JP2001157599A - Process for producing refined sugar from sugar cane by ultrafiltration treatment including softening treatment by addition of sodium carbonate - Google Patents

Process for producing refined sugar from sugar cane by ultrafiltration treatment including softening treatment by addition of sodium carbonate

Info

Publication number
JP2001157599A
JP2001157599A JP34282599A JP34282599A JP2001157599A JP 2001157599 A JP2001157599 A JP 2001157599A JP 34282599 A JP34282599 A JP 34282599A JP 34282599 A JP34282599 A JP 34282599A JP 2001157599 A JP2001157599 A JP 2001157599A
Authority
JP
Japan
Prior art keywords
sugar
juice
sodium carbonate
crude
ultrafiltration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34282599A
Other languages
Japanese (ja)
Other versions
JP4513075B2 (en
JP2001157599A5 (en
Inventor
Hirokazu Nagase
裕和 長瀬
Masao Hino
日野  正夫
Kenji Ouchi
健二 大内
Minoru Sugiura
実 杉浦
Naoko Wada
直子 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Original Assignee
Tsukishima Kikai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd filed Critical Tsukishima Kikai Co Ltd
Priority to JP34282599A priority Critical patent/JP4513075B2/en
Publication of JP2001157599A publication Critical patent/JP2001157599A/en
Publication of JP2001157599A5 publication Critical patent/JP2001157599A5/ja
Application granted granted Critical
Publication of JP4513075B2 publication Critical patent/JP4513075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To directly produce refined sugar at a cane producing district in high efficiency. SOLUTION: The sugar-producing process contains (1) a step to produce a crude juice comprising a squeezed juice obtained by squeezing sugar cane, an extracted juice obtained by extracting sugar cane or a sugar juice obtained by mixing the squeezed juice and the extracted juice, (2) a step to heat the crude juice, (3) a step to remove the insoluble matters from he crude juice by filtration, (4) a step to add sodium carbonate to the crude juice to effect the softening and the adjustment of pH, (5) an ultrafiltration step to remove the soluble polymeric materials and insoluble materials from the crude juice by ultrafiltration, (6) a step to concentrate the clear juice obtained by the above step and (7) a step to separate the concentrated liquid obtained by the above step into a sucrose fraction, a reducing sugar fraction and a non-sucrose fraction by chromatographic separation method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭酸ソーダの添加
および限外ろ過処理を含む甘蔗からの製糖法に関する。
さらに詳しくは、甘蔗糖製造工場のエネルギーを有効利
用し、甘蔗生産地で刈り取った甘蔗より、甘蔗に含まれ
る有機、無機の非糖成分を効率的に除去して直接耕地精
製糖を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing sugar from sugar cane, which comprises addition of sodium carbonate and ultrafiltration.
More specifically, a method of producing purified sugar directly on cultivated land by effectively utilizing the energy of a sugarcane production plant and efficiently removing organic and inorganic non-sugar components contained in the sugarcane from the sugarcane cut at the sugarcane-producing area. It is about.

【0002】[0002]

【従来の技術】<従来の甘蔗からの蔗糖分回収プロセス
>甘蔗より蔗糖を得る伝統的方法は、熱帯あるいは亜熱
帯で甘蔗を栽培し、これを砕き圧搾して得られた粗汁を
簡単な物理・化学処理(石灰乳添加)して不純物を除
き、得られた清澄液を濃縮缶にて濃縮を行い、濃縮した
シラップを結晶缶にかけ蔗糖結晶(粗糖)を段階的に蒸
発晶析して(煎糖法)、蔗糖結晶を生産するものであ
る。
2. Description of the Related Art <Conventional process for recovering sucrose from cane sugar> A conventional method of obtaining sucrose from cane sugar is to grow sugarcane in the tropics or subtropics and crush and compress the crude juice to obtain a simple physical juice. -Chemical treatment (adding lime milk) to remove impurities, concentrate the resulting clear liquid in a concentration can, place the concentrated syrup in a crystal can, and evaporate and crystallize sucrose crystals (crude sugar) stepwise ( Sucrose method) to produce sucrose crystals.

【0003】この工程で得られた結晶は純度が低いので
粗糖を消費地まで運び、溶解し、メルト液を物理・化学
処理して精製し、白糖(純度の高い製品)を得てこれを
販売している。一方、耕地で耕地白糖(あるいは耕地精
製糖)を得ようとする試みは数多くあり、実用化されて
いる。これらの粗糖製造法および耕地白糖製造法の詳細
は次の通りである。
[0003] Since the crystals obtained in this process have low purity, the crude sugar is transported to the consuming area, dissolved, and the melt is subjected to physical and chemical treatments and purified to obtain sucrose (high-purity product) and sell it. are doing. On the other hand, there have been many attempts to obtain cultivated land white sugar (or cultivated land purified sugar) on arable land, and these have been put to practical use. Details of the crude sugar production method and the cultivated land white sugar production method are as follows.

【0004】(粗糖製造法)混合汁を加熱し、石灰乳を
加えて清浄し、得られる上澄み(清浄汁)から蔗糖結晶
を得る方法。このプロセスは簡単であるが、下記の欠点
がある。 1)沈降処理のため、上澄み液中の浮遊固形物や溶解性
高分子物質を完全に除去できない。 2)沈降処理に、ある滞留時間を必要とするため、蔗糖
分は還元糖に変質し、蔗糖回収率が低くなる。 3)添加した石灰により、無機塩類はカルシウム塩とな
って沈殿するが、糖液に溶解しているカルシウムは蒸発
工程で一部スケールとして析出するため、洗浄作業によ
りカルシウム除去を行う必要がある。また糖液から完全
に除去できないので純度は良くない。
(Method for producing crude sugar) A method in which a mixed juice is heated, lime milk is added to clean the mixture, and sucrose crystals are obtained from the resulting supernatant (clean juice). Although this process is simple, it has the following disadvantages: 1) Due to the sedimentation treatment, suspended solids and soluble polymer substances in the supernatant cannot be completely removed. 2) Since a certain residence time is required for the sedimentation treatment, the sucrose content changes into reducing sugar, and the sucrose recovery rate decreases. 3) Inorganic salts are precipitated as calcium salts due to the added lime, but calcium dissolved in the sugar solution is partially precipitated as a scale in the evaporation step. Therefore, it is necessary to remove calcium by a washing operation. Also, the purity is not good because it cannot be completely removed from the sugar solution.

【0005】(耕地白糖製造法)粗糖の生産地で白糖を
製造する場合は次の方法がある。 1)亜硫酸法:清浄原理は、熱石灰処理して得られた液
を蒸発して40%で亜硫酸ガスと石灰乳を加えて脱色す
る。この方法では製品中に含まれる亜硫酸のため、缶詰
には使用できない。 2)二重炭酸法:清浄原理は、石灰乳と炭酸ガスの反応
を二段で行う方法。マッドの発生量が多く、かつ石灰焼
成のために大量のエネルギーを必要とし、経済的でな
い。 3)耕地精製糖:清浄原理は、粗糖工場に隣接して粗糖
を受け入れ、再溶解して炭酸飽充やイオン交換樹脂を使
い、糖液を精製し、結晶化して精製糖並の製品を得る。
設備的に粗糖工場と精製糖工場の二つを持つことにな
り、設備投資金額は高い。
[0005] (Cultivated land white sugar production method) [0005] In the case of producing white sugar in a crude sugar production site, there are the following methods. 1) Sulfurous acid method: The principle of cleaning is to evaporate the liquid obtained by hot lime treatment and add sulfurous acid gas and milk of lime at 40% to decolorize. In this method, sulfurous acid contained in the product cannot be used for canning. 2) Double carbonic acid method: The principle of cleaning is a method in which lime milk and carbon dioxide gas are reacted in two steps. It generates a large amount of mud, requires a large amount of energy for lime burning, and is not economical. 3) Cultivated land refined sugar: The principle of cleaning is to accept the crude sugar next to the crude sugar factory, re-dissolve and refine the sugar solution using carbonation-saturated or ion-exchange resin, and crystallize to obtain a product similar to purified sugar. .
The company has two facilities, a crude sugar factory and a refined sugar factory, and the capital investment is high.

【0006】<従来の軟化処理技術>甘蔗圧搾汁および
抽出汁中のCa、Mgは濃縮の際、スケーリングの原因
になると同時にクロマト分離の際に使用される樹脂の交
換基を置換し、クロマト分離能力を低下させることか
ら、前工程において軟化・除去する必要がある。現在、
軟化処理の手段としては強酸性カチオン交換樹脂が使用
されているが、樹脂の再生を必要とするため、再生剤の
使用による廃液処理、薬剤コストなどの問題がある。
<Conventional Softening Technique> Ca and Mg in sugarcane squeezed juice and extracted juice cause scaling during concentration, and at the same time, displace the exchange groups of the resin used in the chromatographic separation, thereby causing chromatographic separation. It is necessary to soften / remove in the previous process because the performance is reduced. Current,
As a means for the softening treatment, a strongly acidic cation exchange resin is used. However, since the resin needs to be regenerated, there are problems such as waste liquid treatment due to the use of a regenerant and chemical cost.

【0007】また特公平7−67399号に開示されて
いる方法では、甘蔗糖蜜から蔗糖分を回収する結晶化工
程からの分離モラセス中のCa、Mg合計量の1〜3倍
当量の炭酸ソーダと糖蜜に対して0.5〜3wt%のC
a(OH)2を加えてpH9.0〜10.0に調整する
ことで90%の除去が可能であるとされている。この先
行特許では甘蔗糖製造工場での結晶缶で分蜜して得られ
る甘蔗糖蜜が原料とされており、糖蜜中には約1%のC
a、Mgイオンが含有されている。ここでは原料がモラ
セスであるために、含有されているCa、Mg量が多
い。またCa、Mg以外にもスラッジが含有されている
ために炭酸ソーダのみでは含有不純物全てを除去しきれ
ないので水酸化カルシウムを添加し、スラッジ生成の促
進助剤としている。ただし、水酸化カルシウムを併せて
添加することで、残留カルシウムイオンも増加するの
で、添加量が多すぎると炭酸ソーダの添加による軟化と
しての意味がなくなる。
In the method disclosed in Japanese Patent Publication No. 7-67399, sodium carbonate is used in an amount of 1 to 3 times the total amount of Ca and Mg in the molasses separated from the crystallization step of recovering sucrose from cane molasses. 0.5-3wt% C to molasses
It is said that 90% removal is possible by adding a (OH) 2 to adjust the pH to 9.0 to 10.0. In this prior patent, cane molasses obtained by disintegrating in a crystal can at a cane sugar production plant is used as a raw material, and about 1% of C is contained in molasses.
a, Mg ions are contained. Here, since the raw material is molasses, the content of Ca and Mg is large. Further, since sludge is contained in addition to Ca and Mg, all of the contained impurities cannot be completely removed by sodium carbonate alone, so calcium hydroxide is added as a promoting aid for sludge formation. However, addition of calcium hydroxide also increases residual calcium ions, so that if the amount is too large, there is no meaning as softening due to the addition of sodium carbonate.

【0008】[0008]

【発明が解決しようとする課題】従来からの粗糖工場で
の石灰清浄工程では石灰添加によりpH調整ができ、か
つ不溶解懸濁物質の沈殿促進剤となる点はよいが、多量
の石灰および凝集剤を使用し、かつ清浄汁中にはカルシ
ウムが飽和した状態となっているため、濃縮工程におい
てスケーリングが著しく生じ、これを除去するために
も、頻繁にスケーリング除去のための薬品を使用してい
る状況となっている。さらに石灰を添加した後、凝集物
を除去する自然重力沈降においては、ある一定の滞留時
間(石灰添加と沈降時間併せて4時間程度)を必要とす
ることから、清浄液中の蔗糖分は還元糖に変換され、蔗
糖の回収率を下げる原因となっている。
In a conventional lime cleaning process in a crude sugar factory, the pH can be adjusted by adding lime, and it is good as a sedimentation accelerator for insoluble suspended substances. Because of the use of the agent and the calcium saturated state in the fresh juice, remarkable scaling occurs in the concentration step, and in order to remove this, frequently use a chemical for scaling removal. Is in a situation. In addition, natural gravity sedimentation for removing aggregates after addition of lime requires a certain residence time (approximately 4 hours for both lime addition and sedimentation time). It is converted to sugar, causing a decrease in the recovery rate of sucrose.

【0009】前述の耕地白糖製造法のうち耕地精製糖製
造法は、粗糖−精製糖の二重の製造工程を踏んでおり、
建設と製造により多大な費用とエネルギーを費やし、経
済的でない。また粗糖製造工程においてエネルギーとし
て利用できる余剰のバガス(甘蔗圧搾後の繊維)を多量
に生じさせ廃棄している一方、精製糖製造工程において
は、化石燃料によりエネルギーを必要とする矛盾を含ん
でいる。
Among the above-mentioned cultivated land white sugar production methods, the cultivated land purified sugar production method involves a double production step of crude sugar-purified sugar,
It costs a lot of money and energy for construction and manufacturing and is not economical. In addition, while a large amount of excess bagasse (fiber after sugar cane squeezing) that can be used as energy in the crude sugar production process is generated and discarded, the refined sugar production process involves contradictions that require energy from fossil fuels. .

【0010】粗糖および精製糖工場において蔗糖分を回
収する手段は晶析によるものであり、廃糖蜜中の非蔗糖
分に同伴する蔗糖分は回収できない。このことから、蔗
糖回収率には限界がある。
The means for recovering sucrose in crude and refined sugar factories is by crystallization, and cannot recover sucrose accompanying non-sucrose in molasses. This limits the sucrose recovery rate.

【0011】したがって、本発明の課題は、甘蔗生産地
において効率よく、直接精製糖を製造することができる
ようにすることである。また、本発明では炭酸ソーダの
添加工程および限外ろ過処理工程(さらにはクロマト分
離工程)を組み込むことにより、蔗糖回収率の向上、副
生成品(主に還元糖)の生成および薬品の低減などを図
る。
[0011] Accordingly, an object of the present invention is to make it possible to produce purified sugar directly and efficiently in a sugarcane-producing area. In addition, the present invention incorporates a sodium carbonate addition step and an ultrafiltration treatment step (further, a chromatographic separation step), thereby improving sucrose recovery, producing by-products (mainly reducing sugars), and reducing chemicals. Plan.

【0012】[0012]

【課題を解決するための手段】前記課題を解決した本発
明の請求項1記載の発明は、次記の工程を含むことを特
徴とする炭酸ソーダ添加および限外ろ過処理を含む甘蔗
からの製糖法である。 (1)甘蔗の圧搾により得た圧搾汁、甘蔗の抽出により
得た抽出汁、あるいは圧搾汁と抽出汁とを混合した糖汁
を得る粗汁の粗汁生成工程。 (2)粗汁を加熱する加熱工程。 (3)粗汁中の不溶物質の除去をろ過により行う不溶物
質除去工程。 (4)粗汁に対して炭酸ソーダを添加して軟化処理及び
pH調整を行う炭酸ソーダ添加工程。 (5)粗汁中の溶解性高分子物質及び不溶性物質を限外
ろ過処理により除去し、清澄液を得る限外ろ過処理工
程。 (6)前記清澄液を濃縮する濃縮工程。 (7)濃縮工程からの濃縮液をクロマト分離し、蔗糖画
分と還元糖画分と非蔗糖画分に分離するクロマト分離工
程。
According to a first aspect of the present invention, there is provided a method for producing sugar from sugar cane, comprising the steps of adding sodium carbonate and ultrafiltration. Is the law. (1) A crude juice producing step of obtaining a squeezed juice obtained by squeezing a sugar cane, an extracted juice obtained by extracting a sugar cane, or a sugar juice obtained by mixing a squeezed juice and an extracted juice. (2) A heating step of heating the crude juice. (3) An insoluble substance removing step of removing insoluble substances in the crude juice by filtration. (4) A step of adding sodium carbonate to the crude juice to perform a softening treatment and pH adjustment. (5) An ultrafiltration step of removing a soluble polymer substance and an insoluble substance from the crude juice by ultrafiltration to obtain a clear liquid. (6) a concentration step of concentrating the clarified liquid. (7) A chromatographic separation step in which the concentrated liquid from the concentration step is chromatographed and separated into a sucrose fraction, a reducing sugar fraction and a non-sucrose fraction.

【0013】請求項2記載の発明は、前記のクロマト分
離工程からの蔗糖画分を濃縮工程に送液し、その濃縮液
を液糖製品とするか、もしくは濃縮液を結晶化して精製
糖を得る晶析工程をさらに含む請求項1記載の製糖法で
ある。
[0013] The invention according to claim 2 is that the sucrose fraction from the chromatographic separation step is sent to a concentration step, and the concentrated liquid is used as a liquid sugar product, or the concentrated liquid is crystallized to produce purified sugar. The sugar production method according to claim 1, further comprising a crystallization step for obtaining.

【0014】請求項3記載の発明は、前記のクロマト分
離工程からの蔗糖画分を濃縮工程に送液し、晶析工程で
高純度の砂糖結晶を得る糖液送液・濃縮・晶析工程をさ
らに含む請求項1記載の製糖法である。
According to a third aspect of the present invention, there is provided a sugar solution sending / concentrating / crystallizing step in which the sucrose fraction from the above-mentioned chromatographic separation step is sent to a concentration step, and high-purity sugar crystals are obtained in a crystallization step. The sugar production method according to claim 1, further comprising:

【0015】請求項4記載の発明は、前記の晶析工程か
らのモラセスをクロマト分離工程で糖分回収を行う糖分
回収工程をさらに含む請求項3記載の製糖法である。
The invention according to claim 4 is the sugar production method according to claim 3, further comprising a sugar recovery step of recovering sugar from molasses from the crystallization step in a chromatographic separation step.

【0016】請求項5記載の発明は、不溶物質除去工程
からのスラッジ、炭酸ソーダの添加工程からのスラッジ
および限外ろ過処理工程からの濃縮液の少なくとも一つ
から糖液を回収する糖液回収工程をさらに含む請求項1
記載の製糖法である。
A fifth aspect of the present invention is a method of recovering a sugar liquid from at least one of a sludge from an insoluble substance removing step, a sludge from a sodium carbonate adding step, and a concentrated liquid from an ultrafiltration treatment step. 2. The method of claim 1, further comprising the step of:
It is the sugar production method described.

【0017】請求項6記載の発明は、前記の糖液回収工
程から回収した糖液を不溶物質除去工程に送液する糖液
送液工程をさらに含む請求項5記載の製糖法である。
The invention according to claim 6 is the sugar production method according to claim 5, further comprising a sugar solution sending step of sending the sugar solution collected from the sugar solution collecting step to an insoluble substance removing step.

【0018】請求項7記載の発明は、前記の炭酸ソーダ
添加工程において、pH調整のために苛性ソーダを使用
することも可能である請求項1記載の製糖法である。
The invention according to claim 7 is the sugar production method according to claim 1, wherein caustic soda can be used for pH adjustment in the sodium carbonate adding step.

【0019】請求項8記載の発明は、前記の炭酸ソーダ
添加工程におけるpH調整を6〜8の範囲で行う請求項
1記載の製糖法である。
The invention according to claim 8 is the sugar production method according to claim 1, wherein the pH is adjusted in the range of 6 to 8 in the sodium carbonate adding step.

【0020】<本発明の概要>本発明の概要を述べれ
ば、次のとおりである。すなわち、甘蔗からの白糖およ
び精製糖製造における清浄方法は、石灰乳添加による凝
集物沈殿、イオン交換樹脂による脱塩・軟化が主流であ
る。ここでは石灰乳の添加により糖汁中のCa濃度が高
くなるが、これを後段のイオン交換樹脂で置換し、この
樹脂は使用に応じて再生を行っている。
<Outline of the Present Invention> The outline of the present invention is as follows. That is, the mainstream of the cleaning method in the production of sucrose and purified sugar from sugarcane is precipitation of aggregates by addition of lime milk and desalting and softening by an ion exchange resin. Here, the addition of lime milk increases the Ca concentration in the sugar juice, but this is replaced with a later-stage ion exchange resin, and this resin is regenerated according to use.

【0021】本発明の方法では甘蔗圧搾汁、もしくは抽
出汁、これらを混合した糖汁の清浄方法として炭酸ソー
ダの添加とUF膜を使用する。炭酸ソーダの添加で糖汁
のpH調整と軟化処理の二つの役割を果たし、炭酸ソー
ダの添加によって糖液中のカルシウム及びマグネシウム
は炭酸カルシウム、炭酸マグネシウムの沈殿物として沈
殿し、この沈殿物は後段のUF膜でその他の微細不溶性
懸濁物質、溶解性高分子物質とともに除去される。
In the method of the present invention, addition of sodium carbonate and a UF membrane are used as a method for cleaning sugarcane pressed juice or extracted juice, or a sugar juice obtained by mixing them. Addition of sodium carbonate plays two roles of pH adjustment and softening of sugar juice, and addition of sodium carbonate causes calcium and magnesium in the sugar solution to precipitate as precipitates of calcium carbonate and magnesium carbonate. The UF membrane is removed together with other fine insoluble suspended substances and soluble polymer substances.

【0022】甘蔗圧搾汁、抽出汁、もしくはこれらの混
合糖汁からなる粗汁は熱交換器で105℃位まで加熱さ
れる。次に甘蔗からの細かい繊維状物質や不溶性懸濁物
質を傾斜型フィルターやバグフィルターなどでろ過・除
去する。この時点での糖汁のpHはpH5〜7である。
The crude juice consisting of cane squeezed juice, extracted juice, or a mixed sugar juice thereof is heated to about 105 ° C. in a heat exchanger. Next, fine fibrous substances and insoluble suspended substances from the sugar cane are filtered and removed with a gradient filter or a bag filter. The pH of the sugar juice at this point is pH 5-7.

【0023】炭酸ソーダ添加の第1の目的としては、後
工程のクロマト分離においてその分離性能を阻害するカ
ルシウムとマグネシウムの除去が挙げられる。第2の目
的は、粗汁が酸性領域であるために、還元糖生成が促進
されやすくなるが、炭酸ソーダを添加することでpH7
〜8とし、還元糖生成を抑制することにある。
The first purpose of adding sodium carbonate is to remove calcium and magnesium which hinder the separation performance in the subsequent chromatographic separation. The second purpose is that the production of reducing sugar is easily promoted because the crude juice is in the acidic region.
To 8 to reduce the production of reducing sugars.

【0024】炭酸ソーダの添加量は、粗汁中のCa、M
gがクロマト分離の樹脂の分離能力を害しない程度まで
その含有量を下げることを目的として、規定される。一
般にクロマト分離樹脂の性能上、Ca、Mg濃度はN
a、K濃度に対して5%未満であることが望まれる。炭
酸ソーダの添加量は糖液の性状により異なる。第2の炭
酸ソーダ添加目的は、軟化の目的で必要な炭酸ソーダ添
加量分を添加後、糖液のpHがpH6〜7まで達しない
ときは蔗糖の分解による還元糖の生成を抑えるためにp
H調整を同時に行うことである。そのときに苛性ソーダ
などを炭酸ソーダの代わりに使用することもできる。炭
酸ソーダ添加後の軟化処理粗汁をUF膜に通液し、炭酸
塩と不溶性懸濁物質、溶解性高分子物質をろ過・分離す
る。さらにこの透過液は蒸発缶で濃縮されBx13から
Bx50程度まで農縮される。もしくはBx70程度ま
で濃縮を行い、液糖製品とすることも可能である。Bx
50まで濃縮された糖液は固定床型か、好ましくは連続
または擬似移動床タイプのクロマト分離装置にかけら
れ、蔗糖画分、還元糖画分、非蔗糖画分の3成分に分離
される。蔗糖画分については晶析工程で結晶化し、精製
糖を得る。晶析工程での廃糖蜜をクロマト分離工程に送
液することにより、さらに蔗糖分を回収することもでき
る。
The amount of sodium carbonate added is determined by the amount of Ca and M in the crude juice.
g is specified for the purpose of reducing the content of the resin to such an extent as not to impair the separation ability of the resin for chromatographic separation. In general, the concentration of Ca and Mg is N
It is desired that the concentration is less than 5% with respect to a and K concentrations. The amount of sodium carbonate added depends on the properties of the sugar solution. The second purpose of adding sodium carbonate is to add a necessary amount of sodium carbonate for the purpose of softening, and when the pH of the sugar solution does not reach pH 6 to 7, in order to suppress the generation of reducing sugar due to decomposition of sucrose.
H adjustment is performed simultaneously. At that time, caustic soda or the like can be used instead of sodium carbonate. The softened crude juice after the addition of sodium carbonate is passed through a UF membrane, and the carbonate, insoluble suspended substances, and soluble polymer substances are filtered and separated. The permeate is further concentrated in an evaporator and reduced from Bx13 to Bx50. Alternatively, it can be concentrated to about Bx70 to obtain a liquid sugar product. Bx
The sugar solution concentrated to 50 is applied to a fixed bed type, or preferably a continuous or simulated moving bed type chromatograph, to separate it into three components: a sucrose fraction, a reducing sugar fraction and a non-sucrose fraction. The sucrose fraction is crystallized in the crystallization step to obtain a purified sugar. By sending the molasses in the crystallization step to the chromatographic separation step, sucrose can be further recovered.

【0025】[0025]

【作用効果】本発明に従えば、次記の作用効果を奏す
る。 1)圧搾工程を経た粗汁に炭酸ソーダを添加することに
より、濃縮時にスケーリングの原因となるカルシウム及
びマグネシウムを炭酸塩にし、沈降分離できる。石灰清
浄の代わりに炭酸ソーダを使用することでスケーリング
が減ることによる効果としては、例えば、蒸発缶の洗缶
を一週間に一回行っていたところを一ケ月に一回に低減
でき、運転・操作の負荷低減、洗浄薬液の軽減を図るこ
とができる。
According to the present invention, the following effects can be obtained. 1) By adding sodium carbonate to the crude juice that has undergone the squeezing step, calcium and magnesium, which cause scaling at the time of concentration, can be carbonated and settled and separated. The effect of reducing scaling by using sodium carbonate instead of lime cleaning is that, for example, washing the evaporator once a week can be reduced to once a month. Operational load can be reduced, and the amount of cleaning chemicals can be reduced.

【0026】2)炭酸ソーダ添加目的は、糖汁の軟化と
pH調整である。一例として、軟化処理液中のCa:2
0ppm、Mg:80ppmとなり、Ca、Mg濃度が
糖液中のNa、K濃度に対して5%以下となるようにし
たときの炭酸ソーダ添加量は2800ppm程度と使用
量は多くなるが、このときのpHはpH7となり、pH
調整と軟化の二工程で行われている操作の役割を一工程
で果たし、操作が簡便となる。pH調整の役割について
はpH調整を行わない場合の糖汁のpHはpH5〜6で
あり、このpHで後工程の濃縮を行った場合には還元糖
の生成量が増える。これを炭酸ソーダの添加によりpH
6〜8程度にすることで還元糖の生成が抑えられる。さ
らに糖液中に溶解しているCa、Mgは濃縮工程でのス
ケーリングに問題となるだけでなく、クロマト分離の樹
脂の交換基を置換し、分離能力を低下させる原因となる
が、これらのイオンを炭酸塩として沈降分離できる。
2) The purpose of adding sodium carbonate is to soften the sugar juice and adjust the pH. As an example, Ca: 2 in the softening solution
0 ppm, Mg: 80 ppm, and the amount of sodium carbonate added when the Ca and Mg concentrations are 5% or less with respect to the Na and K concentrations in the sugar solution is as large as about 2800 ppm. Becomes pH 7 and pH
The role of the operation performed in two steps of adjustment and softening is performed in one step, and the operation is simplified. Regarding the role of pH adjustment, the pH of the sugar juice when pH adjustment is not performed is pH 5 to 6, and when concentration in the subsequent step is performed at this pH, the amount of reducing sugar generated increases. This is adjusted to pH by adding sodium carbonate.
By setting it to about 6 to 8, the production of reducing sugar is suppressed. Furthermore, Ca and Mg dissolved in the sugar solution not only cause a problem in the scaling in the concentration step, but also replace the exchange group of the resin for the chromatographic separation and reduce the separation ability. As a carbonate.

【0027】3)pH調整および軟化処理のために炭酸
ソーダを添加する方法は従来、着色が著しく、かつ高価
であるとされていた。しかし、本発明では炭酸ソーダ添
加後に、清浄汁に含まれている溶解性高分子物質(ガム
質、デキストラン、タンパク質、着色物質など)や細か
い不溶性懸濁物質を除去することを目的とした限外ろ過
膜を採用することにより、炭酸ソーダの添加によって着
色した成分、溶解性高分子物質、その他S.S.分が除
去できる。その除去率としては、着色成分は20〜40
%、溶解性高分子物質は40〜60%、その他S.S.
分は99%以上となる。これら着色成分及び溶解性高分
子物質は従来法の石灰清浄では除去できない。
3) The method of adding sodium carbonate for pH adjustment and softening treatment has conventionally been considered to be remarkably colored and expensive. However, in the present invention, after adding sodium carbonate, an ultra-high-temperature solution for removing soluble high-molecular substances (gum, dextran, proteins, coloring substances, etc.) and fine insoluble suspended substances contained in the fresh juice is used. By employing a filtration membrane, components colored by the addition of sodium carbonate, soluble polymer substances, S. Minutes can be removed. As for the removal rate, the coloring component is 20 to 40.
%, Soluble polymer substance is 40 to 60%, and other S.P. S.
The minute is over 99%. These coloring components and soluble polymer substances cannot be removed by conventional lime cleaning.

【0028】4)従来法の沈降器は滞留時間が長く、設
備的にも大規模となるのに比べ、限外ろ過膜は滞留時間
が短縮され、設備も縮小される。
4) The conventional settler has a long residence time and is large-scale in terms of equipment, whereas the ultrafiltration membrane has a short residence time and equipment.

【0029】[0029]

【発明の実施の形態】『第1の実施の形態:図1参照』
本発明の請求項1記載の発明における第1の実施形態を
図1に示した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment: See FIG.
FIG. 1 shows a first embodiment according to the first aspect of the present invention.

【0030】<甘蔗の圧搾により粗汁を得る圧搾工程>
甘蔗を圧搾機により圧搾した圧搾汁全量、もしくは抽出
法による抽出汁全量、または搾出汁と抽出汁を混合させ
た混合汁、すなわち粗汁を加熱源としてスチームを用
い、例えば105℃まで加熱を行う。加熱を行う機器と
しては、シェル&チューブタイプもしくはプレート型の
熱交換器などが挙げられる。
<Squeezing step to obtain crude juice by squeezing cane>
The whole amount of squeezed juice obtained by squeezing sugar cane with a squeezing machine, or the entire amount of extracted juice by the extraction method, or a mixed juice obtained by mixing the extracted juice and the extracted juice, that is, the crude juice is heated to 105 ° C. by using steam as a heat source. . Examples of the equipment for performing heating include a shell-and-tube type or plate type heat exchanger.

【0031】<粗汁中の不溶物質の除去をろ過により行
う不溶物質除去工程>次に粗汁中には、甘蔗由来の網か
い繊維状物質や砂土砂の他異物(以下「不溶性懸濁物
質」または「不溶物質」とする。)が混入している。こ
れらの不溶性懸濁物質を除去するため、ろ過を行う。こ
れらの不溶性懸濁物質を除去するための手段として、傾
斜型スクリーンが挙げられる。この傾斜型スクリーンは
50μm以上の不溶性物質を除去することが可能であ
り、かつ連続運転ができる、清浄汁及び不溶性物質の連
続排出が可能であり、可動部がないため操作が容易であ
る。傾斜型スクリーンのスクリーンとしては、ウェッジ
ワイヤータイプで、運転圧カが1kgf/cm2G以上
のものが好ましい。また後工程の膜処理負荷を避けるた
め、傾斜型スクリーンを2段として1段目では50μm
カット、2段目で10μmカットとすることができる。
また、不溶性懸濁物質の除去対象粒径は、後段の限外ろ
過処理における膜構造により決まるが、できる限りこの
工程中において不溶性懸濁物質を取り除くことが、限外
ろ過処理工程での濃縮倍率を上げることができ、経済的
である。
<Insoluble matter removal step of removing insoluble matter in crude juice by filtration> Next, in the crude juice, net fibrous material derived from sugar cane or other foreign matter (hereinafter referred to as "insoluble suspended material") Or "insoluble material"). Filtration is performed to remove these insoluble suspended substances. Means for removing these insoluble suspended substances include inclined screens. This inclined screen can remove insoluble substances of 50 μm or more, can be operated continuously, can continuously discharge clean juice and insoluble substances, and is easy to operate because there is no movable part. The screen of the inclined type screen is preferably a wedge wire type screen having an operating pressure of 1 kgf / cm 2 G or more. In addition, in order to avoid the film processing load in the post-process, the inclined screen is divided into two stages and 50 μm in the first stage.
The second cut can be a 10 μm cut.
In addition, the particle size to be removed of insoluble suspended substances is determined by the membrane structure in the subsequent ultrafiltration treatment, but it is necessary to remove the insoluble suspended substances in this step as much as possible in the ultrafiltration treatment step. Can be raised and is economical.

【0032】<ろ過液に対して炭酸ソーダを添加して軟
化処理を行う炭酸ソーダ添加工程>粗汁中のカルシウム
及びマグネシウム濃度は既設、生産地によって異なる
が、クロマト分離樹脂性能上、ナトリウム及びカリウム
濃度に対し、5%以下になるように炭酸ソーダの添加に
よって沈降分離を行う。添加後のpHは粗汁中に含まれ
ているカルシウム及びマグネシウムの濃度に依存し、p
Hは約6〜8となる。pH6以下の場合、還元糖の生成
が促進されやすい状態になる。この時、還元糖の生成を
抑え、回収率を上げることを目的とすると、苛性ソーダ
などのアルカリ薬品により、pH6〜8まで調整を行う
ことが手段として挙げられる。ただし、還元糖が生成さ
れても、後工程のクロマト処理により、還元糖の回収が
できるため、軟化の目的のみだけで、pH7以下のまま
処理を行うことも問題はない。
<Sodium carbonate addition step of adding sodium carbonate to the filtrate to perform softening treatment> The calcium and magnesium concentrations in the crude juice differ depending on the existing and production areas, but sodium and potassium are inferior in chromatographic separation resin performance. The sedimentation is carried out by adding sodium carbonate so that the concentration becomes 5% or less. The pH after the addition depends on the concentrations of calcium and magnesium contained in the juice,
H is about 6-8. When the pH is 6 or less, the state is such that the production of reducing sugar is easily promoted. At this time, for the purpose of suppressing the generation of reducing sugar and increasing the recovery rate, adjustment to pH 6 to 8 with an alkali chemical such as caustic soda can be mentioned as a means. However, even if reducing sugars are generated, the reducing sugars can be recovered by the subsequent chromatographic treatment. Therefore, there is no problem to carry out the treatment at pH 7 or lower only for the purpose of softening.

【0033】<軟化処理液を限外ろ過処理して清澄液を
得る限外ろ過処理工程>この限外ろ過処理工程では、炭
酸ソーダ添加後の液中のカルシウム、マグネシウムの炭
酸塩、細かい不溶性懸濁物質および溶解性高分子物質の
除去を行う。これらの除去を行うろ過としては、クロス
フロータイプの連続膜ろ過が適当である。この膜の除去
対象粒径(分画サイズ)としては、限外ろ過(通常UF
膜)が最適である。またろ過能力や雑菌による汚染など
を考慮すると高温度(80℃以上)仕様の膜が適してい
る。膜構造や膜材質については様々なタイプのものが存
在するが、上記の条件を満たしているものであればどの
ようなものでも問わない。
<Ultrafiltration Step of Ultrafiltration of Softening Solution to Obtain Clarified Solution> In this ultrafiltration step, calcium and magnesium carbonates in the liquid after addition of sodium carbonate, fine insoluble suspension Remove suspended substances and soluble polymer substances. Cross-flow type continuous membrane filtration is appropriate as the filtration for removing these. Ultrafiltration (normally UF)
Membrane) is optimal. Considering the filtration ability and contamination by various bacteria, a membrane having a high temperature (80 ° C. or higher) specification is suitable. There are various types of film structures and film materials, but any material can be used as long as the above conditions are satisfied.

【0034】膜処理遅転での濃縮倍率については、濃縮
倍率が高ければ高いほど、膜処理での糖液回収率を上げ
ることができるが、膜面積の増大となり経済的でない。
また逆に、濃縮倍率を低く設定すると、回収工程設備が
大きくなり、経済的でなくなる。このことから約30〜
50倍が適当であり、混合汁中の不溶性懸濁物質量によ
って濃縮倍率を決定する。濃縮方法についても、各濃縮
倍率により膜のろ過能力が異なることから、一段にて全
濃縮を行うのではなく、数段に分割して濃縮を行った方
が膜面積を少なくすることができる。膜処理を数段に分
ける決定因子としては、各濃縮倍率での膜処理能力によ
って決定する。また、膜処理での回収率を上げる手段と
しては水希釈による方法も挙げられる。
Regarding the concentration ratio when the membrane treatment is retarded, the higher the concentration ratio, the higher the sugar solution recovery rate in the membrane treatment can be. However, the membrane area increases, which is not economical.
Conversely, if the concentration ratio is set low, the equipment for the recovery step becomes large, and it is not economical. From this, about 30 ~
50 times is appropriate, and the concentration ratio is determined by the amount of insoluble suspended solids in the mixed juice. Regarding the concentration method, since the filtration capacity of the membrane varies depending on the concentration ratio, the membrane area can be reduced by dividing the concentration into several stages instead of performing the entire concentration in one stage. The determinant for dividing the membrane treatment into several stages is determined by the membrane treatment capacity at each concentration ratio. Further, as a means for increasing the recovery rate in the membrane treatment, a method based on water dilution can also be mentioned.

【0035】<前記限外ろ過処理からの清澄液を濃縮す
る濃縮工程>次に軟化処理された糖液を、例えばBx1
5からBx50まで濃縮を行う。この濃縮工程は従来技
術に準じて行う。濃縮装置としてはカランドリアタイプ
やプレート熱交タイプが挙げられる。ただし、Bxが高
い缶の濃縮装置については、熱交換機へのスケーリング
が考えられることから、これを洗浄・除去できるタイプ
が望ましい。
<Concentration step for concentrating the clarified liquid from the ultrafiltration treatment> Next, the softened saccharide liquid is mixed with, for example, Bx1
Concentrate from 5 to Bx50. This concentration step is performed according to a conventional technique. Examples of the concentrator include a calandria type and a plate heat exchange type. However, as for the enrichment apparatus for cans with a high Bx, a type capable of washing and removing the same is desirable because scaling to a heat exchanger can be considered.

【0036】<前記濃縮工程からの濃縮液をクロマト分
離するクロマト分離工程>濃縮工程からの濃縮液をクロ
マト分離し、蔗糖画分、還元糖画分、非蔗糖画分に分離
・精製する。クロマト分離に用いる装置としては固定床
タイプの装置も利用可能であるし、好ましくは擬似移動
床タイプの装置で連続運転すると、樹脂使用量、分離効
率も上がる。
<Chromatographic Separation Step for Chromatographic Separation of the Concentrate from the Concentration Step> The concentrate from the concentration step is chromatographed and separated and purified into a sucrose fraction, a reducing sugar fraction and a non-sucrose fraction. As a device used for chromatographic separation, a fixed-bed type device can be used, and preferably, continuous operation with a simulated moving-bed type device increases the resin usage and the separation efficiency.

【0037】『第2及び3の実施の形態:図1参照』本
発明の請求項2及び3記載の発明における実施形態を図
1に示した。 <前記濃縮工程からの濃縮液を液糖製品とする工程>前
記濃縮工程からの濃縮液はさらにBx72程度まで濃縮
して液糖製品とする。
"Second and Third Embodiments: See FIG. 1" FIG. 1 shows an embodiment of the invention according to the second and third aspects of the present invention. <Step of converting the concentrated liquid from the concentration step to a liquid sugar product> The concentrated liquid from the concentration step is further concentrated to about Bx72 to obtain a liquid sugar product.

【0038】『第3の実施の形態:図1参照』本発明の
請求項3記載の発明における第3の実施形態を図1に示
した。 <前記クロマト分離工程からの蔗糖画分を濃縮工程に送
液し、さらに晶析を行う糖液の送液・濃縮・晶析工程>
クロマト分離工程からの蔗糖画分は分離の際に希釈され
ているため、濃縮工程に送液して、晶析を行い、さらに
高純度の精製糖を得る。ここでの濃縮工程は5〜6重効
用缶が有効であり、2〜3缶を限外ろ過膜処理後の糖液
の濃縮に用い、残り2〜3缶にてクロマト分離工程から
の蔗糖画分の濃縮を行う。各濃縮液への缶の振り分けは
運転状況により行う。
[Third Embodiment: See FIG. 1] FIG. 1 shows a third embodiment of the invention according to the third aspect of the present invention. <Sucrose fraction from the above chromatographic separation step is sent to the concentration step, and the sugar liquid is sent, concentrated and crystallized for further crystallization>
Since the sucrose fraction from the chromatographic separation step is diluted at the time of the separation, it is sent to the concentration step for crystallization to obtain a highly purified purified sugar. In the concentration step, 5 to 6 double effect cans are effective, and 2 to 3 cans are used for concentrating the sugar solution after the ultrafiltration membrane treatment, and the remaining 2 to 3 cans are used to remove the sucrose fraction from the chromatographic separation step. Concentration. Sorting of cans to each concentrate depends on the operating conditions.

【0039】『第4の実施の形態:図1参照』本発明の
請求項4記載の発明における第4の実施形態を図1に示
した。晶析工程からのモラセス中に含まれる糖分をさら
に回収するためにクロマト分離工程で分離精製を行い、
蔗糖回収率を上げる。
"Fourth Embodiment: See FIG. 1" FIG. 1 shows a fourth embodiment of the invention according to claim 4 of the present invention. In order to further recover the sugar contained in molasses from the crystallization step, separation and purification are performed in the chromatographic separation step,
Increase sucrose recovery.

【0040】『第5および第6の実施の形態:図1参
照』本発明の請求項5記載の発明における第5の実施形
態および請求項6記載の発明における第6の実施形態を
図1に示した。 <不溶物質除去工程からのスラッジ、炭酸ソーダ添加工
程からのスラッジおよび限外ろ過処理工程からの濃農縮
液(炭酸塩を含む)から糖液を回収する糖液回収工程>
および<回収した糖液を不溶物質除去工程に送液する糖
液送液工程>糖液回収工程においては不溶物質除去工程
から発生するスラッジ(不溶性懸濁物質)、炭酸ソーダ
軟化工程からのスラッジおよび限外ろ過処理工程から発
生する濃縮液から糖液を回収する。回収方法としては、
凝集効果のある石灰乳、高分子凝集剤およびろ過助剤と
してのピス(甘蔗由来の綱かい繊維)を添加し、ろ過に
よりこれら凝集した固形物を除去し、ろ液を不溶性物質
除去工程の前段に戻す。ろ過機としては水平ベルトフィ
ルター、ドラムフィルターなど連続タイプのものが好ま
しい。または、凝集沈殿槽により固形物を濃縮・分離
し、清澄液は前工程に戻す。この糖液回収工程は、限外
ろ過処理工程から発生する濃縮液を他で有効利用(例え
ば、家畜などの飼料、農地への肥料など)等も手段とし
て挙げられる。また凝集沈殿槽で生じた凝縮固形物はバ
ガスとともに燃焼することが可能である。
[Fifth and Sixth Embodiments: See FIG. 1] FIG. 1 shows a fifth embodiment of the present invention according to claim 5 and a sixth embodiment of the present invention according to claim 6. Indicated. <Sugar liquid recovery step of recovering the sugar liquid from the sludge from the insoluble substance removal step, the sludge from the sodium carbonate addition step, and the concentrated concentrate (including carbonate) from the ultrafiltration processing step>
And <sugar liquid feeding step of sending the recovered sugar liquid to the insoluble substance removing step> In the sugar liquid collecting step, sludge (insoluble suspended substance) generated from the insoluble substance removing step, sludge from the sodium carbonate softening step, and The sugar solution is recovered from the concentrated solution generated from the ultrafiltration process. As a collection method,
Lime milk having a flocculant effect, a polymer flocculant and pis (sugar cane-derived braided fiber) as a filter aid are added, these flocculated solids are removed by filtration, and the filtrate is subjected to an insoluble matter removal step. Return to As the filter, a continuous filter such as a horizontal belt filter or a drum filter is preferable. Alternatively, the solid is concentrated and separated by the coagulation sedimentation tank, and the clarified liquid is returned to the previous step. In the sugar liquid collecting step, the concentrated liquid generated from the ultrafiltration processing step can be effectively used elsewhere (for example, feed for livestock, fertilizer for farmland, and the like). The condensed solid matter generated in the coagulation sedimentation tank can be burned together with bagasse.

【0041】[0041]

【実施例】(実施例1)圧搾工程を経た加熱粗汁を50
〜75μmのスクリーン濾過により、夾雑物を取り除い
た液(Bx12、pH5、Ca:150ppm、Mg:
145ppm、ss.500ppm)を温度80℃まで
昇温し、軟化処理テストを行った。100体積部の粗汁
に対し20%炭酸ソーダ溶液を0.52体積部(粗汁中
含有Ca、Mgに対して、炭酸ソーダ軟化するときの2
倍当量の炭酸ソーダ添加量)を添加し、攪拌機により3
0分間撹拌した。その軟化処理液を分画分子量3〜5万
の限外ろ過膜でろ過した。濾液中のCa、Mg濃度はC
a:9ppm、Mg:52ppmとなり、Ca除去率9
4%、Mg除去率64%と、大部分のCa、Mgが除去
された。炭酸ソーダの添加量を粗汁中の含有Ca、Mg
に対して1倍、2倍、5倍、10倍にしたときの糖汁p
Hと添加後のCa、Mgの濃度について調べた。結果を
図2に示す。
(Example 1) 50 parts of the heated crude juice after the pressing step
A liquid (Bx12, pH5, Ca: 150 ppm, Mg:
145 ppm, ss. (500 ppm) was raised to a temperature of 80 ° C., and a softening test was performed. 0.5% by volume of a 20% sodium carbonate solution to 100 parts by volume of crude juice (2% when sodium carbonate is softened with respect to Ca and Mg contained in crude juice)
Twice the equivalent amount of sodium carbonate) and add 3 with a stirrer.
Stirred for 0 minutes. The softened solution was filtered through an ultrafiltration membrane having a molecular weight cutoff of 30,000 to 50,000. The concentration of Ca and Mg in the filtrate is C
a: 9 ppm, Mg: 52 ppm, and a Ca removal rate of 9
4%, the Mg removal rate was 64%, and most of Ca and Mg were removed. The amount of sodium carbonate added was adjusted to the content of Ca, Mg
Juice p when 1-fold, 2-fold, 5-fold, and 10-fold
The concentrations of H and Ca and Mg after addition were examined. The results are shown in FIG.

【0042】従来技術として粗汁を加熱し、石灰乳を加
える石灰清浄法がある。比較のために石灰を添加してp
H調整を行った後、炭酸ソーダで軟化処理する2段方式
でのpH調整、軟化処理を考慮してテストを行った。圧
搾工程を経た加熱粗汁を粗めのスクリーン濾過により、
夾雑物を取り除いた液(Bx14、pH5、Ca:19
0ppm、Mg:155ppm)を温度80℃まで昇温
した。100部の粗汁に対して15%石灰乳を糖汁のp
HがpH6、pH6.5、pH7、pH8になるまで加
えた。そのときの石灰添加量変化によるpHの変化、な
らびに石灰乳添加後の各pHにおける糖汁中の含有C
a、Mg濃度の関係を調べた。結果を図3に示す。
As a conventional technique, there is a lime cleaning method in which the juice is heated and lime milk is added. For comparison, add lime and p
After the H adjustment, a test was performed in consideration of the pH adjustment and the softening treatment in a two-stage system in which the treatment was softened with sodium carbonate. The heated crude juice that passed through the squeezing process was coarsely filtered,
Liquid from which impurities have been removed (Bx14, pH5, Ca: 19
(0 ppm, Mg: 155 ppm). 15% lime milk per 100 parts of crude juice
H was added until the pH reached pH 6, pH 6.5, pH 7, and pH 8. PH change due to change in lime addition amount at that time, and C content in sugar juice at each pH after lime milk addition
The relationship between a and Mg concentration was examined. The results are shown in FIG.

【0043】次に上記の石灰添加粗汁の上澄み液50体
積部をとり、温度80℃を保持しながら、糖汁pHが8
になるように20%炭酸ソーダ溶液を適当量添加した。
この時の炭酸ソーダ添加によるpHと糖汁中のCa、M
g濃度減少の関係を図4に示す。
Next, 50 parts by volume of the supernatant liquid of the lime-added crude juice were taken, and while maintaining the temperature at 80 ° C., the pH of the sugar juice was adjusted to 8%.
An appropriate amount of a 20% sodium carbonate solution was added so that
At this time, the pH due to the addition of sodium carbonate and the Ca, M
FIG. 4 shows the relationship between the decrease in g concentration.

【0044】上記の二つの結果から石灰添加により、添
加液中の溶解Ca濃度は増えるが、その後添加する炭酸
ソーダにより溶解Caを沈降・分離できる。しかし、例
えば石灰添加量が500ppm程度(pH6)のとき、
その後pH8まで炭酸ソーダを加えた後の糖液中の溶解
Ca濃度は250ppmとなり、十分除去しきれない。
石灰を添加せずに炭酸ソーダのみを添加した場合の添加
量は3000ppmになるが、添加後の糖液中の溶解C
a濃度は約100ppmと低くなり、クロマト分離を阻
害しない程度までCa濃度が抑えられる。
From the above two results, the addition of lime increases the dissolved Ca concentration in the added liquid, but the dissolved Ca can be precipitated and separated by sodium carbonate added thereafter. However, for example, when the amount of added lime is about 500 ppm (pH 6),
After that, the dissolved Ca concentration in the sugar solution after adding sodium carbonate to pH 8 became 250 ppm, and it could not be sufficiently removed.
When only sodium carbonate is added without adding lime, the added amount is 3000 ppm.
The a concentration becomes as low as about 100 ppm, and the Ca concentration is suppressed to a level that does not inhibit the chromatographic separation.

【0045】また本発明では炭酸ソーダの添加で軟化処
理とpH調整の二つの効果があり、pH調整の効果とし
ては酸性(pH5程度)であった糖液のpHを中性(p
H7〜8)にすることで濃縮時の糖液加熱による還元糖
の生成が抑えられることが特徴である。甘蔗圧搾汁をイ
オン交換樹脂(SK1B)で軟化処理し、10%−Na
OHでpH調整を行い、pH調整を行わなかった場
合、pH6、7、8に調整した場合でそれぞれロータリ
ーエバポレーターで温度85℃を保持しながら2〜3時
間で濃縮し、濃縮液中の還元糖の含有割合を比較した。
pHによる還元糖生成量の割合を調べたテスト結果を図
5に示す。
In the present invention, the addition of sodium carbonate has two effects, namely, a softening treatment and a pH adjustment. The effect of the pH adjustment is to reduce the pH of the acidic (about pH 5) sugar solution to neutral (p).
H7 to 8) is characterized in that the production of reducing sugars due to heating of the sugar solution during concentration is suppressed. Cane squeezed juice is softened with an ion exchange resin (SK1B) and 10% -Na
The pH was adjusted with OH, the pH was not adjusted, and the pH was adjusted to 6, 7, and 8, respectively, and concentrated in a rotary evaporator for 2 to 3 hours while maintaining the temperature at 85 ° C. Were compared.
FIG. 5 shows a test result of examining the ratio of the amount of reducing sugar produced by pH.

【0046】(実施例2)図1に示すフローで設備処理
能力5,000TCD工場に適用した例である。圧搾工
程からの粗汁をスクリーニングするため、傾斜型スクリ
ーン(スクリーン幅合計10mにより夾雑物を0.7w
t%から0.4wt%まで除去した。
(Embodiment 2) This is an example applied to a 5,000 TCD factory with an equipment processing capacity of the flow shown in FIG. To screen crude juice from the squeezing step, an inclined screen (0.7 W
It was removed from t% to 0.4 wt%.

【0047】温度85〜90℃、pH5〜6の200m
3/Hrの粗汁を0.7Mpaに昇圧し、限外ろ過35
00m2のスパイラル膜(分画分子量2〜3万)によ
り、198m3/Hr透過液、7m3/Hr濃縮液が得ら
れた。得られた透過液はS.S.濃度:150ppm、
不純物濃度0.5wt%であった。
200 m at a temperature of 85 to 90 ° C. and pH 5 to 6
The pressure of the crude juice of 3 / Hr was increased to 0.7 MPa, and
A 198 m 3 / Hr permeate and a 7 m 3 / Hr concentrate were obtained with a 00 m 2 spiral membrane (fraction molecular weight: 20,000 to 30,000). The resulting permeate was S.P. S. Concentration: 150 ppm,
The impurity concentration was 0.5 wt%.

【0048】この透過液に50%−炭酸ソーダを0.7
5m3/Hrで添加し、Ca濃度:200ppm、Mg
濃度:160ppm、pH5からCa濃度:0〜20p
pm、Mg濃度:0〜60ppm、pH8までCa、M
gを除去した。
The permeate was added with 50% sodium carbonate (0.7%).
5 m 3 / Hr, Ca concentration: 200 ppm, Mg
Concentration: 160 ppm, pH 5 to Ca concentration: 0 to 20 p
pm, Mg concentration: 0 to 60 ppm, Ca, M up to pH 8
g was removed.

【0049】軟化処理した糖液を6重効用濃縮缶前半の
3缶により、Bx50まで濃縮をおこなった結果、蔗
糖:75.5%、還元糖:7.4%、非糖分:17.1
%であった。この時の前半3缶における伝熱面積は60
00m2となった。熱交換機はプレート型とした。
The softened sugar solution was concentrated to Bx50 in the first three cans of a six-effect concentrate, and as a result, sucrose: 75.5%, reducing sugar: 7.4%, non-sugar content: 17.1
%Met. The heat transfer area of the first three cans at this time was 60
It became a 00m 2. The heat exchanger was a plate type.

【0050】強酸性カチオン樹脂を充填した直径330
0mm×充填高さ2000mmのカラム30本からなる
回転数0.6時間/回の回転バルブ付きクロマト設備;
総樹脂量515m3に、この糖液を61.5m3/Hrで
供給し、溶離水を615m3/Hrで供給し、蔗糖溶液
画分21.4m3/Hr、蔗糖濃度24.5%、純度9
7.8%、還元糖溶液画分162m3/Hr、還元糖濃
度1.5%、純度42.9%、非糖液画分:19.5m
3/Hr、蔗糖濃度0.1%、還元糖濃度0%が得られ
た。
Diameter 330 filled with strongly acidic cationic resin
Chromatographic equipment with a rotary valve consisting of 30 columns of 0 mm x packing height of 2000 mm and having a rotation valve of 0.6 hours / time;
This sugar solution was supplied at 61.5 m 3 / Hr to a total resin amount of 515 m 3 , and eluent water was supplied at 615 m 3 / Hr, a sucrose solution fraction of 21.4 m 3 / Hr, a sucrose concentration of 24.5%, Purity 9
7.8%, reducing sugar solution fraction 162m 3 / Hr, reducing sugar concentration 1.5%, purity 42.9%, non-sugar liquid fraction: 19.5m
3 / Hr, a sucrose concentration of 0.1% and a reducing sugar concentration of 0% were obtained.

【0051】次に要求される製品により、イオン交換樹
脂による脱塩工程及び活性炭による脱色工程を組み合わ
せることも可能であるが、この実施例においては、この
脱色工程を行わず、以下のように処理した。
Depending on the product required next, it is possible to combine the desalting step with an ion exchange resin and the decolorizing step with activated carbon, but in this embodiment, the decolorizing step is not performed and the following treatment is performed. did.

【0052】甘蔗溶液113t/Hrをさらに前記の6
重効用濃縮缶の後半3缶により、蒸発・濃縮を行い、B
x65の液:43.3t/Hr、ICUMSA:40の
糖液を得た。この時の後半3缶における伝熱面積は38
00m2となった。
The sugar cane solution (113 t / Hr) was further added to the above 6
Evaporation and concentration by the latter three cans
A sugar solution of x65 solution: 43.3 t / Hr and ICUMSA: 40 was obtained. The heat transfer area of the latter three cans at this time was 38
It became a 00m 2.

【0053】これを標準煎糖法により煎糖を行い、第1
結晶缶容量50m3、伝熱面積325m2のカランドリア
型結晶缶2缶に1番糖蜜を平均流速13.5m3/Hr
で供給して、2段結晶7.81t/Hr、純度99.8
%を得て、3段結晶缶、容量50m3、伝熱面積325
2のカランドリア型結晶缶2缶に2番糖蜜を平均流速
6.8m3/Hrで供給して、最終糖蜜7.35t/H
r、Bx50、純度81.3%を得た。
This is subjected to sugar infusion by the standard sugar infusion method,
No. 1 molasses is supplied to two calandria type crystal cans having a crystal can capacity of 50 m 3 and a heat transfer area of 325 m 2 , and the average flow rate is 13.5 m 3 / Hr.
, Two-stage crystal 7.81 t / Hr, purity 99.8
%, A three-stage crystal can, a capacity of 50 m 3 , and a heat transfer area of 325
supplies 2nd molasses at an average flow rate of 6.8 m 3 / Hr to calandria type crystallizer 2 cans of m 2, final molasses 7.35t / H
r, Bx50 and purity 81.3% were obtained.

【0054】[0054]

【発明の効果】以上の通り、本発明によれば、炭酸ソー
ダの添加工程および限外ろ過処理の工程を組み込むこと
により、甘蔗生産地において効率よく直接耕地精製糖を
製造することができるようになる。しかも副生成品(主
に還元糖)生成の抑制および薬品の低減、蔗糖回収率の
向上などを図ることができる。
As described above, according to the present invention, by incorporating the step of adding sodium carbonate and the step of ultrafiltration, it is possible to efficiently produce purified cultivated land directly in a sugarcane-producing area. Become. In addition, it is possible to suppress the generation of by-products (mainly reducing sugars), reduce the amount of chemicals, and improve the recovery rate of sucrose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示すフローチャートであ
る。
FIG. 1 is a flowchart showing an embodiment of the present invention.

【図2】実験結果を示すグラフである。FIG. 2 is a graph showing experimental results.

【図3】実験結果を示すグラフである。FIG. 3 is a graph showing experimental results.

【図4】実験結果を示すグラフである。FIG. 4 is a graph showing experimental results.

【図5】実験結果を示すグラフである。FIG. 5 is a graph showing experimental results.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大内 健二 東京都中央区佃2丁目17番15号 月島機械 株式会社内 (72)発明者 杉浦 実 東京都中央区佃2丁目17番15号 月島機械 株式会社内 (72)発明者 和田 直子 東京都中央区佃2丁目17番15号 月島機械 株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenji Ouchi 2-17-15 Tsukushima, Chuo-ku, Tokyo Tsukishima Kikai Co., Ltd. (72) Inventor Minoru Sugiura 2-17-15 Tsukushima, Chuo-ku, Tokyo Tsukishima Machinery Co., Ltd. (72) Inventor Naoko Wada 2-17-15 Tsukuda, Chuo-ku, Tokyo Tsukishima Machinery Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】次記の工程を含むことを特徴とする炭酸ソ
ーダの添加および限外ろ過処理を含む甘蔗からの製糖
法。 (1)甘蔗の圧搾により得た圧搾汁、甘蔗の抽出により
得た抽出汁、あるいは圧搾汁と抽出汁とを混合した糖汁
を得る粗汁の粗汁生成工程。 (2)粗汁を加熱する加熱工程。 (3)粗汁中の不溶物質の除去をろ過により行う不溶物
質除去工程。 (4)粗汁に対して炭酸ソーダを添加して軟化処理及び
pH調整を行う炭酸ソーダ添加工程。 (5)粗汁中の溶解性高分子物質及び不溶性物質を限外
ろ過処理により除去し、清澄液を得る限外ろ過処理工
程。 (6)前記清澄液を濃縮する濃縮工程。 (7)濃縮工程からの濃縮液をクロマト分離し、蔗糖画
分と還元糖画分と非蔗糖画分に分離するクロマト分離工
程。
1. A method for producing sugar from sugar cane, comprising the steps of adding sodium carbonate and ultrafiltration, comprising the following steps: (1) A crude juice producing step of obtaining a squeezed juice obtained by squeezing a sugar cane, an extracted juice obtained by extracting a sugar cane, or a sugar juice obtained by mixing a squeezed juice and an extracted juice. (2) A heating step of heating the crude juice. (3) An insoluble substance removing step of removing insoluble substances in the crude juice by filtration. (4) A step of adding sodium carbonate to the crude juice to perform a softening treatment and pH adjustment. (5) An ultrafiltration step of removing a soluble polymer substance and an insoluble substance from the crude juice by ultrafiltration to obtain a clear liquid. (6) a concentration step of concentrating the clarified liquid. (7) A chromatographic separation step in which the concentrated liquid from the concentration step is chromatographed and separated into a sucrose fraction, a reducing sugar fraction and a non-sucrose fraction.
【請求項2】前記のクロマト分離工程からの蔗糖画分を
濃縮工程に送液し、その濃縮液の一部または全量を液糖
製品とする請求項1記載の製糖法。
2. The method according to claim 1, wherein the sucrose fraction from the chromatographic separation step is sent to a concentration step, and a part or all of the concentrated liquid is used as a liquid sugar product.
【請求項3】前記のクロマト分離工程からの蔗糖画分を
濃縮工程に送液し、晶析工程で高純度の精製糖を得る糖
液の送液・濃縮・晶析工程をさらに含む請求項1記載の
製糖法。
3. The method according to claim 1, further comprising a step of sending a sucrose fraction from the chromatographic separation step to a concentration step, and a step of sending, concentrating and crystallizing a sugar solution to obtain a high-purity purified sugar in the crystallization step. 2. The sugar production method according to 1.
【請求項4】前記の晶析工程からのモラセスをクロマト
分離工程に送液し、糖分回収を行う糖分回収工程をさら
に含む請求項3記載の製糖法。
4. The method for producing sugar according to claim 3, further comprising a sugar recovery step of sending molasses from the crystallization step to a chromatographic separation step and recovering a sugar content.
【請求項5】不溶物質除去工程からのスラッジ、炭酸ソ
ーダの添加工程からのスラッジおよび限外ろ過処理工程
からの濃縮液の少なくとも一つから糖液を回収する糖液
回収工程をさらに含む請求項1記載の製糖法。
5. A method for recovering a sugar liquid from at least one of a sludge from an insoluble substance removing step, a sludge from a step of adding sodium carbonate, and a concentrated liquid from an ultrafiltration treatment step. 2. The sugar production method according to 1.
【請求項6】前記の糖液回収工程から回収した糖液は不
溶物質除去工程に送液する糖液送液工程をさらに含む請
求項5記載の製糖法。
6. The sugar production method according to claim 5, further comprising a sugar solution sending step of sending the sugar solution recovered from the sugar solution collecting step to an insoluble substance removing step.
【請求項7】前記の炭酸ソーダ添加工程におけるpH調
整を6〜8の範囲で行う請求項1記載の製糖法。
7. The method according to claim 1, wherein the pH is adjusted in the range of 6 to 8 in the sodium carbonate adding step.
【請求項8】前記の炭酸ソーダ添加工程において、pH
調整のために苛性ソーダを使用することも可能である請
求項1記載の製糖法。
8. The method according to claim 1, wherein in the sodium carbonate adding step, the pH is adjusted.
The method according to claim 1, wherein caustic soda can be used for the adjustment.
JP34282599A 1999-12-02 1999-12-02 Process for producing purified sugar from sweet potato by ultrafiltration including softening by adding sodium carbonate Expired - Fee Related JP4513075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34282599A JP4513075B2 (en) 1999-12-02 1999-12-02 Process for producing purified sugar from sweet potato by ultrafiltration including softening by adding sodium carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34282599A JP4513075B2 (en) 1999-12-02 1999-12-02 Process for producing purified sugar from sweet potato by ultrafiltration including softening by adding sodium carbonate

Publications (3)

Publication Number Publication Date
JP2001157599A true JP2001157599A (en) 2001-06-12
JP2001157599A5 JP2001157599A5 (en) 2006-11-30
JP4513075B2 JP4513075B2 (en) 2010-07-28

Family

ID=18356790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34282599A Expired - Fee Related JP4513075B2 (en) 1999-12-02 1999-12-02 Process for producing purified sugar from sweet potato by ultrafiltration including softening by adding sodium carbonate

Country Status (1)

Country Link
JP (1) JP4513075B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354965A2 (en) * 2002-04-17 2003-10-22 Applexion Process and installation for the production of refined sugar from sugar juice
JP2006020521A (en) * 2004-07-06 2006-01-26 Tsukishima Kikai Co Ltd Method for producing molasses-containing sugar and apparatus for producing the same
WO2013183617A1 (en) * 2012-06-05 2013-12-12 東レ株式会社 Process for producing sugar solution
CN106720884A (en) * 2017-02-09 2017-05-31 合肥原素坊食品有限公司 A kind of black tea brown sugar and preparation method thereof
CN107760804A (en) * 2017-11-27 2018-03-06 广西大学 A kind of processing method of embrane method processing sugar-cane juice trapped fluid
JP2019071862A (en) * 2017-10-19 2019-05-16 オルガノ株式会社 Production device and production method of refined sugar

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228000A (en) * 1988-07-15 1990-01-30 Itochu Seito Kk Method for cleaning sugar liquid
JPH03209354A (en) * 1988-06-09 1991-09-12 Cultor Ltd Recovery of betaine from molasses
JPH0767399B2 (en) * 1987-04-08 1995-07-26 三菱化成エンジニアリング株式会社 Method for recovering sucrose in cane molasses
JPH09511651A (en) * 1994-04-07 1997-11-25 インターナショナル フード プロセッシング,インコーポレイテッド Process for producing sugar directly from sugar cane
JPH10234400A (en) * 1997-02-28 1998-09-08 Hokkaido Togyo Kk Production of beet sugar
JPH10513039A (en) * 1994-09-30 1998-12-15 カルター リミテッド Method for fractionation of solutions containing sucrose
JPH11183459A (en) * 1997-12-25 1999-07-09 Japan Organo Co Ltd Method and apparatus for chromatographic separation
JP2002502259A (en) * 1997-06-02 2002-01-22 センター フォー ジ アドヴァンスメント オブ ニュー テクノロジーズ“カンテック” Method for producing sugar juice from raw materials containing sugar

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767399B2 (en) * 1987-04-08 1995-07-26 三菱化成エンジニアリング株式会社 Method for recovering sucrose in cane molasses
JPH03209354A (en) * 1988-06-09 1991-09-12 Cultor Ltd Recovery of betaine from molasses
JPH0228000A (en) * 1988-07-15 1990-01-30 Itochu Seito Kk Method for cleaning sugar liquid
JPH09511651A (en) * 1994-04-07 1997-11-25 インターナショナル フード プロセッシング,インコーポレイテッド Process for producing sugar directly from sugar cane
JPH10513039A (en) * 1994-09-30 1998-12-15 カルター リミテッド Method for fractionation of solutions containing sucrose
JPH10234400A (en) * 1997-02-28 1998-09-08 Hokkaido Togyo Kk Production of beet sugar
JP2002502259A (en) * 1997-06-02 2002-01-22 センター フォー ジ アドヴァンスメント オブ ニュー テクノロジーズ“カンテック” Method for producing sugar juice from raw materials containing sugar
JPH11183459A (en) * 1997-12-25 1999-07-09 Japan Organo Co Ltd Method and apparatus for chromatographic separation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354965A2 (en) * 2002-04-17 2003-10-22 Applexion Process and installation for the production of refined sugar from sugar juice
FR2838751A1 (en) * 2002-04-17 2003-10-24 Applexion Ste Nouvelle De Rech PROCESS AND PLANT FOR MANUFACTURING REFINED SUGAR FROM SUGAR JUICE
EP1354965A3 (en) * 2002-04-17 2004-02-11 Applexion Process and installation for the production of refined sugar from sugar juice
JP2006020521A (en) * 2004-07-06 2006-01-26 Tsukishima Kikai Co Ltd Method for producing molasses-containing sugar and apparatus for producing the same
JP4530342B2 (en) * 2004-07-06 2010-08-25 月島機械株式会社 Method and apparatus for producing honey-containing sugar
WO2013183617A1 (en) * 2012-06-05 2013-12-12 東レ株式会社 Process for producing sugar solution
JPWO2013183617A1 (en) * 2012-06-05 2016-02-01 東レ株式会社 Method for producing sugar solution
US9765412B2 (en) 2012-06-05 2017-09-19 Toray Industries, Inc. Process of producing sugar solution
CN106720884A (en) * 2017-02-09 2017-05-31 合肥原素坊食品有限公司 A kind of black tea brown sugar and preparation method thereof
JP2019071862A (en) * 2017-10-19 2019-05-16 オルガノ株式会社 Production device and production method of refined sugar
CN107760804A (en) * 2017-11-27 2018-03-06 广西大学 A kind of processing method of embrane method processing sugar-cane juice trapped fluid

Also Published As

Publication number Publication date
JP4513075B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
EP1963539B1 (en) Process for the recovery of sucrose and/or non-sucrose components
US8247203B2 (en) Recovery of inorganic salt during processing of lignocellulosic feedstocks
JP3436540B2 (en) Sugar beet juice purification method
CN101548023B (en) Treatment of sugar juice
US7338562B2 (en) Sugar cane juice clarification process
US7226511B2 (en) Direct production of white sugar from sugarcane juice or sugar beet juice
US3781174A (en) Continuous process for producing refined sugar
US20040255934A1 (en) Process for the production of invert liquid sugar
JP2001157599A (en) Process for producing refined sugar from sugar cane by ultrafiltration treatment including softening treatment by addition of sodium carbonate
JP2001157599A5 (en)
CN112593016A (en) Process for preparing high-quality white granulated sugar and fulvic acid dry powder from beet
JPH02275835A (en) Method for recovering citric acid from solution containing citric acid
US5454875A (en) Softening and purification of molasses or syrup
JP4315358B2 (en) Raw sugar production method from sweet potato
JP2001157600A5 (en)
JP2001157600A (en) Method for direct refining of sugar from sugar cane by ultrafiltration treatment and chromatographic separation treatment
Fechter et al. Direct production of white sugar and whitestrap molasses by applying membrane and ion exchange technology in a cane sugar mill
JP2001258600A5 (en)
JPS61139400A (en) Purification of molasses
Walthew et al. Towards a new process to produce white sugar directly from cane juice
JPH0575399B2 (en)

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees