JPH0654267B2 - Weight detector - Google Patents

Weight detector

Info

Publication number
JPH0654267B2
JPH0654267B2 JP61248725A JP24872586A JPH0654267B2 JP H0654267 B2 JPH0654267 B2 JP H0654267B2 JP 61248725 A JP61248725 A JP 61248725A JP 24872586 A JP24872586 A JP 24872586A JP H0654267 B2 JPH0654267 B2 JP H0654267B2
Authority
JP
Japan
Prior art keywords
load
weight
detecting element
weight detection
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61248725A
Other languages
Japanese (ja)
Other versions
JPS63101724A (en
Inventor
誠 三原
和穂 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61248725A priority Critical patent/JPH0654267B2/en
Publication of JPS63101724A publication Critical patent/JPS63101724A/en
Publication of JPH0654267B2 publication Critical patent/JPH0654267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Force In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、重量検出機能付加熱装置・デジタル電子秤な
どの重量検出装置の荷重伝達機能に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load transmission function of a weight detection device such as a weight detection function-added heat device and a digital electronic scale.

従来の技術 従来の重量検出装置は表面に電極を印刷した二枚のアル
ミナのダイアフラムをそれぞれ電極側を対向させて微小
ギャップで張り合わせた構成の荷重−容量変換素子を用
いて重量を検出していた。第6図に重量検出素子の構成
図、第7図に従来の重量検出装置の要部断面図を示す。
電極2を印刷したそれぞれのアルミナ基板1は互いに電
極側を対向させ、シールガラス3で微小ギャップを保っ
てはりあわせコンデンサを形成している。この重量検出
素子7のアルミナ基板1上に圧力あるいは局部的に荷重
が印加されるとアルミナ基板1がたわみ電極2間の距離
が変化して重量検出素子7の容量が変わる。この容量に
所定の信号処理を施すことにより重量を検出する。
2. Description of the Related Art A conventional weight detection device detects a weight by using a load-capacitance conversion element having a structure in which two alumina diaphragms having electrodes printed on the surfaces thereof are opposed to each other with a minute gap. . FIG. 6 shows a configuration diagram of the weight detection element, and FIG. 7 shows a cross-sectional view of a main part of a conventional weight detection device.
The respective alumina substrates 1 on which the electrodes 2 are printed face each other with their electrodes facing each other, and a sealing glass 3 holds a minute gap to form a laminated capacitor. When a pressure or a local load is applied on the alumina substrate 1 of the weight detecting element 7, the alumina substrate 1 changes the distance between the deflection electrodes 2 and the capacity of the weight detecting element 7 changes. The weight is detected by applying a predetermined signal processing to this capacitance.

気体あるいは液体などの圧力を測定する場合アルミナ基
板1のダイアフラムを被測定環境にさらすだけで特別な
構成を必要としないがハカリなどに適用する場合は荷重
の伝達の仕方に工夫が必要で第7図に示すよな構成とす
る。5は重量検出素子7をマウントするためのセンサベ
ッド、6は重量検出素子7を電気的にシールドするため
のセンサカバー、8は板ばねで構成しており重量検出素
子7に衝撃・過大荷重が加わるのを防ぐためのダンパ
ー、9は重量検出素子7の容量を外部に引き出すための
リード線である。4は印加された荷重を重量検出素子7
に伝達する荷重伝達部材である。荷重Wはダンパー8を
介して加圧ポイント4に印加される。ここでこの加圧ポ
イント4はアルミナ基板1の表面に面接触しているため
荷重Wは荷重伝達部材の接触面積で規定された一定の加
圧面積で重量検出素子7を加圧することになる。
When measuring the pressure of gas or liquid, the diaphragm of the alumina substrate 1 is only exposed to the environment to be measured, and no special configuration is required. The configuration is as shown in the figure. 5 is a sensor bed for mounting the weight detecting element 7, 6 is a sensor cover for electrically shielding the weight detecting element 7, and 8 is a leaf spring. A damper for preventing the weight detection element 7 from being applied and a lead wire 9 for extracting the capacitance of the weight detection element 7 to the outside. 4 is a weight detecting element 7 for measuring the applied load.
It is a load transmission member that transmits to. The load W is applied to the pressure point 4 via the damper 8. Since the pressing point 4 is in surface contact with the surface of the alumina substrate 1, the load W presses the weight detecting element 7 with a constant pressing area defined by the contact area of the load transmitting member.

この時の重量検出素子7の静電容量を理論式で求めると
次のようになる。第8図に従来の重量検出素子の重量検
出の原理説明図を示し、各部の寸法も弊記した。ここで
アルミナ基板にWという荷重が印加された時のたわみ量
δは ・0≦r≦bの時 ・b≦r≦aの時 となる。ただし、ν;poisson 比、E;ヤング率、t;
板厚、b;荷重伝達部材径とする。第8図で半径r、微
小径drのドーナツ状の面積をSとすると S=2πrdr …………………(3) その部分の静電容量dCは dC=εS/(d−δ) …………………(4) ε;電極間誘電率,d;初期ギャップ ここで(1)〜(3)式を(4)式に代入してrを0からa
で積分すると重量検出素子7の静電容量Cが次式で求め
ることができる。
The capacitance of the weight detecting element 7 at this time is calculated by a theoretical formula as follows. FIG. 8 is a diagram for explaining the principle of weight detection of a conventional weight detection element, and the dimensions of each part are also noted. Here, the deflection amount δ when a load of W is applied to the alumina substrate is: 0 ≦ r ≦ b ・ When b ≦ r ≦ a Becomes However, ν; Poisson ratio, E; Young's modulus, t;
Plate thickness, b; load transmission member diameter. In FIG. 8, assuming that a donut-shaped area having a radius r and a minute diameter dr is S, S = 2πrdr (3) The electrostatic capacitance dC at that portion is dC = εS / (d−δ). ……………… (4) ε; Permittivity between electrodes, d; Initial gap Here, by substituting equations (1) to (3) into equation (4) and integrating r from 0 to a 0 , weight detection The capacitance C of the element 7 can be calculated by the following equation.

この式はほぼ実測値と一致し、荷重伝達部材径bと感度
〔pf/kg〕の間には第10図に示す相関があり荷重伝
達部材径、すなわち加圧面積によって秤量特性が大きく
変化することがわかる。
This equation almost agrees with the actually measured value, and there is a correlation shown in FIG. 10 between the load transmission member diameter b and the sensitivity [pf / kg], and the weighing characteristic greatly changes depending on the load transmission member diameter, that is, the pressing area. I understand.

発明が解決しようとする問題点 このようなフラットな接触面の荷重伝達部材でより均一
な秤量特性をえるためには加圧面積を均一にすることが
望ましい。そのためには荷重伝達部材の接触面の平面度
を増すということが必要となってくる。すなわち、荷重
伝達部材の接触面が粗く凹凸があると点接触になった
り、接触面の一部分で重量検出素子を加圧することにな
り、正確に荷重伝達部材径で定義される加圧面積が得ら
れず特性はばらつくからである。加工法を例にとってこ
の接触面の平面度を正確にだすことがいかに困難かを説
明する。荷重伝達部材の加工法にはいろいろあるが加圧
面の平面度と量産性を考慮して切削加工が最適と考えら
れる。ところが切削加工の場合、第9図(a)のように回
転させた金属材料24を中央に向かってバイト25を送
って削り平面度をだす方式であるが、バイト25が回転
軸に向かうにつれて角速度が低下するためバイト25の
送りを徐々に落としてやらなければ中央部が第9図(b)
のように凸状にふくらんだ形状になる。しかし、いくら
加工法に工夫をしても現実としては回転軸の角速度は0
であり中央部に突起が生じるのは避けられない。またこ
の突起の出力も材料、バイト25の状態等加工時のバラ
ツキによって様々である。このように荷重伝達部材に突
起がある状態では秤量特性に対してどのような影響を及
ぼすかというと (1) 軽負荷時には重量検出素子に点接触し重負荷時に
は面接触へと推移するため対荷重の線型性が異なってく
る。
Problems to be Solved by the Invention It is desirable to make the pressing area uniform in order to obtain a more uniform weighing characteristic in such a load transmitting member having a flat contact surface. For that purpose, it is necessary to increase the flatness of the contact surface of the load transmitting member. That is, if the contact surface of the load transfer member is rough and uneven, point contact may occur, or the weight detection element may be pressed by a part of the contact surface, and the pressurizing area accurately defined by the diameter of the load transfer member can be obtained. This is because the characteristics vary without being able to do so. It will be explained how difficult it is to accurately obtain the flatness of the contact surface by taking a processing method as an example. There are various methods for processing the load transmitting member, but cutting is considered to be optimal considering the flatness of the pressure surface and mass productivity. In the case of cutting, however, as shown in Fig. 9 (a), the rotating metal material 24 is sent to the center by sending a cutting tool 25 to shave the flatness, but as the cutting tool 25 moves toward the rotation axis, the angular velocity is increased. As the feed rate of the cutting tool 25 is not gradually decreased, the central part is shown in Fig. 9 (b).
It becomes a convex bulge like. However, no matter how the processing method is modified, the angular velocity of the rotating shaft is 0 in reality.
Therefore, it is unavoidable that a protrusion is formed in the central portion. Further, the output of this protrusion also varies depending on the material, the state of the cutting tool 25, and the like during processing. In this way, when the load transmission member has a protrusion, what kind of effect it has on the weighing characteristics is as follows: (1) Point contact with the weight detection element at light load and surface contact at heavy load The linearity of the load is different.

(2) 点接触しているため重量検出素子への加圧方向が
不安定で繰り返し精度が低下する。
(2) Since the point contact is made, the pressure direction to the weight detection element is unstable and the repeatability is reduced.

(3) 荷重の繰り返し印加によって点接触部分が摩耗し
て特性が経時変化する。
(3) The point contact part wears due to repeated application of load and the characteristics change over time.

など種々の問題点が発生する。ここで切削加工を例にと
って述べたが、量産性、コストを考慮して平面度を厳密
に加工することは非常に難しい。発明はこのような従来
の問題点を解消するものであり、精度、繰り返し精度お
よび、それらの耐久性能に優れた重量検出装置を提供す
るものである。
Various problems occur. Here, the cutting process is taken as an example, but it is very difficult to strictly process the flatness in consideration of mass productivity and cost. The present invention solves such conventional problems, and provides a weight detection device excellent in accuracy, repeatability, and durability performance thereof.

問題点を解決するための手段 本発明の重量検出装置は、荷重検出素子に一定加圧面積
で荷重を印加するための荷重伝達手段の構造を、荷重検
出素子との接触面に関して中央部をえぐり凹状の形状と
したものである。
Means for Solving the Problems A weight detecting device of the present invention has a structure of a load transmitting means for applying a load to a load detecting element in a constant pressurizing area, and a center portion is engraved with respect to a contact surface with the load detecting element. It has a concave shape.

作 用 本発明の重量検出装置は、荷重検出手段が中央部がへこ
み凹状の形状で荷重検出素子のダイアフラム表面と接触
しているため、丁度凹状の外輪で規定される一定の加圧
面積で荷重を重量検出素子に印加することができる。し
たがって、従来にみられたような重量伝達手段の加圧面
積の不均一による秤量特性のばらつき、即ち精度のばら
つきは一切発生しない。特に、このような形状の場合、
従来のように加圧面積の平面度をだすための厳密な加工
を必要とせず正確にフラットな荷重伝達部材と同様の秤
量特性を得られるため、生産性、作業性、コストという
点で大きなメリットがあり、実用上極めて有利なもので
ある。
In the weight detecting device of the present invention, since the load detecting means is indented in the central part and is in contact with the diaphragm surface of the load detecting element in a concave shape, the load is applied at a constant pressing area defined by the outer ring which is just concave. Can be applied to the weight detection element. Therefore, there is no variation in weighing characteristics, that is, variation in accuracy due to non-uniformity of the pressing area of the weight transmission means, which has been seen in the past. Especially in the case of such a shape,
Since there is no need for rigorous processing to obtain flatness of the pressing area as in the past, the weighing characteristics similar to those of a flat load transmission member can be obtained, which is a great advantage in terms of productivity, workability, and cost. Therefore, it is extremely advantageous in practical use.

実施例 以下、本発明の一実施例の重量検出装置を図面にもとず
いて説明する。第3図に側面からの要部断面図、第4図
に斜視図を示す。第7図との共通部分については説明を
省く。4は荷重伝達部材で形状は中央部がへこみ凹状の
形状となっている。11の平行保持金具、12の固定保
持金具および13の平行運動金具は4本の連結ピント1
0によって連結されているそれぞれの連結部分について
は適度のクリアランスをもって摺動自在になっている。
これは秤分野では周知のロバーバル機構で、この働きに
よって13の平行運動金具はテーブル軸14のスラスト
方向に自在に運動できるようになっている。平行運動金
具13の一部にとりつけられた板バネ8を介して重量検
出素子7に荷重が伝達される構造となっており、衝撃荷
重に対して破壊し易いアルミナ磁器を保護している。ま
た過大静止荷重についても板バネ8の効果によって平行
運動金具13の一部がセンサマウント18に先当たりし
過大荷重リミッターの働きをする。
Embodiment Hereinafter, a weight detection device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows a sectional view of the main part from the side, and FIG. 4 shows a perspective view. Descriptions of parts common to those in FIG. 7 are omitted. Reference numeral 4 denotes a load transmitting member, which has a concave shape with a dented central portion. 11 parallel holding metal fittings, 12 fixed holding metal fittings and 13 parallel motion fittings are four connecting focus 1
Each connecting portion connected by 0 is slidable with an appropriate clearance.
This is a Roberval mechanism which is well known in the field of scales, and by this function, the parallel movement metal fitting 13 can freely move in the thrust direction of the table shaft 14. The load is transmitted to the weight detecting element 7 through the leaf spring 8 attached to a part of the parallel motion fitting 13, and protects the alumina porcelain which is easily broken against impact load. With respect to the excessive static load, a part of the parallel motion fitting 13 comes into contact with the sensor mount 18 due to the effect of the leaf spring 8 and acts as an excessive load limiter.

17は底板で固定保持金具12が取り付けられている。
16は足ゴム、15は被測定物を載置するためのテーブ
ルである。テーブル15の上に載置された被測定物の重
量は板バネ8を介して荷重伝達部材4に印加される。そ
の時の荷重と静電容量の関係は(5)式から第11図のよ
うになる。
Reference numeral 17 denotes a bottom plate to which the fixed holding metal fitting 12 is attached.
Reference numeral 16 is a rubber foot, and 15 is a table on which an object to be measured is placed. The weight of the object to be measured placed on the table 15 is applied to the load transmitting member 4 via the leaf spring 8. The relationship between the load and the capacitance at that time is as shown in Fig. 11 from the equation (5).

第3図に本重量検出装置の回路のブロック図を示す。1
9は容量に依存してパルスの周波数が変わるC−Fコン
バータ回路である。20はマイクロコンピュータ、21
は重量その他の表示を行う表示部、22はキー入力部、
23はマイクロコンピュータ19・C−Fコンバータ回
路などに電力を供給する電源部である。ここで、重量に
依存して変化する重量検出素子7の容量はC−Fコンバ
ータ回路19によってマイクロコンピュータ20が判別
可能な周波数に変換される。マイクロコンピュータ20
はC−Fコンバータ回路19の出力するパルスの数を所
定時間カウントして周波数を検出し、さらに所定の周波
数−重量相関(1次ないしは2次のべき級数近似式)か
ら重量を算出する構成となっている。算出した重量は表
示部21で表示する。キー入力部22でパワーON、O
FF、風袋引(リセット)などの選択を行う。
FIG. 3 shows a block diagram of a circuit of the present weight detection device. 1
Reference numeral 9 is a C-F converter circuit in which the pulse frequency changes depending on the capacitance. 20 is a microcomputer, 21
Is a display section for displaying weight and the like, 22 is a key input section,
Reference numeral 23 is a power supply unit for supplying electric power to the microcomputer 19 and the C-F converter circuit. Here, the capacitance of the weight detection element 7, which changes depending on the weight, is converted by the CF converter circuit 19 into a frequency that can be discriminated by the microcomputer 20. Microcomputer 20
Is a configuration in which the number of pulses output from the C-F converter circuit 19 is counted for a predetermined period of time to detect the frequency, and the weight is calculated from a predetermined frequency-weight correlation (first-order or second-order power series approximation formula). Has become. The calculated weight is displayed on the display unit 21. Power ON and O with key input unit 22
Select FF, tare (reset), etc.

第1図(a),(b)は荷重伝達部材の構造図、第2図(a)〜
(e)に工程図を示す。A面が重量検出素子7との接触面
になる。この工程としては、まず母材となる金属材料2
4のA面中央部をドリル26で削った後、母材をA面と
垂直なB軸を中心に高速で回転させながらバイトをA面
に沿ってB軸方向に向かって送るような手順となる。完
成した構造は第1図のように重量検出素子7との接触部
分が、ドリルによって削り残された黒塗りで示すドーナ
ツ状の部分となり(C部)、26はドリルによって削り
取られた接触面凹部である。
1 (a) and 1 (b) are structural views of the load transmission member, and FIG. 2 (a) to FIG.
A process drawing is shown in (e). The surface A serves as a contact surface with the weight detection element 7. In this step, first, the metal material 2 which is the base material
After cutting the center part of the A surface of 4 with the drill 26, the tool is fed along the A surface in the B axis direction while rotating the base material at a high speed around the B axis perpendicular to the A surface. Become. In the completed structure, as shown in FIG. 1, the contact portion with the weight detection element 7 becomes a donut-shaped portion shown by black coating which is left uncut by a drill (C portion), and 26 is a contact surface recess cut by the drill. Is.

このようにすれば、荷重はC部のドーナツ状の部分との
接触によって重量検出素子7に伝達されるため、等価的
に加圧面積πr2のフラットな荷重伝達部材と同様の特性
をえられる。したがって、従来のように接触面の平面度
のバラツキによって生じる対荷重の線型性の悪さ、繰り
返し精度の低下、秤量特性の経時変化などの問題点は著
しく低減することができる。なお本発明の意図する点か
らC部の接触部分の面積をより少なくして線接触にする
方がより望ましい。
By doing so, the load is transmitted to the weight detecting element 7 by contact with the doughnut-shaped portion of the C portion, so that the characteristics equivalent to those of the flat load transmitting member having the pressing area πr 2 can be obtained. . Therefore, it is possible to remarkably reduce problems such as poor linearity with respect to load, deterioration of repeatability, and change with time of weighing characteristics, which are caused by variations in flatness of the contact surface as in the conventional case. From the point of view of the present invention, it is more desirable to reduce the area of the contact portion of the portion C to make line contact.

発明の効果 以上のように本発明の重量検出装置は、荷重をうけ、ダ
イアフラム表面に一定加圧面積で荷重を印加するための
荷重伝達手段の構造がダイアフラム接触面の中央部がへ
こんだ凹状の形状、すなわち面でダイアフラムを加圧す
るのではなく面の外輪の線でダイアフラムを加圧する構
成になっている。したがって、線で囲まれた面積に等し
い一定の加圧面積を特別な加工方法を要せず容易にえる
ことができ、従来のフラットな荷重伝達手段にみられた
平面度のばらつきによる加圧面積のばらつき、荷重条件
による加圧面積の変化などはほとんど発生しないので秤
量精度は著しく改善することができる。また、繰り返し
荷重印加での接触面の摩耗による加圧面積の変化も生じ
ないため耐久性においても非常に有利である。
EFFECTS OF THE INVENTION As described above, in the weight detecting device of the present invention, the structure of the load transmitting means for receiving a load and applying the load with a constant pressing area on the diaphragm surface has a concave shape in which the central portion of the diaphragm contact surface is dented. The shape, that is, the structure does not press the diaphragm by the surface, but presses the diaphragm by the line of the outer ring of the surface. Therefore, it is possible to easily obtain a constant pressurizing area equal to the area surrounded by the line without requiring a special processing method, and the pressurizing area due to the flatness variation found in the conventional flat load transmitting means. Since there is almost no variation in the pressure applied area and a change in the pressing area due to the load condition, the weighing accuracy can be significantly improved. Further, since the pressurizing area does not change due to wear of the contact surface under repeated load application, it is very advantageous in durability.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は本発明の一実施例における重量検出装
置の荷重伝達部材の断面図および正面図、第2図(a)〜
(e)は同荷重伝達部材の加工工程図、第3図は同側面
図、第4図は同要部一部切欠斜視図、第5図は同制御回
路のブロック図、第6図は同重量検出素子の分解斜視
図、第7図は従来の重量検出装置の要部断面図、第8図
は重量検出素子の原理説明図、第9図(a)は従来の重量
伝達部材の加工工程図、第9図(b)は同部材の要部断面
図、第10図は従来の荷重伝達部材の接触面の大きさと
感度の関係を示す特性図、第11図は同重量検出素子の
印加荷重と容量の関係を示す特性図である。 1……アルミナ基板(ダイアフラム)、2……電極、3
……シールガラス、4……荷重伝達部材(荷重伝達手
段)、7……重量検出素子。
1 (a) and 1 (b) are a sectional view and a front view of a load transmitting member of a weight detecting device according to an embodiment of the present invention, and FIGS.
(e) is a process drawing of the load transmitting member, FIG. 3 is a side view of the same, FIG. 4 is a partially cutaway perspective view of the same, FIG. 5 is a block diagram of the same control circuit, and FIG. FIG. 7 is an exploded perspective view of the weight detecting element, FIG. 7 is a sectional view of a main part of a conventional weight detecting device, FIG. 8 is an explanatory view of the principle of the weight detecting element, and FIG. Fig. 9 (b) is a sectional view of the main part of the same member, Fig. 10 is a characteristic diagram showing the relationship between the size of the contact surface and the sensitivity of the conventional load transmitting member, and Fig. 11 is the application of the same weight detecting element. It is a characteristic view which shows the relationship between load and capacity. 1 ... Alumina substrate (diaphragm), 2 ... Electrode, 3
...... Seal glass, 4 ...... Load transmission member (load transmission means), 7 ...... Weight detection element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ダイアフラム表面に印加された荷重による
ダイアフラムのたわみ量に依存して物理量が変化する荷
重検出素子と、荷重をうけ前記荷重検出素子のダイアフ
ラム表面に一定加圧面積で荷重を印加するための荷重伝
達手段とを備え、前記荷重伝達手段の形状は前記荷重検
出素子との接触面の中央部がへこみ凹状の形状にした重
量検出装置。
1. A load detecting element whose physical quantity changes depending on the amount of deflection of the diaphragm due to the load applied to the diaphragm surface, and a load which receives the load and applies a constant pressure area to the diaphragm surface of the load detecting element. And a load transmitting means for storing the weight, and the load transmitting means has a shape in which a central portion of a contact surface with the load detecting element has a concave shape.
JP61248725A 1986-10-20 1986-10-20 Weight detector Expired - Lifetime JPH0654267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61248725A JPH0654267B2 (en) 1986-10-20 1986-10-20 Weight detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61248725A JPH0654267B2 (en) 1986-10-20 1986-10-20 Weight detector

Publications (2)

Publication Number Publication Date
JPS63101724A JPS63101724A (en) 1988-05-06
JPH0654267B2 true JPH0654267B2 (en) 1994-07-20

Family

ID=17182418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61248725A Expired - Lifetime JPH0654267B2 (en) 1986-10-20 1986-10-20 Weight detector

Country Status (1)

Country Link
JP (1) JPH0654267B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013024808A (en) * 2011-07-25 2013-02-04 Japan Aerospace Exploration Agency Measuring apparatus and measuring method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135584A (en) * 1978-04-13 1979-10-20 Fuji Electric Co Ltd Electrostatic capacity type measuring apparatus

Also Published As

Publication number Publication date
JPS63101724A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
US4546658A (en) Piezoelectric force/pressure sensor
US4782319A (en) Pressure sensor
EP0299395B1 (en) An automatic weight detecting device
US4523474A (en) Capacitive pressure sensor
EP0333091B1 (en) Transducer for picking-up pressures, vibrations and/or accelerations and converting them into electrical signals
US4838369A (en) Load cell having digital output
US5447074A (en) Strain gauge transducer force or weight measurement arrangement and touch tablet
EP0211519A2 (en) Capacitive differential pressure transducer
US4395908A (en) Means for adjusting the sensitivity of a crystal detector
EP0459939B2 (en) Capacitive acceleration sensor with free diaphragm
CA2169823A1 (en) Screened capacitive sensor
EP0436173B1 (en) Vibrating input pen used for a coordinate input apparatus
JPH0654267B2 (en) Weight detector
US4750082A (en) Capacitive ratiometric load cell
US6633172B1 (en) Capacitive measuring sensor and method for operating same
US4653329A (en) Pressure detector and strain member therefor
JP2514067Y2 (en) Ceramic transformer
US5191949A (en) Weighing apparatus with an adjustable ratio of stresses in the load bearing members
JP3144647B2 (en) Capacitive pressure sensor element
JP2001074569A (en) Planar capacitance type twist strain sensor
JPS6199383A (en) Capacity type displacement sensor
JPH06102128A (en) Semiconductor composite function sensor
JP2631299B2 (en) Weight detector
JP2523658B2 (en) Weight detector
SU1174836A1 (en) Device for measuring coefficient of contact friction of polymeric material