JPH0655030B2 - Instantaneous value control method for load current - Google Patents

Instantaneous value control method for load current

Info

Publication number
JPH0655030B2
JPH0655030B2 JP57213848A JP21384882A JPH0655030B2 JP H0655030 B2 JPH0655030 B2 JP H0655030B2 JP 57213848 A JP57213848 A JP 57213848A JP 21384882 A JP21384882 A JP 21384882A JP H0655030 B2 JPH0655030 B2 JP H0655030B2
Authority
JP
Japan
Prior art keywords
current
instantaneous value
load current
tact
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57213848A
Other languages
Japanese (ja)
Other versions
JPS59106874A (en
Inventor
年弘 野村
陽 美斉津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57213848A priority Critical patent/JPH0655030B2/en
Priority to DE19833343883 priority patent/DE3343883A1/en
Publication of JPS59106874A publication Critical patent/JPS59106874A/en
Publication of JPH0655030B2 publication Critical patent/JPH0655030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1555Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only for the generation of a regulated current to a load whose impedance is substantially inductive

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Stepping Motors (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は、電源と負荷との間に介在するスイッチング手
段と、負荷電流の瞬時値を検出する手段と、検出した負
荷電流瞬時値と電流指令値とを比較し両者間の大小関係
によりハイレベルまたはロウレベルの信号を出力するコ
ンパレータと、前記ハイレベルまたはロウレベルの信号
により前記スイッチング手段をオン・オフ駆動する手段
とを備え、スイッチング手段のオン・オフによって負荷
電流が前記電流指令値に対してコンパレータの回路定数
により決められた上限レベルと下限レベルとの間で上昇
および下降を繰り返す負荷電流の瞬時値制御方法に関す
る。
The present invention relates to a switching means interposed between a power supply and a load, a means for detecting an instantaneous value of a load current, a detected load current instantaneous value and a current command value, and both are compared. A comparator for outputting a high-level or low-level signal depending on the magnitude relationship between the switching means and a means for driving the switching means on / off by the high-level or low-level signal are provided. The present invention relates to a method for instantaneous value control of a load current, which repeatedly rises and falls between an upper limit level and a lower limit level determined by a circuit constant of a comparator with respect to a current command value.

第1図は従来の負荷電流瞬時値制御方法の一例を示す回
路図である。同図において、1は直流電源、2はスイッ
チ素子、3はフリーホイーリングダイオード、4はリア
クトル、5は直流電動機の如き逆起電力を発生する負
荷、6は負荷電流検出器、7はコンパレータ、8は電流
指令値発生器、Riは入力抵抗、Rfは帰還抵抗、であ
る。
FIG. 1 is a circuit diagram showing an example of a conventional load current instantaneous value control method. In the figure, 1 is a DC power source, 2 is a switching element, 3 is a freewheeling diode, 4 is a reactor, 5 is a load that generates a back electromotive force such as a DC motor, 6 is a load current detector, 7 is a comparator, Reference numeral 8 is a current command value generator, R i is an input resistance, and R f is a feedback resistance.

第1A図は第1図において、発生器8から出力される電
流指令値i*を一定値に維持した場合における負荷電流
iの変化状況を示したタイミングチヤートである。
FIG. 1A is a timing chart showing the changing state of the load current i when the current command value i * output from the generator 8 is maintained at a constant value in FIG.

第1図および第1A図を参照して動作を説明する。第1
図において、直流電源1の出力電圧をVDCとする。今、
スイツチ素子2がオンしたとすると、直流電源1からス
イツチ素子2、リアクトル4を介して負荷5に電流iが
流れ、負荷5は逆起電力Eを発生する。
The operation will be described with reference to FIGS. 1 and 1A. First
In the figure, the output voltage of the DC power supply 1 is V DC . now,
If the switch element 2 is turned on, a current i flows from the DC power supply 1 to the load 5 via the switch element 2 and the reactor 4, and the load 5 generates a counter electromotive force E.

電流指令値発生器8からは、負荷電流iの指令値i*
出力するものとする。検出器6によって検出された負荷
電流の瞬時値(実際値)iは入力抵抗Riを介してコン
パレータ7の非反転入力端子(+)に印加され、他方、指
令値i*は反転入力端子(-)に印加される。コンパレータ
7では、両者を比較し、第1A図に見られる如く、瞬時
値iが指令値i*をΔiだけ上まわつてレベルUに達し
た時点で、その出力をそれまでのロウレベルからハイレ
ベルに反転させる。その結果、スイツチ素子2がオフと
なる。すると、負荷電流iは、負荷5→ダイオード3→
リアクトル4→負荷5の閉回路を環流し、減衰してゆ
く。そして負荷電流の瞬時値iが、第1A図に見られる
如く、指令値i*をΔiだけ下まわつてレベルLに達し
た時点で、コンパレータ7はその出力を、それまでのハ
イレベルからロウレベルに転じる。それによりスイツチ
素子2がオンとなり、負荷電源1から再び電流が負荷5
へ向けて流れ、負荷電流iは増加してゆく。
The current command value generator 8 outputs the command value i * of the load current i. The instantaneous value (actual value) i of the load current detected by the detector 6 is applied to the non-inverting input terminal (+) of the comparator 7 via the input resistor R i , while the command value i * is applied to the inverting input terminal ( -) Is applied. The comparator 7 compares the two, and as shown in FIG. 1A, when the instantaneous value i reaches the level U by increasing the command value i * by Δi, its output changes from the low level to the high level. Invert. As a result, the switch element 2 is turned off. Then, the load current i becomes load 5 → diode 3 →
The closed circuit of reactor 4 → load 5 is circulated and attenuated. Then, when the instantaneous value i of the load current reaches the level L by lowering the command value i * by Δi as shown in FIG. 1A, the comparator 7 changes its output from the high level until then to the low level. Turn around. As a result, the switch element 2 is turned on, and the current is again supplied from the load power source 1 to the load 5
And the load current i increases.

このように、スイツチ素子2のオン・オフにより、負荷
電流iは指令値i*の±Δiの範囲内で上昇,下降を繰
り返し安定に制御される。なお、上限レベルUと下限レ
ベルLの範囲(±Δi)は帰還抵抗Rfと入力抵抗Ri
各抵抗値に関連して定まるものであり、このことはすで
に良く知られた所である。
In this way, by turning the switch element 2 on and off, the load current i is repeatedly controlled to rise and fall within a range of the command value i * of ± Δi and is stably controlled. The range (± Δi) between the upper limit level U and the lower limit level L is determined in relation to each resistance value of the feedback resistance R f and the input resistance R i , which is well known.

さて、かかる従来の瞬時値制御方式においては次のよう
な問題点があつた。すなわち、負荷電流の瞬時値iが上
限レベルUと下限レベルLの間で上昇,下降を繰り返す
周期(換言すると、スイツチ素子2がオン・オフを繰り
返すスイツチ周波数)が、直流電源1の直流電圧VDC
負荷5の逆起電力Eとの間の関係に従つて大幅に変化す
ることである。以下、このことを判り易く説明する。
The conventional instantaneous value control system has the following problems. That is, the cycle in which the instantaneous value i of the load current repeatedly rises and falls between the upper limit level U and the lower limit level L (in other words, the switch frequency at which the switch element 2 repeatedly turns on and off) is the DC voltage V of the DC power supply 1. It varies significantly according to the relationship between DC and the back EMF of the load 5. This will be described below in an easy-to-understand manner.

今、リアクトル4のインダクタンスをLとすると、スイ
ツチ素子2のオン時における負荷電流iの微分値(時間
的変化の割合)di/diは次式で与えられる。
Now, assuming that the inductance of the reactor 4 is L, the differential value (rate of change over time) di / di of the load current i when the switch element 2 is on is given by the following equation.

つまり上記(1)式から明らかなように、電源電圧VDC
一定であつても、逆起電力Eの大きさが変化すると、電
流瞬時値iが、上限レベルUを目指して上昇するときの
勾配(di/dt)が変化する。
That is, as is apparent from the above equation (1), even when the power supply voltage V DC is constant, when the magnitude of the back electromotive force E changes, the instantaneous current value i rises toward the upper limit level U. The slope (di / dt) changes.

同様に、スイツチ素子2がオフ時に、電流瞬時値iが下
限レベルLを目指して下降するときの勾配(これは、上
記(1)式において、VDCを零と置くことにより与えられ
る)も、逆起電力Eの大きさが変化すると、やはり変化
する。このことは、とりもなおさず、逆起電力Eの大き
さによりスイツチ素子2のスイツチ周波数が変化するこ
とを意味する。
Similarly, when the switch element 2 is off, the slope at which the current instantaneous value i drops toward the lower limit level L (this is given by setting V DC to zero in the above equation (1)), When the magnitude of the counter electromotive force E changes, it also changes. This means that the switching frequency of the switching element 2 changes depending on the magnitude of the back electromotive force E.

スイツチ素子2のオン・オフは他の機器に対するノイズ
を発生させる。スイツチ素子のスイツチ周波数が一定で
あれば、発生するノイズの周波数も一定となり、当該周
波数のフイルタを用意するなどして、その対策も容易で
あるが、スイツチ周波数が変化し、ノイズの周波数もそ
れに従つて変化するような場合には、ノイズ対策が困難
になる。
Turning on / off the switch element 2 causes noise to other devices. If the switching frequency of the switching element is constant, the frequency of the generated noise will also be constant, and it is easy to take measures such as by preparing a filter of that frequency, but the switching frequency changes and the noise frequency also changes to that. Therefore, when it changes, it becomes difficult to take measures against noise.

かかる問題点を改善するために、負荷電流の瞬時値制御
方式において、負荷電流瞬時値と電流指令値の何れか一
方に、或る一定の繰り返し周波数をもつパルス列から成
るタクトパルスを重畳してコンパレータに入力するよう
にし、それによりスイツチ素子のスイツチ周波数を上記
タクトパルスの繰り返し周波数に引き込んで同期させる
ようにした制御方法を本発明者等は先に提案(特願昭5
7−184677号)した。
In order to improve such a problem, in a load current instantaneous value control system, a takt pulse composed of a pulse train having a certain repetition frequency is superimposed on either one of the load current instantaneous value and the current command value, and the comparator is used. The present inventors have previously proposed a control method in which the switch frequency of the switch element is pulled into the repetition frequency of the tact pulse to synchronize the switch frequency of the switch element.
7-184677).

次にこの提案概要を説明する。Next, the outline of this proposal will be described.

第2図乃至第4図はそれぞれ直流電源電圧VDCと負荷に
よる逆起電力Eとの大小関係がスイツチ周波数に及ぼす
影響を示した説明図である。
FIGS. 2 to 4 are explanatory views showing the influence of the magnitude relationship between the DC power supply voltage V DC and the back electromotive force E due to the load on the switch frequency.

第2図(イ)において、直流電源電圧VDCが大きく逆起電
力Eがその1/2より小さいときには、電流iの上昇勾配
はRに見られる如く大きく、下降勾配はFに見られる如
く小さい。従つて電流iが、指令値i*を中心として上
限Uと下限Lとの間で上昇,下降を繰返す様子は第2図
(ロ)に示す如くなり、スイツチ周波数は小さくなる傾向
にあることが理解されるであろう。
In FIG. 2 (a), when the DC power supply voltage V DC is large and the counter electromotive force E is smaller than 1/2 thereof, the rising slope of the current i is large as shown by R and the falling slope is small as shown by F. . Therefore, the state in which the current i repeatedly rises and falls between the upper limit U and the lower limit L around the command value i * is shown in FIG.
It will be understood that the switch frequency tends to decrease as shown in (b).

第3図は、第2図と同様な説明図であるが、この場合
は、第3図(イ)に見られる如く、逆起電力Eが直流電源
電圧VDCのほゞ1/2となつており、このため電流iの上
昇勾配Rと下降勾配Fが同じになつている。このとき
は、第3図(ロ)に見られるように、電流iが上限Uと下
限Lの間で上昇,下降を繰り返す周波数(スイツチ周波
数)は最大となる。
FIG. 3 is an explanatory view similar to FIG. 2, but in this case, as shown in FIG. 3 (a), the counter electromotive force E is approximately 1/2 of the DC power supply voltage V DC. Therefore, the rising slope R and the falling slope F of the current i are the same. At this time, as seen in FIG. 3B, the frequency (switch frequency) at which the current i repeatedly rises and falls between the upper limit U and the lower limit L becomes maximum.

第4図は、(イ)に見られる如く、逆起電力Eが直流電源
電圧VDCの1/2より大きい場合で、電流iの上昇勾配R
は小さく、下降勾配Fが大きくなる。従つて、電流iが
上限Uと下限Lの間で上昇,下降を繰り返す様子は(ロ)
に見られる如くになり、この場合も、スイツチ周波数は
第2図の場合と同じく、小さくなる。
FIG. 4 shows that when the counter electromotive force E is larger than 1/2 of the DC power supply voltage V DC as shown in (a), the rising slope R of the current i is increased.
Is small and the descending slope F is large. Therefore, the state in which the current i repeatedly rises and falls between the upper limit U and the lower limit L is (b)
In this case, the switch frequency also becomes small as in the case of FIG.

さて、以上により、直流電源電圧VDCが一定であつて
も、逆起電力Eの大きさが変動すれば、それに応じてス
イツチ周波数が変化することが理解されたであろう。次
に第5図,第6図を参照して既提案にかかる瞬時値制御
方法の動作原理を説明する。
It will be understood from the above that even if the DC power supply voltage V DC is constant, if the magnitude of the back electromotive force E changes, the switch frequency changes accordingly. Next, the operating principle of the proposed instantaneous value control method will be described with reference to FIGS.

第5図(イ)は、第2図(ロ)に示した波形をそのまま拡大し
て示した波形図、換言すれば逆起電力Eが直流電源電圧
DCの1/2以下であるときの電流iの変化を示す波形図
である。第5図(ロ)は、既提案の原理に従つて、第5図
(イ)に示した電流iの波形に重畳すべきパルス列(タク
トパルス)を示した波形図である。タクトパルスとして
は、一定周期の正極性のパルスP1〜P3と負極性のパル
スN1〜N3から成つていることが判るであろう。
FIG. 5 (a) is a waveform diagram in which the waveform shown in FIG. 2 (b) is enlarged as it is, in other words, when the counter electromotive force E is 1/2 or less of the DC power supply voltage V DC . It is a wave form diagram which shows the change of the electric current i. Figure 5 (b) is based on the already proposed principle.
It is a waveform diagram showing a pulse train (tact pulse) to be superimposed on the waveform of the current i shown in (a). It will be understood that the tact pulse is composed of positive-polarity pulses P 1 to P 3 and negative-polarity pulses N 1 to N 3 having a constant cycle.

第5図(ハ)は、第5図(イ)に示した電流iの波形に、第5
図(ロ)のタクトパルスを重畳したときに、電流iが反転
する様子を示した波形図である。
FIG. 5C shows the waveform of the current i shown in FIG.
FIG. 7 is a waveform diagram showing how the current i is inverted when the tact pulse shown in FIG.

第5図(ハ)において、電流iは、下降過程をたどつてい
るときに、時刻t1において、負極性パルスN1を重畳さ
れることにより、電流レベルが下限Lを突破するので、
直ちに反転する。反転した後、電流iのレベルは上昇を
続け、時刻t2において上限Uに一致するので再び反転
し下降過程に入る。そして時刻t3では、正極性パルス
1を重畳されるが、このときは下降過程にあるので、
正極性パルスP1の重畳により電流レベルが上限Uを突
破しても、反転が生じるようなことはない。
In FIG. 5 (c), the current i passes through the lower limit L by superimposing the negative polarity pulse N 1 at time t 1 while following the descending process.
Invert immediately. After the reversal, the level of the current i continues to rise, and at the time t 2 , it coincides with the upper limit U, so that it reverts and starts the descending process. Then, at time t 3 , the positive pulse P 1 is superposed, but since it is in the descending process at this time,
Even if the current level exceeds the upper limit U due to the superposition of the positive polarity pulse P 1 , inversion does not occur.

次に、時刻t4において、負極性パルスN2を重畳される
と、電流iのレベルが下限Lを突破するので電流iは反
転する。以下同様にして、電流iの波形は、あたかも、
上限Uにへばりついたかのような形で反転を繰り返して
ゆく。この反転の繰り返し周期が負極性パルスN1〜N3
の繰り返し周期に同期したものであることは容易に理解
されるであろう。
Next, at time t 4 , when the negative polarity pulse N 2 is superimposed, the level of the current i exceeds the lower limit L, so the current i is inverted. Similarly, the waveform of the current i is as if
Repeat the reversal as if you were stuck to the upper limit U. The repetition cycle of this inversion is the negative polarity pulse N 1 to N 3
It will be easily understood that it is synchronized with the repetition cycle of.

第6図は第5図と同様な波形図であるが、第6図(イ)
は、第4図(ロ)に示した波形をそのまま拡大して示した
波形図、換言すれば逆起電力Eが直流電源電圧VDCの1/
2以上であるときの電流iの変化を示す波形図である。
第6図(イ)に示す波形に第6図(ロ)に示したタクトパルス
を重畳したときにおける電流iの反転状況を第6図(ハ)
を参照して説明する。
FIG. 6 is a waveform diagram similar to FIG. 5, but FIG. 6 (a)
Is a waveform diagram in which the waveform shown in FIG. 4B is enlarged as it is, in other words, the counter electromotive force E is 1 / DC of the DC power supply voltage V DC .
It is a wave form diagram which shows the change of the electric current i when it is 2 or more.
FIG. 6 (c) shows the reversal situation of the current i when the tact pulse shown in FIG. 6 (b) is superimposed on the waveform shown in FIG. 6 (a).
Will be described with reference to.

第6図(ハ)において、上昇過程にある電流iに、時刻t1
において、正極性パルスP1が重畳されると、そのこと
により電流レベルが上限Uを突破するので電流iは直ち
に反転し下降過程に入る。次に時刻t2において電流i
のレベルは下限Lに達するので、再び反転し上昇過程に
入る。時刻t3において負極性パルスN1が重畳され、電
流レベルは下限レベルを突破するが、電流は上昇過程に
あるので反転することはない。次に時刻t3において、
正極性パルスP2が重畳されると電流レベルは上限Uを
突破するので、上昇過程にあつた電流iは直ちに反転し
て下降過程に入る。以下、同様にして電流iの波形は、
あたかも下限Lにへばりついたかのような形で反転を繰
り返してゆく。この反転の繰り返し周期が正極性パルス
1〜P3の繰り返し周期に同期したものであることは容
易に理解されるであろう。
In FIG. 6 (c), the current i in the ascending process is changed to the time t 1
When the positive polarity pulse P 1 is superposed, the current level exceeds the upper limit U, and the current i immediately reverses and starts the descending process. Next, at time t 2 , the current i
Since the level of reaches the lower limit L, it reverses again and starts the rising process. At time t 3 , the negative polarity pulse N 1 is superposed and the current level exceeds the lower limit level, but the current is in the process of rising, so it is not reversed. Then at time t 3 ,
When the positive polarity pulse P 2 is superposed, the current level exceeds the upper limit U, so that the current i in the ascending process is immediately inverted and enters the descending process. Similarly, the waveform of the current i is
The reversal is repeated as if the lower limit L was stuck. It will be easily understood that the repetition cycle of this inversion is synchronized with the repetition cycle of the positive polarity pulses P 1 to P 3 .

以上、説明したように、逆起電力Eの大きさが電源電圧
DCの1/2以下であるときは、負極性のタクトパルスが
有効に作用し、1/2以上であるときは正極性のタクトパ
ルスが有効に作用する。またタクトパルスの周波数は、
タクトパルスを印加しないときの成り行きで形成される
スイツチ周波数(第5図(イ)または第6図(イ)を参照)の
予想される最大値より少し大き目に設定するのがよい。
As described above, when the magnitude of the back electromotive force E is 1/2 or less of the power supply voltage V DC , the negative tact pulse effectively acts, and when it is 1/2 or more, the positive polarity is positive. Tact pulse of effectively works. The frequency of the tact pulse is
It is preferable to set the switch frequency slightly higher than the expected maximum value of the switch frequency (see FIG. 5 (a) or FIG. 6 (a)) which is formed when the tact pulse is not applied.

第7図は上述の原理に基づく既提案の瞬時値制御方法を
示す回路図である。同図において、第1図に示した従来
の回路構成と異なる点は、コンパレータ7の非反転入力
端子(+)に、タクトパルス発生器9から入力抵抗Riを介
してタクトパルスを入力し、検出器6により検出された
電流瞬時値iに重畳させるようにした点である。他に相
違点はない。
FIG. 7 is a circuit diagram showing a proposed instantaneous value control method based on the above principle. In the figure, the difference from the conventional circuit configuration shown in FIG. 1 is that a tact pulse is input from the tact pulse generator 9 to the non-inverting input terminal (+) of the comparator 7 via the input resistor R i , This is a point that the current instantaneous value i detected by the detector 6 is superimposed. There is no other difference.

その回路動作は、もはや説明の必要がないであろう。な
お、タクトパルス発生器9からのタクトパルスは、コン
パレータ7の非反転入力端子(+)ではなく、反転入力端
子(-)の方につまり電流指令値i*の方に重畳させても同
じ結果が得られる。
The circuit operation will no longer need to be explained. The tact pulse from the tact pulse generator 9 has the same result even if it is superimposed not on the non-inverting input terminal (+) of the comparator 7 but on the inverting input terminal (-), that is, the current command value i *. Is obtained.

さて、上述した如き既提案にかかる瞬時値制御方法は、
負荷による逆起電力Eの大きさが、電源電圧VDCの1/2
以上、或いは1/2以下であるときは、スイツチ周波数が
タクトパルスの周波数に引き込まれ良く同期するが、 のとき、つまり第3図(イ)、(ロ)に見られるように、負荷
電流iの上昇勾配と下降勾配がほゞ同じときには、電流
iは上限Uと下限Lのどちらか特定の一方にへばりつく
という傾向にないので、結果としてどちらにもへばりつ
かないことがあり、スイツチ周波数がタクトパルスのそ
れに同期しないことがある。そして上限Uと下限Lの間
の幅を広く取りすぎると、電流指令値i*が変化しても
電流瞬時値iがそれに追随しないという不感帯が発生し
制御応答が悪くなるという問題を生じる。
By the way, the instantaneous value control method according to the already proposed as described above is
The magnitude of the back electromotive force E due to the load is 1/2 of the power supply voltage V DC .
When it is more than or equal to 1/2 or less, the switch frequency is pulled in to the frequency of the tact pulse and is well synchronized, At the same time, that is, when the rising slope and the falling slope of the load current i are almost the same as shown in FIGS. 3 (a) and 3 (b), the current i is set to either the upper limit U or the lower limit L. Since it does not tend to cling to either, it may not cling to either and the switch frequency may not be synchronized with that of the tact pulse. If the width between the upper limit U and the lower limit L is set too wide, a dead zone occurs in which the current instantaneous value i does not follow the change in the current command value i *, which causes a problem of poor control response.

反面、上限Uと下限Lの間の幅を小さくしすぎると、タ
クト周波数を超える不規則な周波数でスイツチ素子がオ
ン・オフすることになる。
On the other hand, if the width between the upper limit U and the lower limit L is made too small, the switch element will be turned on and off at an irregular frequency exceeding the tact frequency.

何れにしても、このように、 のときには、既提案にかかる瞬時値制御方法では、スイ
ツチ周波数をタクトパルスのそれに引き込みにくいとい
う欠点があつた。
In any case, like this, In this case, the proposed instantaneous value control method has a drawback in that the switch frequency is difficult to be drawn into that of the tact pulse.

本発明は、上述の如き従来技術の欠点を解決するために
なされたものであり、従つて本発明の目的は、 のときにも、スイツチ周波数をタクトパルスのそれに容
易に引き込むことのできる負荷電流の瞬時値制御方法を
提供することにある。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and accordingly, the object of the present invention is to At the same time, it is another object of the present invention to provide a method for controlling the instantaneous value of the load current, which can easily pull the switch frequency into that of the tact pulse.

本発明の構成の要点は、タクトパルスとして、一定周期
で繰り返す鋸歯状波を少なくも含むタクト信号を用いる
ようにした点にある。
The essential point of the configuration of the present invention is that a tact signal including at least a sawtooth wave that repeats at a constant cycle is used as the tact pulse.

次に図を参照して本発明の動作原理を説明する。第8図
は本発明の動作原理説明図である。同図(イ)は、第3図
(ロ)と同じ波形図、換言すると、逆起電力 (直流電源電圧VDC)であるときの電流iの変化を示す
波形図、第8図(ロ)は本発明の原理に従つて用いられる
タクト信号tactの波形図、第8図(ハ)は、タクト信号tac
tを電流指令値i*に重畳した場合における上限U=(i
*+tact+Δi)と下限L=(i*+tact−Δi)の波形
を示す波形図である。
Next, the operating principle of the present invention will be described with reference to the drawings. FIG. 8 is an explanatory diagram of the operating principle of the present invention. The same figure (a) is shown in FIG.
The same waveform diagram as (b), in other words, back electromotive force FIG. 8 (b) is a waveform diagram showing the change of the current i when it is (DC power supply voltage V DC ), FIG. 8 (b) is a waveform diagram of the tact signal tact used according to the principle of the present invention, and FIG. 8 (c) is , Tact signal tac
Upper limit U = (i when t is superimposed on the current command value i *
* + Tact + Δi) and a waveform diagram showing the lower limit L = waveforms (i * + tact-Δi) .

第8図(ハ)において、電流iはk1点で上昇から下降に反
転し、k2点で下降から上昇に反転し、以下、k3,k4……
の各点で同様な反転を繰り返すことが判るであろう。つ
まり電流iは、下限Lにへばりつく形で反転を繰り返し
ており、従つてスイツチ周波数はタクト信号tactの周波
数に同期することになる。
In FIG. 8 (c), the current i reverses from rising to falling at the k 1 point, reverses from falling to rising at the k 2 point, and then k 3 , k 4 ...
It will be seen that similar inversions are repeated at each point of. That is, the current i repeats the inversion in the form of clinging to the lower limit L, so that the switch frequency is synchronized with the frequency of the tact signal tact.

第9図は本発明の一実施例を示す回路図である。同図に
示す回路構成が第7図に示した既提案にかかる方式と相
違する点は、タクトパルス発生器9Aから出力されるタ
クト信号の波形が相違する点と、タクト信号を電流指令
値i*に加算している点であり、他に変わる所はない。
FIG. 9 is a circuit diagram showing an embodiment of the present invention. The circuit configuration shown in the figure is different from the previously proposed method shown in FIG. 7 in that the waveform of the tact signal output from the tact pulse generator 9A is different, and the tact signal is different from the current command value i. It is added to * , there is no other change.

本実施例の回路動作はもはや説明するまでもないであろ
う。
The circuit operation of this embodiment will no longer be described.

第10図は本発明の他の実施例を示す回路図である。同
図は本発明を直流機(逆起電力負荷5)の4象限運転の
如く、可逆回生可能な負荷回路に適用した実施例を示し
ている。
FIG. 10 is a circuit diagram showing another embodiment of the present invention. The figure shows an embodiment in which the present invention is applied to a load circuit capable of reversible regeneration such as four-quadrant operation of a DC machine (back electromotive force load 5).

同図において2A〜2Dはそれぞれスイツチ素子、7
A,7Bはそれぞれコンパレータ、13A〜13Dはそ
れぞれスイツチ素子駆動回路、14は不感帯δの設定
器、15は符号反転器、16〜19はそれぞれ加算器、
である。
In the figure, 2A to 2D are switch elements and 7 respectively.
A and 7B are comparators, 13A to 13D are switch element driving circuits, 14 is a dead band delta setter, 15 is a sign inverter, and 16 to 19 are adders, respectively.
Is.

4つのスイツチ素子2A〜2Dの動作を簡単に説明す
る。例えば負荷5を正転させたいときは、右下のスイツ
チ素子2Dをオンして負荷5の負極を直流電源1の負極
に接続しておき、左上下のスイツチ素子2A,2Bすな
わち左アームをスイッチングして第8図(ハ)に示す様な
スイッチング制御を行うものである。従つて負荷5を逆
転させたいときは左アームの下のスイツチ2Bがオンし
ていて、右アーム2C,2Dが上下にスイッチングして
電流を制御することになる。このように正転と逆転で制
御を受持つアームが決まつている方が、左右アームが同
時にスイッチング制御するよりも判りやすいし、制御を
円滑に出来る。
The operation of the four switch elements 2A to 2D will be briefly described. For example, when it is desired to rotate the load 5 in the forward direction, the lower right switch element 2D is turned on to connect the negative electrode of the load 5 to the negative electrode of the DC power supply 1, and the upper left lower switch elements 2A and 2B, that is, the left arm are switched. Then, the switching control as shown in FIG. 8C is performed. Therefore, when it is desired to reverse the load 5, the switch 2B under the left arm is turned on, and the right arms 2C, 2D switch up and down to control the current. In this way, it is easier to understand that the arm that controls the forward rotation and the reverse rotation is determined, and the control can be smoother than the case where the left and right arms control the switching simultaneously.

ところが正転でも逆転でもない速度が零付近ではどちら
のアームがスイッチングすべきか問題である。これを調
整するのが不感帯δの設定器14の役割りである。不感
帯δを正に大きくすると、加算器19,17,18を通
してコンパレータ7A,7Bの入力には不感帯δとして
のバイアスが与えられて電流指令値i*と電流実際値i
がある程度一致(近ければ)していればふたつのコンパ
レータ7A,7Bは共に作動しない。すなわちスイツチ
2A〜2Dは左アームも右アームも休止した状態になり
やすくなる。逆に不感帯δを負にすると、ふたつのコン
パレータ7A,7Bは共に作動状態となり左右のスイツ
チ2A〜2Dは常にスイツチング状態となることにより
制御上の不感帯はなくなり制御性能は向上するが、余分
なスイツチングにより損失,騒音等が増加してしまうこ
とになる。このような不感帯δに関することは当り前と
も考えられるが、ヒステリシス幅Δiの設定しかなかつ
た瞬時値制御に対し、タクト信号の波形に関する事項と
ヒステリシス幅Δiが相互に関係してくるようになる
と、それらの誤差を不感帯δで調整,吸収することが可
能になるので、この意味で比較的重要な事項であると云
える。
However, it is a problem which arm should switch when the speed is neither normal rotation nor reverse rotation near zero. It is the role of the dead band δ setter 14 to adjust this. When the dead zone δ is increased to a positive value, a bias as the dead zone δ is given to the inputs of the comparators 7A and 7B through the adders 19, 17 and 18, so that the current command value i * and the actual current value i.
If there is a certain degree of coincidence (if they are close to each other), the two comparators 7A and 7B do not operate together. That is, the switches 2A to 2D are likely to be in a state where both the left arm and the right arm are at rest. Conversely, when the dead zone δ is made negative, the two comparators 7A and 7B are both in the operating state, and the left and right switches 2A to 2D are always in the switching state, so that the dead zone in the control is eliminated and the control performance is improved, but the extra switching is performed. As a result, loss and noise will increase. It is considered that such a dead zone δ is taken for granted, but when the matter regarding the waveform of the tact signal and the hysteresis width Δi come to be related to each other with respect to the instantaneous value control in which the hysteresis width Δi is only set, the It is possible to say that this is a relatively important item in this sense, since it becomes possible to adjust and absorb the error of (5) in the dead zone δ.

第10A図は第10図における要部の変形実施例を示す
回路図である。すなわち半周期ずれたタクト信号の発生
器9Bを9Aのほかに設け、タクト信号を電気角で18
0゜ずらせて二つにして左アーム用と右アーム用とに割
当てた例である。
FIG. 10A is a circuit diagram showing a modified embodiment of the main part in FIG. That is, a tact signal generator 9B shifted by a half cycle is provided in addition to 9A, and the tact signal is changed in electrical angle 18
This is an example in which the left arm and the right arm are allotted to each other by shifting them by 0 °.

この様にすると上記意味あいで不感帯をなくすか少し負
にして二つのコンパレータ7A,7Bを共に動作状態に
することにより、それぞれのアームのスイツチング周期
Tは変わらずに制御上の修正動作としてはT/2毎に行わ
れるため系の応答速度は約2倍に上るという利点が生じ
る。すなわち第10図の実施例に、第10A図に見られ
る如く第2のタクト信号発生器9Bを追加して設けるこ
とにより、より円滑で速い制御が可能となる。
In this way, by eliminating the dead zone or making it a little negative in the above sense to put the two comparators 7A and 7B in the operating state, the switching cycle T of each arm does not change and T is a correction operation in control. Since it is performed every / 2, there is an advantage that the response speed of the system is doubled. That is, by adding the second tact signal generator 9B to the embodiment shown in FIG. 10 as shown in FIG. 10A, smoother and faster control becomes possible.

第11図は本発明の更に他の実施例を示す回路図であ
る。すなわち、本発明を三相交流電動機のような三相負
荷の三相電流の瞬時値制御に適用した実施例である。同
図において、5A〜5Cは三相逆起電力負荷、4A〜4
Cは三相リアクトル、2A〜2Fは三相用スイツチ素子
群、13A〜13Fは三相用駆動回路群、7A〜7Cは
三相用コンパレータ群、19〜22はそれぞれ加算器、
である。
FIG. 11 is a circuit diagram showing still another embodiment of the present invention. That is, it is an embodiment in which the present invention is applied to the instantaneous value control of the three-phase current of a three-phase load such as a three-phase AC motor. In the figure, 5A to 5C are three-phase back electromotive force loads, and 4A to 4C.
C is a three-phase reactor, 2A to 2F are three-phase switch element groups, 13A to 13F are three-phase drive circuit groups, 7A to 7C are three-phase comparator groups, and 19 to 22 are adders, respectively.
Is.

従来の三相電流の瞬時値制御では他のアームのスイツチ
ングの影響を強く受けることと、もともとスイツチング
周波数がランダムであるという理由で円滑な制御が望め
なかつた。しかしタクト信号の効果によりスイツチング
周波数は一定、不感帯δの効果により3アームのうちひ
とつ又はふたつは積極的に休止するという有利な条件に
より、比較的安定で円滑な制御が出来るようになつた。
Conventional three-phase current instantaneous value control cannot be expected to be smooth because it is strongly influenced by the switching of other arms and the switching frequency is originally random. However, due to the advantageous condition that the switching frequency is constant due to the effect of the tact signal and one or two of the three arms is actively stopped due to the effect of the dead zone δ, relatively stable and smooth control can be performed.

第11A図は第11図における要部の変形実施例を示す
回路図である。すなわち、タクト信号発生器として、1/
3周期ずつずれたタクト信号を発生する発生器9A,9
B,9Cを設け、それぞれ各相電流に割当てている。こ
れにより主回路スイツチング素子の性能を変えないで、
システムの制御性能を向上することができる。すなわち
実質的に制御周期はT/3に短縮され応答は速くなり制御
は円滑になる。
FIG. 11A is a circuit diagram showing a modified embodiment of the main part in FIG. That is, as a tact signal generator, 1 /
Generators 9A and 9 for generating tact signals that are shifted by 3 cycles
B and 9C are provided and assigned to each phase current. This does not change the performance of the main circuit switching element,
The control performance of the system can be improved. That is, the control cycle is substantially shortened to T / 3, the response becomes faster, and the control becomes smoother.

以上説明したように、本発明によれば、負荷による逆起
電力Eと電源電圧VDCとの関係が、 の関係にある場合でも、スイツチ周波数をタクトパルス
のそれに容易に引き込んで同期化させることのできる負
荷電流瞬時値制御方法を提供できるという利点がある。
As described above, according to the present invention, the relationship between the back electromotive force E due to the load and the power supply voltage V DC is Even in the case of the relationship, there is an advantage that it is possible to provide a load current instantaneous value control method capable of easily pulling the switch frequency to that of the tact pulse and synchronizing it.

本発明は電圧積分形瞬時値制御方法などにも適用可能で
あることは云うまでもない。
It goes without saying that the present invention is also applicable to a voltage integration type instantaneous value control method and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の負荷電流瞬時値制御方法を示す回路図、
第1A図は第1図の回路における負荷電流の変化状況の
一例を示すタイミングチヤート、第2図乃至第4図はそ
れぞれ直流電源電圧VDCと負荷による逆起電力Eとの大
小関係がスイツチ周波数に及ぼす影響を示した説明図、
第5図および第6図はそれぞれ既提案にかかる瞬時値制
御方法の動作原理説明図、第7図は既提案の瞬時値制御
方法を示す回路図、第8図は本発明の動作原理説明図、
第9図は本発明の一実施例を示す回路図、第10図は本
発明の他の実施例を示す回路図、第10A図は第10図
における要部の変形実施例を示す回路図、第11図は本
発明の更に他の実施例を示す回路図、第11A図は第1
1図における要部の変形実施例を示す回路図、である。 符号説明 1……直流電源、2……スイツチ素子、3……フリーホ
イーリングダイオード、4……リアクトル、5……逆起
電力負荷、6……電流検出器、7……コンパレータ、8
……電流指令値発生器、9……タクトパルス発生器、1
0……積分器、11……平滑コンデンサ、12……電圧
指令値発生器、13……スイツチ素子駆動回路、14…
…不感帯δの設定器、15……符号反転器、16〜22
……加算器
FIG. 1 is a circuit diagram showing a conventional load current instantaneous value control method,
FIG. 1A is a timing chart showing an example of the changing situation of the load current in the circuit of FIG. 1, and FIGS. 2 to 4 show the relationship between the DC power supply voltage V DC and the back electromotive force E by the switch frequency. Explanatory diagram showing the effect on
FIGS. 5 and 6 are explanatory diagrams of the operating principle of the already proposed instantaneous value control method, FIG. 7 is a circuit diagram showing the already proposed instantaneous value control method, and FIG. 8 is an explanatory diagram of the operating principle of the present invention. ,
FIG. 9 is a circuit diagram showing an embodiment of the present invention, FIG. 10 is a circuit diagram showing another embodiment of the present invention, FIG. 10A is a circuit diagram showing a modified embodiment of the main part of FIG. FIG. 11 is a circuit diagram showing still another embodiment of the present invention, and FIG.
FIG. 9 is a circuit diagram showing a modified example of the main part in FIG. 1. Symbol description 1 ... DC power supply, 2 ... Switch element, 3 ... Freewheeling diode, 4 ... Reactor, 5 ... Back electromotive force load, 6 ... Current detector, 7 ... Comparator, 8
... Current command value generator, 9 ... Tact pulse generator, 1
0 ... Integrator, 11 ... Smoothing capacitor, 12 ... Voltage command value generator, 13 ... Switch element drive circuit, 14 ...
... dead band delta setter, 15 ... sign inverter, 16-22
...... Adder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭53−101650(JP,A) 特開 昭59−76195(JP,A) 実開 昭49−150334(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-53-101650 (JP, A) JP-A-59-76195 (JP, A) Practical application Sho-49-150334 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電源と負荷との間に介在するスイッチング
手段と、負荷電流の瞬時値を検出する手段と、検出した
負荷電流瞬時値と電流指令値とを比較し両者間の大小関
係によりハイレベルまたはロウレベルの信号を出力する
コンパレータと、前記ハイレベルまたはロウレベルの信
号により前記スイッチング手段をオン・オフ駆動する手
段とを備え、前記スイッチング手段のオン・オフによっ
て前記負荷電流が前記電流指令値に対して前記コンパレ
ータの回路定数により決められた上限レベルと下限レベ
ルとの間で上昇および下降を繰り返す負荷電流の瞬時値
制御方法において、 前記負荷電流瞬時値と電流指令値との何れか一方に、一
定周期で繰り返す鋸歯状波を少なくとも含むタクト信号
を重畳して前記コンパレータに入力する手段を設け、そ
れにより前記スイッチング手段のオン・オフ周期を前記
タクト信号の繰り返し周期に引き込んで同期させること
を特徴とする負荷電流の瞬時値制御方法。
1. A switching means interposed between a power source and a load, a means for detecting an instantaneous value of a load current, and a detected load current instantaneous value and a current command value are compared, and a high value is obtained depending on a magnitude relation between the two. A comparator for outputting a level or low level signal; and a means for driving the switching means on / off by the high level or low level signal, wherein the load current is set to the current command value by turning on / off the switching means. On the other hand, in the instantaneous value control method of the load current that repeatedly rises and falls between the upper limit level and the lower limit level determined by the circuit constant of the comparator, in any one of the load current instantaneous value and the current command value, A means for superimposing a tact signal including at least a sawtooth wave repeated at a constant period and inputting it to the comparator is provided, Thereby, the method for controlling the instantaneous value of the load current is characterized in that the ON / OFF cycle of the switching means is pulled in and synchronized with the repetition cycle of the tact signal.
JP57213848A 1982-12-08 1982-12-08 Instantaneous value control method for load current Expired - Lifetime JPH0655030B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57213848A JPH0655030B2 (en) 1982-12-08 1982-12-08 Instantaneous value control method for load current
DE19833343883 DE3343883A1 (en) 1982-12-08 1983-12-05 Method and device for two-point control of a load current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57213848A JPH0655030B2 (en) 1982-12-08 1982-12-08 Instantaneous value control method for load current

Publications (2)

Publication Number Publication Date
JPS59106874A JPS59106874A (en) 1984-06-20
JPH0655030B2 true JPH0655030B2 (en) 1994-07-20

Family

ID=16646013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57213848A Expired - Lifetime JPH0655030B2 (en) 1982-12-08 1982-12-08 Instantaneous value control method for load current

Country Status (2)

Country Link
JP (1) JPH0655030B2 (en)
DE (1) DE3343883A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2598567B1 (en) * 1986-03-11 1990-06-15 Leroy Somer Moteurs METHOD AND DEVICE FOR CONTROLLING AN INVERTER CONNECTED TO A MULTI-PHASE LOAD
JP2547320Y2 (en) * 1988-06-08 1997-09-10 株式会社 新興製作所 Independently driven constant current chopper drive circuit of inductive load
US5258904A (en) * 1992-04-23 1993-11-02 Ford Motor Company Dither control method of PWM inverter to improve low level motor torque control
JP2774907B2 (en) * 1992-09-18 1998-07-09 株式会社日立製作所 Electric vehicle control device
DE19932379A1 (en) * 1999-07-13 2001-01-18 Braun Gmbh Throttle converter
JP3425900B2 (en) * 1999-07-26 2003-07-14 エヌイーシーマイクロシステム株式会社 Switching regulator
US6791306B2 (en) 2002-01-29 2004-09-14 Intersil Americas Inc. Synthetic ripple regulator
US7132820B2 (en) 2002-09-06 2006-11-07 Intersil Americas Inc. Synthetic ripple regulator
US7019502B2 (en) 2002-09-06 2006-03-28 Intersil America's Inc. Synchronization of multiphase synthetic ripple voltage regulator
US6922044B2 (en) 2002-09-06 2005-07-26 Intersil Americas Inc. Synchronization of multiphase synthetic ripple voltage regulator
DE10346325A1 (en) * 2003-10-06 2005-05-04 Siemens Ag Switching device for bidirectional charge equalization between energy stores
US8427113B2 (en) 2007-08-01 2013-04-23 Intersil Americas LLC Voltage converter with combined buck converter and capacitive voltage divider
US8085011B1 (en) 2007-08-24 2011-12-27 Intersil Americas Inc. Boost regulator using synthetic ripple regulation
US8148967B2 (en) 2008-08-05 2012-04-03 Intersil Americas Inc. PWM clock generation system and method to improve transient response of a voltage regulator
US8786270B2 (en) 2010-11-08 2014-07-22 Intersil Americas Inc. Synthetic ripple regulator with frequency control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911256B2 (en) * 1977-02-16 1984-03-14 株式会社日立製作所 Switching regulator

Also Published As

Publication number Publication date
DE3343883A1 (en) 1984-06-14
JPS59106874A (en) 1984-06-20

Similar Documents

Publication Publication Date Title
JPH0655030B2 (en) Instantaneous value control method for load current
JPS6137865B2 (en)
US4247887A (en) AC--AC Converter device
Hess et al. Modulation strategies for a new SCR-based induction motor drive system with a wide speed range
JP2006141192A (en) Inductive load drive device and inductive load drive method
JP2841879B2 (en) Inverter DC braking control method
JPH0669316B2 (en) Power regeneration control circuit for power converter
JPH0421363A (en) Inverter
JPS62181674A (en) Pulse width modulation type inverter apparatus
JPH0528957Y2 (en)
JPS5944878B2 (en) Control device for commutatorless motor
JPH0235522B2 (en)
SU1577028A2 (en) Single-phase thyristor voltage inverter
JP3085741B2 (en) Induction generator control
JP2646481B2 (en) Inverter device
JPS5840428B2 (en) Kouriyunokiyudenseigiyooshiki
JPH0732606B2 (en) Control device for current source inverter
JPH0755055B2 (en) Output current limiting method for voltage source PWM inverter
JPH0626079Y2 (en) Induction motor torque control device
JPS5821518B2 (en) Museiliyushidendoukinoseigiyosouchi
JPH02137673A (en) Controller for arc welding power source
JPH0548590U (en) Converter current control circuit
JPS59144394A (en) Controller for induction motor
JPH0216674B2 (en)
JPS5842718B2 (en) Control device for commutatorless motor