
0,000相当の透過性を示すダイナミツク膜を用いて10k
g/cm以上の高圧膜過し、高脱色清浄過液を得る第四
工程とよりなる糖蜜の脱色清浄法。
1. Addition of water and calcium hydroxide to molasses
Solid content concentration (Brix) of 0 to 80% by weight and pH of 11.0
Adjust the pH to within the range of ~ 12.5, and further adjust this to 25 ~ 70 ℃
After adjusting the temperature within the range of, the molasses is mixed with the adjusted molasses in an amount equivalent to 2.0 to 12.0 times the molasses volume before dilution in a 95% by volume concentration of ethyl alcohol equivalent amount, and the solid content of molasses is 5 to 10. A first step of preparing a mixture of 15% by weight, a water content of 15 to 35% by weight, and a pure alcohol content of 55 to 80% by weight, and removing the coagulation-precipitated suspended matter produced to perform decolorization cleaning, and a treatment liquid for this first step. Satisfied with carbon dioxide
A second step in which the calcium carbonate formed by re-adjusting to pH 7.0 to 9.0 is separated and CaO is reduced to 7,000 ppm or less,
Furthermore, the treatment liquid in the second step can be used as it is, or further using a mineral acid.
The process of concentrating the sugar liquid concentration to 35 to 50% of Brix by separating and concentrating the alcohol content and a part of the water after adjusting the pH to 7.0 to 5.0 is the third process, and then the third process treatment concentration. Negatively charged synthetic polymer reverse osmosis composite membrane that shows permeability in the loose RO region, or molecular fraction about 1
10k using a dynamic membrane showing a permeability equivalent to 0,000
A decolorizing and cleaning method for molasses, which comprises a fourth step of obtaining a highly decolorized cleaning liquid by passing a high-pressure membrane of g / cm or more.
【請求項2】糖蜜に水及び水酸化カルシウムを加えて3
0〜80重量%の固形分濃度(ブリツクス)とpHを11.0
〜12.5の範囲内のpHに調整し、更にこれを25〜70℃
の範囲内の温度に調整後、調節済糖蜜に対しエチルアル
コールを95容量%濃度エチルアルコール換算量にて希
釈前糖蜜容量の2.0〜12.0倍相当量を混合攪拌して、糖
蜜固形分5〜10重量%、水分15〜35重量%、純ア
ルコール分55〜80重量%の混合物を調製し、生成す
る凝集沈殿懸濁物質を別することにより脱色清浄する
第一工程と、この第一工程処理液に炭酸ガスを飽充して
pH7.0〜9.0の範囲に再調整し形成される炭酸カルシウム
を分離してCaOとして7000ppm以下にする第二工程と、更
に第二工程処理液をそのまま、又は更に鉱酸を用いてpH
を7.0〜5.0まで再調整してからアルコール分及び一部の
水分を一旦糖液中の残留アルコール分が25〜5容量%
となる程度に分離濃縮減容化処理する第三工程と、この
アルコール含有第三工程処理液をルーズRO領域の透過性
を示すマイナス荷電性合成高分子逆浸透複合膜、又は分
子分画20,000以下の限外過膜を用いて膜過して高脱
色透過液を得る第四工程と、更に多段精留塔を用いて、
残留アルコール分を高濃度回収する工程の第五工程とよ
りなる糖蜜の脱色清浄法。
2. Water and calcium hydroxide are added to molasses to add 3
Solid content concentration (Brix) of 0 to 80% by weight and pH of 11.0
Adjust the pH to within the range of ~ 12.5, and further adjust this to 25 ~ 70 ℃
After adjusting the temperature within the range of, the molasses is mixed with the adjusted molasses in an amount equivalent to 2.0 to 12.0 times the molasses volume before dilution in a 95% by volume concentration of ethyl alcohol equivalent amount, and the solid content of molasses is 5 to 10. A first step of preparing a mixture of 15% by weight, a water content of 15 to 35% by weight, and a pure alcohol content of 55 to 80% by weight, and removing the aggregated and precipitated suspended matter produced by decolorization cleaning, and a treatment liquid of this first step Satisfied with carbon dioxide
The second step of re-adjusting the pH to 7.0 to 9.0 to separate the formed calcium carbonate and reducing it to 7,000 ppm or less as CaO, and the second step treatment liquid as it is or further using mineral acid to adjust the pH.
Readjusted to 7.0-5.0, and then the alcohol content and some of the water content was once adjusted to 25-5% by volume of residual alcohol content in the sugar solution.
The third step of separating and concentrating and reducing the volume to such an extent, and this alcohol-containing third step treatment liquid is a negatively charged synthetic polymer reverse osmosis composite membrane showing permeability in the loose RO region, or a molecular fraction of 20,000 or less. The fourth step of obtaining a highly decolorized permeate through the ultrafiltration membrane of, and further using a multistage rectification column,
A method for decolorizing and cleaning molasses, which comprises a fifth step of recovering a high concentration of residual alcohol.
【請求項3】第五工程のアルコール分離回収装置が多重
効用缶であつて、残留アルコールの回収を図りつつ、併
せて糖液濃度をブリツクス35〜55%になるように濃
縮する特許請求の範囲第2項記載の糖蜜の脱色清浄法。
3. The alcohol separating and recovering device of the fifth step is a multi-effect can, wherein the concentration of the sugar solution is also concentrated so that the concentration of the sugar solution is 35 to 55% while collecting the residual alcohol. A method for decolorizing and cleaning molasses according to item 2.
【請求項4】第一工程処理に於いてアルコール混合後
別することなく、続いて第二工程の炭酸ガスを飽充し、
pHを7.0〜9.0の範囲に再調整してから生成された凝集沈
殿物及び炭酸カルシウム等を分離する特許請求の範囲第
1項及び第2項、第3項記載の糖蜜の脱色清浄法。
4. Sufficient carbon dioxide gas in the second step without sacrificing after mixing alcohol in the first step,
The method for decolorizing and cleaning molasses according to claim 1, claim 2 or claim 3, wherein the aggregated precipitate, calcium carbonate and the like produced after the pH is readjusted to 7.0 to 9.0.
【請求項5】第四工程における高圧膜過の分画過濃
縮残液を第一工程に返送し、アルコール混合再凝集分離
処理することにより糖分の系外損失防止を達成する特許
請求の範囲第1項乃至第4項のいずれかに記載の糖蜜の
脱色清浄法。
5. A method for preventing loss of sugars outside the system by returning the fractionated and over-concentrated residual liquid of high-pressure membrane filtration in the fourth step to the first step and carrying out alcohol mixing reaggregation separation treatment. A decolorizing and cleaning method for molasses according to any one of 1 to 4.
【請求項6】脱色清浄された濃縮糖蜜液をそのまま、又
は更に活性炭、骨炭、又は合成吸着樹脂等に接触せしめ
て仕上げ脱色した後に、カチオン交換膜と中性膜とを組
合わせて用いるK−N式電気透析装置、又はカチオン交
換膜とアニオン交換膜とを組合わせて用いるK−A式電
気透析装置により脱塩処理する特許請求の範囲第1項乃
至第5項のいずれかに記載の糖蜜の高脱色脱塩精製法。
6. A decolorized and purified concentrated molasses liquid as it is, or after it is further brought into contact with activated carbon, bone charcoal, or a synthetic adsorption resin to finish decolorization, and a cation exchange membrane and a neutral membrane are used in combination. The molasses according to any one of claims 1 to 5, wherein desalting treatment is performed by an N-type electrodialysis device or a KA-type electrodialysis device that uses a combination of a cation exchange membrane and an anion exchange membrane. Highly decolorized desalination purification method.
JP13446686A 1986-06-10 1986-06-10 Method for decolorizing and desalting molasses Expired - Lifetime JPH0655160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13446686A JPH0655160B2 (en) 1986-06-10 1986-06-10 Method for decolorizing and desalting molasses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13446686A JPH0655160B2 (en) 1986-06-10 1986-06-10 Method for decolorizing and desalting molasses

Publications (2)

Publication Number Publication Date
JPS6352899A JPS6352899A (en) 1988-03-07
JPH0655160B2 true JPH0655160B2 (en) 1994-07-27

Family

ID=15128983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13446686A Expired - Lifetime JPH0655160B2 (en) 1986-06-10 1986-06-10 Method for decolorizing and desalting molasses

Country Status (1)

Country Link
JP (1) JPH0655160B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109956A (en) * 2009-11-26 2011-06-09 Asahi Breweries Ltd Method for producing sugar
CN109971892A (en) * 2019-04-30 2019-07-05 广东省生物工程研究所(广州甘蔗糖业研究所) A kind of sugar-cane juice is clarified without sulphur and desalination system and method
CN111206124A (en) * 2020-02-28 2020-05-29 广西科技大学 Method for decoloring sugar juice by using magnesium silicate film
CN113215144B (en) * 2021-05-07 2022-07-19 珍奥集团股份有限公司 Treatment method combining plant nucleic acid extraction and molasses treatment
CN113444845B (en) * 2021-07-27 2023-10-27 中国科学院广州能源研究所 Method for refining, detoxication and fermentation production of acetone and butanol by molasses
CN114471168A (en) * 2022-01-21 2022-05-13 新疆绿原糖业有限公司 Method for separating and concentrating beet polysaccharide and betaine by combining thermal flocculation with multi-stage nanofiltration membrane

Also Published As

Publication number Publication date
JPS6352899A (en) 1988-03-07

Similar Documents

Publication Publication Date Title
JP3436540B2 (en) Sugar beet juice purification method
EP1963539B1 (en) Process for the recovery of sucrose and/or non-sucrose components
US5454952A (en) Method and apparatus for fractionation of sugar containing solution
US8859808B2 (en) Method for obtaining lactic acid with a high degree of purity from fermentative liquor
CN102363594B (en) Method for separating and purifying succinic acid from fermentation broth
CN104404174A (en) Membrane technology-based refined sugar clear-syrup impurity removal and decoloring technology
JPS6082106A (en) Method for preventing contamination of electrodialysis membrane
CN106282419A (en) A kind of Caulis Sacchari sinensis juice purification process in Closed Circulation in Sugar Production
JP3013995B2 (en) Method for separating 2-keto-L-gulonic acid from fermentation medium
JPH0655160B2 (en) Method for decolorizing and desalting molasses
WO1996000775A1 (en) Process for clarifying vinasse
EP0249368A2 (en) One step lactose process
CN212334897U (en) Freezing salt separating system
CN114213215A (en) System and method for co-producing xylitol and caramel pigment by using xylose mother liquor
JP2001258600A5 (en)
CN211497269U (en) Device for reducing salt in mine water
RU2556894C1 (en) Method for integrated purification of molasses and its extraction from sucrose
JPS61139400A (en) Purification of molasses
JP2001157600A (en) Method for direct refining of sugar from sugar cane by ultrafiltration treatment and chromatographic separation treatment
JP2001157599A (en) Process for producing refined sugar from sugar cane by ultrafiltration treatment including softening treatment by addition of sodium carbonate
JP2001157599A5 (en)
CN111875139A (en) Comprehensive desalting and pure water recovery method and system for multi-element heavy metal salt-containing wastewater
JP2001157600A5 (en)
US6051075A (en) Process for sugar beet juice clarification
CN111039480A (en) Method and device for reducing salt in mine water