JPS5842718B2 - Control device for commutatorless motor - Google Patents

Control device for commutatorless motor

Info

Publication number
JPS5842718B2
JPS5842718B2 JP51035959A JP3595976A JPS5842718B2 JP S5842718 B2 JPS5842718 B2 JP S5842718B2 JP 51035959 A JP51035959 A JP 51035959A JP 3595976 A JP3595976 A JP 3595976A JP S5842718 B2 JPS5842718 B2 JP S5842718B2
Authority
JP
Japan
Prior art keywords
current
motor
polyphase
converter
intermittent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51035959A
Other languages
Japanese (ja)
Other versions
JPS52120319A (en
Inventor
義兵衛 尾花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51035959A priority Critical patent/JPS5842718B2/en
Publication of JPS52120319A publication Critical patent/JPS52120319A/en
Publication of JPS5842718B2 publication Critical patent/JPS5842718B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は直流式無整流子電動機の制御装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a control device for a DC non-commutator motor.

直流式無整流子電動機においては逆変換器を電動機の運
転周波数に応じて転流する必要がある。
In a DC type non-commutator motor, it is necessary to use an inverter to commutate the current according to the operating frequency of the motor.

この転流を行うには電動機の逆起電力を利用して行う自
然転流方式を採用されている。
To perform this commutation, a natural commutation method is used that utilizes the back electromotive force of the motor.

し、かじ、自然転流方式は、始動時に電動機の逆起電力
が小さく転流をできず始動困難となる。
However, with the rudder and natural commutation method, the back electromotive force of the motor is small at the time of starting, making commutation impossible and making starting difficult.

そのため、始動時には逆変換器の転流時点毎に順変換器
の直流出力電流を零に・し逆変換器の転流を行う、いわ
ゆる断続始動方式が提案され、ている。
Therefore, a so-called intermittent starting method has been proposed, in which the DC output current of the forward converter is made zero at each commutation point of the reverse converter during startup, and the reverse converter is commutated.

この断続始動方式を第1図、第2図を用いて説明する。This intermittent starting method will be explained using FIGS. 1 and 2.

第1図は断続始動方式を用いた無整流子電動機の制御装
置の構成図である。
FIG. 1 is a block diagram of a control device for a commutatorless motor using an intermittent starting method.

第1図において、1は3相交流電源、2は交流を直流に
変換する順変換器、3は順変換器2の直流出力電流の脈
流を低減する直流リアクトル、4は直流を可変周波の交
流に変換する逆変換器、5は逆変換器4の出力側に接続
された同期電動機、6は電動機5の電機子と界磁の相対
位置を検出する分配器J、7は電動機5の回転数を検出
する回転発電機58は直流電流を検出する直流変流器、
9は電流指令値と変流器8で検出した実際値との偏差に
応じた位相指令信号を出力し、電流の制御を行う電流制
御回路、10は型溝制御回路9の偏差出力に応じて順変
換器2の点弧位相を制御し、その出力電圧を可変とする
パルス移相器、11は直流電流の零点を検出し電流零信
号を出力すると共に回転電機7の速度信号が設定値にな
ると制御進み角rを切替えるγ切替信号を発生する始動
制御回路、12は分配器6の位置信号に基づき逆変換器
4の点弧時期を決定すると共に、電流制御回路9に断続
指令パルスを加える論理回路、13は逆変換器4に点弧
パルスを与えるゲート出力回路である。
In Fig. 1, 1 is a three-phase AC power supply, 2 is a forward converter that converts AC to DC, 3 is a DC reactor that reduces the ripples in the DC output current of the forward converter 2, and 4 is a variable frequency converter for converting DC to DC. 5 is a synchronous motor connected to the output side of the inverter 4; 6 is a distributor J that detects the relative position of the armature of the motor 5 and the field; 7 is the rotation of the motor 5; The rotary generator 58 that detects the number is a DC current transformer that detects the DC current,
9 is a current control circuit that controls the current by outputting a phase command signal according to the deviation between the current command value and the actual value detected by the current transformer 8; 10 is a current control circuit that controls the current according to the deviation output of the mold groove control circuit 9; A pulse phase shifter 11 that controls the firing phase of the forward converter 2 and makes its output voltage variable, detects the zero point of the DC current and outputs a zero current signal, and at the same time the speed signal of the rotating electric machine 7 reaches the set value. Then, a starting control circuit 12 generates a γ switching signal to switch the control advance angle r, and a starting control circuit 12 determines the firing timing of the inverter 4 based on the position signal of the distributor 6, and also applies an intermittent command pulse to the current control circuit 9. The logic circuit 13 is a gate output circuit which provides a firing pulse to the inverter 4.

かかる構成の動作は良く知られているので、詳細説明を
塙略し、従来行われている逆変換器の転流と電流断続の
位相関係を簡単に説明する。
Since the operation of such a configuration is well known, detailed explanation will be omitted, and the phase relationship between commutation and current intermittent in the conventional inverter will be briefly explained.

始動時に出力トルクを最大にするため制御進み角γをγ
=:=O°とするカを第2図もγ=O°として示してい
る。
In order to maximize the output torque at startup, the control advance angle γ is set to γ.
The force where =:=O° is also shown in FIG. 2 as γ=O°.

U、V、Wは電動機5の相電圧、AlB、 Cは分配器
6の位置信号を示し、この位置信号の巾は電気角で18
0°であり、それぞれ120゜の位相差を有する。
U, V, and W indicate the phase voltage of the motor 5, and AlB and C indicate the position signal of the distributor 6, and the width of this position signal is 18 in electrical angle.
0°, and each has a phase difference of 120°.

UP−WPは逆変換器4の正側サイリスタUP、VP、
WPのゲート信号で、UN−WNは負側サイリスタUP
、VN、WNのゲート信号を示す。
UP-WP is the positive side thyristor UP, VP of the inverter 4,
WP gate signal, UN-WN is negative side thyristor UP
, VN, and WN gate signals.

これらゲート信号の巾は電気角で120°であり、正負
側転流周期は電気角で60°となる。
The width of these gate signals is 120 degrees in electrical angle, and the commutation period on the positive and negative sides is 60 degrees in electrical angle.

論理回路12は断続指令パルスを逆変換器4のゲート信
号UP、VP・・・・・・WNの立上り時に発生し、始
動制御回路11の電流零信号により消失する。
The logic circuit 12 generates an intermittent command pulse at the rising edge of the gate signals UP, VP, .

しかして、断続指令パルスは電気角で60°毎に発生す
る。
Therefore, the intermittent command pulse is generated every 60 degrees in electrical angle.

電流制御回路9は断続指令パルスにより位相指令信号番
図示のように変化させる。
The current control circuit 9 changes the phase command signal number as shown in the figure using intermittent command pulses.

しかして、パルス位相器10′は順変換器2の点弧位相
を変えて直流出力電流を零にする。
Thus, the pulse phase shifter 10' changes the firing phase of the forward converter 2 to make the DC output current zero.

直流電流が零になった後、逆変換器4は転流する。After the DC current becomes zero, the inverter 4 commutates.

そして、サイリスタのターンオフタイム以上の時間後に
断続指令パルスが消失する。
Then, the intermittent command pulse disappears after a time equal to or longer than the turn-off time of the thyristor.

したがって、電動機電流IU〜Iwは図示の如くなり、
電気角で60°毎に零になる。
Therefore, the motor currents IU to Iw are as shown in the figure,
It becomes zero every 60 degrees in electrical angle.

しかる後、時刻t1になると電動機5の逆起電力が確立
し、その逆起電力により逆変換器4の転流が可能になる
Thereafter, at time t1, the back electromotive force of the motor 5 is established, and the back electromotive force enables commutation of the inverse converter 4.

すなわち、自然転流が行われる。自然転流になると制御
進み角γをγ〉Oとするが、図はγ=60°にて運転し
た場合を示している。
That is, natural commutation takes place. When natural commutation occurs, the control advance angle γ is set to γ>O, but the figure shows the case of operation at γ=60°.

゛第2図より明らかなように、逆変換器4の転流は60
°毎に行われ電流は連続して流れる。
゛As is clear from Fig. 2, the commutation of the inverter 4 is 60
The current flows continuously.

なお、自然転流への切換えは電動機速度と設定速度(逆
起電力が確立する速度通常電動機定格速度の5〜10%
程度)を始動制御回路11で比較することにより行われ
る。
Note that switching to natural commutation is based on the motor speed and the set speed (the speed at which back electromotive force is established), which is usually 5 to 10% of the motor rated speed.
This is done by comparing the starting control circuit 11.

このように制御するのであるが、電流断続時には次のよ
うな問題点が存在する。
Although the control is performed in this manner, the following problems exist when the current is interrupted.

すなわちJ電気角で60°毎に断続しているため自然転
流するまでの断続回数が多くなる。
That is, since the current is interrupted every 60 degrees in J electrical angle, the number of interruptions until natural commutation occurs is increased.

その、ため負荷電流の平均値が小さくなり加速トルクも
小さくなる。
Therefore, the average value of the load current becomes smaller and the acceleration torque also becomes smaller.

つまり、断続指令パルスの時間巾t。In other words, the time width t of the intermittent command pulse.

はサイリスタのターンオフタイムおよび電流の減少時間
(直流リアクトルDCL等の値による決る)により決・
定され、゛電動機速度に無関係に常に一定である。
is determined by the thyristor turn-off time and current reduction time (determined by the value of the DC reactor DCL, etc.).
and is always constant regardless of motor speed.

一方、断続周期Tは電動機速度が増加するにつれて小と
なり、toとTとの比t。
On the other hand, the intermittent period T becomes smaller as the motor speed increases, and the ratio between to and T becomes t.

/Tは電動機速度が増加する゛につれて大となる。/T increases as the motor speed increases.

したがって、・直流電流の平均値は断続回数が多くなる
と小となり電動機トルクも少なくなる。
Therefore, the average value of the DC current becomes smaller as the number of interruptions increases, and the motor torque also decreases.

また、直流電流の断続は順変換器の点弧位相、つまり電
源電圧位相に無関係に行われる。
Furthermore, the DC current is switched on and off regardless of the firing phase of the forward converter, that is, the power supply voltage phase.

そのため順変換器の入力電流が不平衡となり、電源トラ
ンスが直流偏磁を受ける。
Therefore, the input current of the forward converter becomes unbalanced, and the power transformer receives DC bias.

この直流偏磁量は電流断続の回数が多いほど多くなる。The amount of DC biased magnetism increases as the number of times the current is interrupted increases.

しかして、始動のために電源トランスの容量を大きくし
なければならず経済的に不利となる。
Therefore, the capacity of the power transformer must be increased for starting, which is economically disadvantageous.

本発明は上記点に対処して成されたもので、その目的と
するところは電流断続回数を減少させ、電動機の出力ト
ルクを大にすると共に電源トランスの直流偏磁量を減少
できる無整流子電動機の制御装置を提供することにある
The present invention has been made in response to the above-mentioned problems, and its purpose is to reduce the number of current interruptions, increase the output torque of the motor, and reduce the amount of DC biased magnetism in the power transformer. An object of the present invention is to provide a control device for an electric motor.

本発明の特徴とするところは多相逆変換器の相数をnと
するとき、低速時に多相逆変換器の一相の正側サイリス
タおよび異なる相の負側サイリスタが電気角で360’
/nだけ同一時期に導通し向一時期に転流するように点
弧制御を行い断続周期を長くするようにしたことにある
The feature of the present invention is that when the number of phases of the polyphase inverter is n, the positive side thyristor of one phase of the polyphase inverter and the negative side thyristor of a different phase of the polyphase inverter at low speed are 360' in electrical angle.
This is because the ignition control is performed so that the current is turned on at the same time and commutated at the same time by /n, thereby lengthening the intermittent cycle.

第3図は本発明による論理回路−例を示す構成国である
FIG. 3 is a diagram illustrating an exemplary logic circuit according to the present invention.

第3図において、A、 B、 Cは第1図に示す分配器
6め位置信号であり、それぞれ電気角で1800巾で1
20°の位相差を有する。
In Fig. 3, A, B, and C are the 6th position signals of the distributor shown in Fig. 1, and each is 1800 width in electrical angle.
It has a phase difference of 20°.

Xは電流断続時に高レベルとなる断続指令信号であり、
Yは電流連続時に高レベルとなる連続指令信号である。
X is an intermittent command signal that becomes high level when the current is intermittent,
Y is a continuous command signal that becomes high level when the current is continuous.

この信号X、 Yの切替えは速度帰還信号と設定値との
比較により行う。
Switching between the signals X and Y is performed by comparing the speed feedback signal with a set value.

14〜16は反転回路、17〜31はアンド回路、32
〜37はオア回路である。
14 to 16 are inverting circuits, 17 to 31 are AND circuits, 32
37 is an OR circuit.

次に、その動作を第4図を参照して説明する。Next, its operation will be explained with reference to FIG.

位置信号A、 B、 Cは反転回路14〜16により反
転され信号A、百、鴬となる。
The position signals A, B, and C are inverted by inverting circuits 14 to 16 to become signals A, 10, and 16.

位置信号A、 BCと反転信号A、B、Cはそれぞれア
ンド回路17〜22に加え・られる。
Position signals A, BC and inverted signals A, B, C are applied to AND circuits 17-22, respectively.

そして、アンド回路17によりAとB(7)論理積であ
る信号Eを、アンド回路18によりBとCの信号Fを、
また、アンド回路19によ□すCとKの信号Gを得る。
Then, the AND circuit 17 generates a signal E which is the AND of A and B (7), and the AND circuit 18 generates a signal F of B and C.
Also, the C and K signals G are obtained by the AND circuit 19.

これらの信号E、F、Gはアンド回路23〜25に導か
れる。
These signals E, F, and G are guided to AND circuits 23-25.

しかして、電流断続時にはオア回路32〜37より図示
の如き6個のゲート信号UP−WP、UN−WNを発生
する。
When the current is interrupted, the OR circuits 32 to 37 generate six gate signals UP-WP and UN-WN as shown.

電流断続時のゲート信号はUPと■NJV□PとWNお
よびwpとUNは同時に発生し電気角で120°屯の信
号となる。
When the current is interrupted, the gate signals UP, ■NJV□P, WN, wp and UN are generated simultaneously and become a signal of 120 degrees in electrical angle.

電流連続時は信号E、F、Gと共に加えAとC,BとA
、 CとBをそれぞれアンド回路20〜22に加えた信
号H1■、Jを必要とする。
When the current is continuous, add A and C, B and A together with signals E, F, and G.
, C and B are added to AND circuits 20 to 22, respectively, to generate signals H1■ and J.

そして信号EF、 G、 H,I、Jと連続指令信号Y
とによりアンド回路26〜31から図示の如き6個のゲ
ート信号を発生させる。
And signals EF, G, H, I, J and continuous command signal Y
As a result, six gate signals as shown in the figure are generated from the AND circuits 26 to 31.

このゲート信号UP−WNはオア回路32〜37を介し
て出力するが、UPとVN、VPとWNおよびWPとU
Nは60°位相差を有することになる。
This gate signal UP-WN is output via the OR circuits 32 to 37, but UP and VN, VP and WN, and WP and U
N will have a 60° phase difference.

なお、電流断続時にはアンド回路23〜25が出力を発
生し、電流連続時にアンド回路26〜31が出力を発生
するのは信号X、 Yの関係から明らかである。
It is clear from the relationship between the signals X and Y that the AND circuits 23-25 generate outputs when the current is intermittent, and the AND circuits 26-31 generate outputs when the current continues.

本発明においては論理回路12が以上のように動作する
ので、逆変換器4のゲート信号は第5図に示す如く正側
、負側サイリスタの転流が同一時期に行われ、転流周期
は電気角で120°となる。
In the present invention, since the logic circuit 12 operates as described above, the gate signal of the inverter 4 is such that commutation of the positive side and negative side thyristors is performed at the same time as shown in FIG. 5, and the commutation period is The electrical angle is 120°.

そして断続指令パルスも電気角で120°毎に発生する
Intermittent command pulses are also generated every 120 degrees in electrical angle.

この断続指令パルスによりパルス移相器10への位相指
令信号を変え順変換器2の直流出力電流を零にする。
This intermittent command pulse changes the phase command signal to the pulse phase shifter 10 to make the DC output current of the forward converter 2 zero.

直流電流が零になった後に逆変換器が転流を行い、サイ
リスタターンオフタイム以上の時間後に電流が流れる。
After the DC current becomes zero, the inverter performs commutation, and the current flows after a time equal to or longer than the thyristor turn-off time.

したがって、電動機電流IU〜Iwは図示の・如く電気
角で120°毎に零になる。
Therefore, the motor currents IU to Iw become zero every 120 degrees in electrical angle as shown in the figure.

この動作領域を電流断続領域で示す。This operating region is indicated by the current intermittent region.

時刻t1になると電動機の逆起電力が確立し、その逆起
電力により逆変換器の転流が可能になる。
At time t1, a back electromotive force of the motor is established, and the back electromotive force enables commutation of the inverse converter.

この電流連続領域になると逆変換器4のゲート信号とモ
ータ相電圧の位相関係および動作は従来の動作と同じく
なる。
In this current continuous region, the phase relationship and operation between the gate signal of the inverter 4 and the motor phase voltage are the same as the conventional operation.

この領域を電流連続領域で示す。This region is shown as a current continuous region.

第6図は従来と本発明による速度と直流電流および断続
指令パルスの動作状態を示すものである。
FIG. 6 shows the operating states of speed, direct current, and intermittent command pulses according to the prior art and the present invention.

第6図aは従来を、bは本発明の場合を示す。FIG. 6a shows the conventional case, and FIG. 6b shows the case of the present invention.

第6図より明らかなように、断続周期Tが従来より大に
なりto/Tが小となる。
As is clear from FIG. 6, the intermittent period T becomes larger than in the conventional case, and to/T becomes smaller.

しかして、直流電流の平均値が増加することになる。As a result, the average value of the direct current increases.

この結果、電動機の出力トルク・が増大し加速時間を短
くできる。
As a result, the output torque of the electric motor increases and the acceleration time can be shortened.

また、電源側に設けられる電源変圧器の直流偏磁も断続
回数の減少により低減できる。
Further, DC bias in the power transformer provided on the power source side can also be reduced by reducing the number of interruptions.

以上説明したように、本発明によれば断続回数を減少で
きるので出力トルクを増加でき、また電源トランスの直
流偏磁も低減できる。
As explained above, according to the present invention, the number of interruptions can be reduced, so the output torque can be increased, and the DC bias of the power transformer can also be reduced.

また、電流断続時には制御系の応答性が連続的に比べ悪
くなり、それも断続回数が多い程悪くなるが、断続回数
の減少によって応答性の向上も図れる。
Furthermore, when the current is interrupted, the responsiveness of the control system is worse than when it is continuous, and the more the number of interruptions is, the worse it gets, but the responsiveness can be improved by reducing the number of interruptions.

なお、以上の説明妊電流断続状態として始動時の場合に
ついて述べたが、低速度(定格速度の10%程度)で断
続運転する場合にも同様にして行われるのは勿論である
Although the above description has been made regarding the case where the current intermittent state is started, it goes without saying that the intermittent current state is also carried out in the same manner when intermittent operation is performed at a low speed (approximately 10% of the rated speed).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は無整流子電動機の制御装置の構成図、第2図は
従来の動作を説明するための波形図、第3図は本発明に
よる論理回路の一例を示す構成図で、第4図はその動作
説明図、第5図は本発明による動作を説明する波形図、
第6図は本発明と従来の制御方法を示す波形図である。 符号の説明、2・・・順変換器、3・・・直流リアクト
ル、4・・・逆変換器、5・・・周期電動機、6・・・
分配器、7・・・回転発電機、9・・・電流制御回路、
10・・・パルス位相器、11・・・始動制御回路、1
2・・・論理回路。
FIG. 1 is a configuration diagram of a control device for a non-commutated motor, FIG. 2 is a waveform diagram for explaining conventional operation, FIG. 3 is a configuration diagram showing an example of a logic circuit according to the present invention, and FIG. is a diagram explaining the operation, and FIG. 5 is a waveform diagram explaining the operation according to the present invention.
FIG. 6 is a waveform diagram showing the present invention and a conventional control method. Explanation of symbols, 2... Forward converter, 3... DC reactor, 4... Inverse converter, 5... Periodic motor, 6...
Distributor, 7... Rotary generator, 9... Current control circuit,
10... Pulse phaser, 11... Starting control circuit, 1
2...Logic circuit.

Claims (1)

【特許請求の範囲】 1 交流を直流に変換する順変換器と、該順変換器の直
流出力を可変周波の交流に変換する多相逆変換器と、該
多相逆変換器の出力側に接続された同期電動機と、該同
期電動機の回転子位置を検出する分配器と、該分配器の
位置信号に基づき前記多相逆変換器にゲート信号を与え
る論理回路とを備り前記同期電動機の低速時には前記多
相逆変換器の転流時点毎に前記順変換器の直流出力電流
を零にする。 ようにした無整流子電動機の制御装置において、前記多
相逆変換器の相数をnとするとき、前記論理回路は前記
同期電動機の低速時において前記多相逆変換器の一相の
正側サイリスタおよび異なる相の負側サイリスタが電気
角で360°/nだけ同一時期に導通し同一時期に転流
するようにゲー十信号を与えることを特徴とする無整流
子電動機の制御装置。
[Claims] 1. A forward converter that converts alternating current into direct current, a polyphase inverse converter that converts the direct current output of the forward converter into variable frequency alternating current, and an output side of the polyphase inverse converter. The synchronous motor includes a connected synchronous motor, a distributor that detects the rotor position of the synchronous motor, and a logic circuit that provides a gate signal to the polyphase inverter based on the position signal of the distributor. At low speeds, the DC output current of the forward converter is made zero at every commutation point of the multiphase inverse converter. In the control device for a non-commutator motor as described above, when the number of phases of the polyphase inverter is n, the logic circuit operates on the positive side of one phase of the polyphase inverter when the synchronous motor is at low speed. A control device for a commutatorless motor, characterized in that a gate signal is applied so that a thyristor and negative-side thyristors of different phases conduct at the same time by 360°/n in electrical angle and commutate at the same time.
JP51035959A 1976-04-02 1976-04-02 Control device for commutatorless motor Expired JPS5842718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51035959A JPS5842718B2 (en) 1976-04-02 1976-04-02 Control device for commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51035959A JPS5842718B2 (en) 1976-04-02 1976-04-02 Control device for commutatorless motor

Publications (2)

Publication Number Publication Date
JPS52120319A JPS52120319A (en) 1977-10-08
JPS5842718B2 true JPS5842718B2 (en) 1983-09-21

Family

ID=12456497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51035959A Expired JPS5842718B2 (en) 1976-04-02 1976-04-02 Control device for commutatorless motor

Country Status (1)

Country Link
JP (1) JPS5842718B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235190A1 (en) * 2017-06-21 2018-12-27 東芝三菱電機産業システム株式会社 Thyristor startup device

Also Published As

Publication number Publication date
JPS52120319A (en) 1977-10-08

Similar Documents

Publication Publication Date Title
US4392099A (en) Starting system for brushless motor
US7075267B1 (en) Space vector-based current controlled PWM inverter for motor drives
US4227138A (en) Reversible variable frequency oscillator for smooth reversing of AC motor drives
WO2007069314A1 (en) Power converting apparatus
Sato et al. Adjustable speed drive with a brushless dc motor
US3519909A (en) Adjustable speed motor drive using a wound rotor of an induction motor mechanically connected to the armature of a d.c. motor,both electrically connected by a control system
Le-Huy et al. An adaptive current controller for PWM inverters
JPH07163189A (en) Pwm controller for motor
JPS5842718B2 (en) Control device for commutatorless motor
US3313992A (en) Braking circuit
JP2017192207A (en) Dynamo-electric machine system and control method of dynamo-electric machine system
JP2000092879A (en) Motor drive
JP3020751B2 (en) Induction generator control
JPH0329992Y2 (en)
JPS6238959B2 (en)
JPH0787697B2 (en) Control method of PWM inverter
JPH0344513B2 (en)
RU2095933C1 (en) Method for regulation of induction motor rotation speed
SU1720135A1 (en) Parametric variable-frequency electric drive
JPH05276763A (en) Load communication-type inverter
JP2002136152A (en) Pwm-control inverter and control method therefor
JPS5826273B2 (en) Inverter device
JP2004289971A (en) Controller of electric motor
JPS588232B2 (en) How to control cycloconverter
Sultana et al. Brushless permanent magnet (BPM) motor drive system using load commutated inverter