JP2013024808A - Measuring apparatus and measuring method - Google Patents

Measuring apparatus and measuring method Download PDF

Info

Publication number
JP2013024808A
JP2013024808A JP2011162190A JP2011162190A JP2013024808A JP 2013024808 A JP2013024808 A JP 2013024808A JP 2011162190 A JP2011162190 A JP 2011162190A JP 2011162190 A JP2011162190 A JP 2011162190A JP 2013024808 A JP2013024808 A JP 2013024808A
Authority
JP
Japan
Prior art keywords
resistance element
frequency
detection
physical quantity
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011162190A
Other languages
Japanese (ja)
Inventor
Atsushi Kanda
神田  淳
Yutaka Sato
佐藤  裕
Takao Utsunomiya
登雄 宇都宮
Atsushi Saito
敦史 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Shibaura Institute of Technology
Original Assignee
Japan Aerospace Exploration Agency JAXA
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Shibaura Institute of Technology filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2011162190A priority Critical patent/JP2013024808A/en
Publication of JP2013024808A publication Critical patent/JP2013024808A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a measuring apparatus which does not require an analog amplifier, and can highly precisely measure the physical amount of an object to be measured with simple and inexpensive circuit configuration irrespective of an environmental change such as a change in temperature.SOLUTION: A measuring apparatus 100 measures the physical amount of an object T to be measured by calculating the physical amount of the object to be measured from a frequency of an output signal of an oscillation part 120 connected by a resistance element 110 for detection by an operation part 130. The oscillation part 120 has at least one of reference resistance elements 121 having an already-known electrical resistance value, and the resistance element 110 for detection and the reference resistance element 121 can be connected by switching.

Description

本発明は、測定対象の物理量の変化を電気抵抗値の変化に変換する検出用抵抗素子を用いた計測装置に関し、特に、検出用抵抗素子の電気抵抗値を周波数に変換して測定対象の物理量を測定する計測装置および計測方法に関する。   The present invention relates to a measuring device using a detection resistance element that converts a change in a physical quantity to be measured into a change in electrical resistance value, and in particular, converts the electrical resistance value of the detection resistance element into a frequency to measure the physical quantity to be measured. The present invention relates to a measuring apparatus and a measuring method for measuring the above.

従来より、歪みゲージ等の物理量の変化を電気抵抗値の変化に変換する検出用抵抗素子を測定対象に固定して、歪み等の測定対象の物理量の変化を電気抵抗値の変化として測定するものが周知である。
検出用抵抗素子の電気抵抗値を測定する方法としては、ホイートストンブリッジ等の抵抗ブリッジを利用して電圧変化に変換するものが慣用されており、該電圧をアナログアンプで増幅してA/D変換器でデジタル値に変換して出力するものが公知である(特許文献1等参照。)。
Conventionally, a resistance element for detection that converts changes in physical quantities such as strain gauges into changes in electrical resistance is fixed to the measurement object, and changes in physical quantities such as strain are measured as changes in electrical resistance. Is well known.
As a method for measuring the electrical resistance value of the resistance element for detection, a method of converting to a voltage change using a resistance bridge such as a Wheatstone bridge is commonly used, and the voltage is amplified by an analog amplifier to perform A / D conversion. A device that converts a digital value and outputs the digital value is known (see Patent Document 1, etc.).

しかしながら、検出用抵抗素子の電気抵抗値の変化は微小で変換後の電圧変化も微小であることから、これを増幅するためのアナログアンプは、精度が高く、温度等の環境による特性変化の少ないものとする必要があり、安定化や補償等のために回路規模が増大したり、高精度のパーツを使用して、高価なものとなるという問題があった。
このような、アナログアンプの問題を解消するために、発振回路を用いて検出用抵抗素子の電気抵抗値の変化を周波数の変化に変換して出力することで、アナログアンプを省略した回路構成のものが公知である(特許文献2等参照。)。
However, since the change in the electrical resistance value of the detection resistance element is minute and the change in voltage after conversion is also minute, an analog amplifier for amplifying this is highly accurate and has little characteristic change due to the environment such as temperature. There is a problem that the circuit scale is increased for stabilization, compensation, and the like, and expensive parts are required by using high-precision parts.
In order to solve such problems of the analog amplifier, a circuit configuration in which the analog amplifier is omitted by converting the change in the electric resistance value of the detection resistance element into a change in frequency using an oscillation circuit and outputting the change. Are known (see Patent Document 2).

特開2000−163683号公報JP 2000-163683 A 特開2005−300519号公報Japanese Patent Laid-Open No. 2005-300519

しかしながら、公知の前記特許文献2によっても、高価なアナログアンプは不要となるものの、発振回路に含まれるキャパシタを始めとする回路素子の周波数特性や温度等の環境による特性変化が計測値の精度に影響を与えるという問題があった。
特に、検出用抵抗素子の電気抵抗値の変化が微小であるため、回路自身が有する内部抵抗等,回路自身の状態変化の影響が極めて大きく、計測値の精度に与える影響は極めて大きいという問題があった。
これらの影響を軽減するためには、発振回路を温度等の環境による特性変化の少ないものとする必要があり、その安定化や補償等のために高精度のパーツを使用し、複雑な回路構成としなければならず、極めて高価なものとなるという問題があった。
また、長期間にわたって測定対象の物理量の変化をモニタリングするような場合は、これらの特性変化を完全に排除することは困難であることから、測定開始前に正確に校正したとしても、長期間にわたったモニタリングには対処できなかった。
However, according to the known Patent Document 2, an expensive analog amplifier is not required, but the frequency characteristics of circuit elements including a capacitor included in the oscillation circuit, and changes in characteristics due to the environment such as temperature, make the measurement value accurate. There was a problem of affecting.
In particular, since the change in the electrical resistance value of the detection resistance element is minute, the influence of the state change of the circuit itself, such as the internal resistance of the circuit itself, is extremely large, and the influence on the accuracy of the measurement value is extremely large. there were.
In order to reduce these effects, it is necessary to make the oscillation circuit less susceptible to changes in characteristics due to the environment such as temperature, etc., and use complicated parts with high precision parts for stabilization and compensation. There was a problem that it would be extremely expensive.
In addition, when monitoring changes in the physical quantity of the measurement target over a long period of time, it is difficult to completely eliminate these characteristic changes. I couldn't cope with the extensive monitoring.

そこで、本発明は、前記した問題点を解決するものであり、アナログアンプを不要とするとともに、簡単で安価な回路構成で、温度等の環境変化があっても測定対象の物理量を高精度に測定することが可能な計測装置および計測方法を提供することを目的とするものである。   Accordingly, the present invention solves the above-described problems, eliminates the need for an analog amplifier, and with a simple and inexpensive circuit configuration, allows the physical quantity to be measured to be accurately measured even when there is an environmental change such as temperature. An object of the present invention is to provide a measuring device and a measuring method capable of measuring.

本請求項1に係る発明は、測定対象の物理量の変化を電気抵抗値の変化に変換する検出用抵抗素子と、該検出用抵抗素子が接続されその電気抵抗値に応じた周波数の出力信号を出力する発振部と、前記出力信号の周波数から測定対象の物理量を演算する演算部とを有して、測定対象の物理量を測定する計測装置であって、前記発振部が、既知の電気抵抗値を持つ基準抵抗素子を少なくとも1つ有し、前記検出用抵抗素子と該基準抵抗素子とを切替えて接続可能に構成されていることにより、前記課題を解決するものである。   According to the first aspect of the present invention, a detection resistance element that converts a change in a physical quantity to be measured into a change in electrical resistance value, and an output signal having a frequency corresponding to the electrical resistance value when the detection resistance element is connected. The measuring device includes an oscillating unit that outputs, and an arithmetic unit that calculates a physical quantity to be measured from the frequency of the output signal, and measures the physical quantity to be measured, wherein the oscillating unit has a known electrical resistance value. The above-mentioned problem is solved by having at least one reference resistance element having the above-mentioned and being configured to be connectable by switching between the detection resistance element and the reference resistance element.

本請求項2に係る発明は、請求項1に係る計測装置の構成に加え、前記発振部が、異なる電気抵抗値を持つ複数の基準抵抗素子を有し、前記検出用抵抗素子と該複数の基準抵抗素子とを切替えて接続可能に構成されていることにより、前記課題を解決するものである。   In the invention according to claim 2, in addition to the configuration of the measurement device according to claim 1, the oscillation unit includes a plurality of reference resistance elements having different electric resistance values, and the detection resistance element and the plurality of the resistance elements By switching the reference resistance element and being connectable, the above-described problems are solved.

本請求項3に係る発明は、請求項1または請求項2に係る計測装置の構成に加え、前記発振部が、前記検出用抵抗素子と基準抵抗素子の切替えを自動的に行うことにより、前記課題を解決するものである。   In the invention according to claim 3, in addition to the configuration of the measurement device according to claim 1 or claim 2, the oscillating unit automatically switches between the detection resistance element and the reference resistance element. It solves the problem.

本請求項4に係る発明は、請求項1乃至請求項3のいずれかに係る計測装置の構成に加え、前記発振部が、温度影響特性が既知の温度補償用抵抗素子をさらに有していることにより、前記課題を解決するものである。   In the invention according to claim 4, in addition to the configuration of the measuring device according to any one of claims 1 to 3, the oscillating unit further includes a temperature compensating resistance element whose temperature influence characteristic is known. This solves the problem.

本請求項5に係る発明は、請求項1乃至請求項4のいずれかに係る計測装置の構成に加え、前記演算部が、所定時間の前記出力信号の波数を計数し、該波数から前記所定時間の平均周波数を算出して測定対象の物理量を演算することにより、前記課題を解決するものである。   In the invention according to claim 5, in addition to the configuration of the measuring device according to any one of claims 1 to 4, the calculation unit counts the wave number of the output signal for a predetermined time, and calculates the predetermined wave number from the wave number. The problem is solved by calculating an average frequency of time and calculating a physical quantity to be measured.

本請求項6に係る発明は、請求項5に係る計測装置の構成に加え、前記演算部が、前記所定時間を変更設定可能に構成されていることにより、前記課題を解決するものである。   In addition to the configuration of the measurement apparatus according to claim 5, the invention according to claim 6 solves the above-described problem by the calculation unit being configured to be able to change and set the predetermined time.

本請求項7に係る発明は、請求項1乃至請求項6のいずれかに係る計測装置の構成に加え、前記発振部が、CMOSインバータを有し、接続された前記検出用抵抗素子の電気抵抗値に応じた周波数のパルス信号を出力することにより、前記課題を解決するものである。   According to the seventh aspect of the present invention, in addition to the configuration of the measuring device according to any one of the first to sixth aspects, the oscillation unit includes a CMOS inverter, and the electrical resistance of the connected detection resistive element The problem is solved by outputting a pulse signal having a frequency corresponding to the value.

本請求項8に係る発明は、測定対象の物理量の変化を電気抵抗値の変化に変換する検出用抵抗素子と、該検出用抵抗素子が接続されその電気抵抗値に応じた周波数の出力信号を出力する発振部と、前記出力信号の周波数から測定対象の物理量を演算する演算部とを有して、測定対象の物理量を測定する計測方法であって、前記発振部が、既知の電気抵抗値を持つ基準抵抗素子を少なくとも1つ有し、前記検出用抵抗素子と該基準抵抗素子とを切替えて接続可能に構成されており、基準抵抗素子を接続した際の出力信号の周波数と該基準抵抗素子の電気抵抗値との積から、積が周波数の1次関数となるように関数を設定し、検出用抵抗素子を接続した際の周波数を、前記関数に代入して検出用抵抗素子の電気抵抗値を演算し、該演算された電気抵抗値から測定対象の物理量を測定することにより、前記課題を解決するものである。   The invention according to claim 8 is a detection resistance element that converts a change in a physical quantity to be measured into a change in electrical resistance value, and an output signal having a frequency corresponding to the electrical resistance value to which the detection resistance element is connected. A measuring method for measuring a physical quantity to be measured, comprising an oscillating section for outputting and a computing section for computing a physical quantity to be measured from the frequency of the output signal, wherein the oscillating section has a known electrical resistance value The reference resistance element having at least one of the reference resistance elements is configured to be connectable by switching between the detection resistance element and the reference resistance element, the frequency of the output signal when the reference resistance element is connected, and the reference resistance The function is set so that the product becomes a linear function of the frequency from the product of the electrical resistance value of the element, and the frequency when the detection resistive element is connected is substituted into the function to calculate the electrical resistance of the detection resistive element. The resistance value is calculated and the calculated electricity By measuring the physical quantity of a measurement target from the anti-value, it is to solve the above problems.

本請求項9に係る発明は、請求項8に係る計測方法の構成に加え、前記発振部が、異なる電気抵抗値を持つ複数の基準抵抗素子を有し、前記周波数の1次関数となるように関数を設定する際に、複数の基準抵抗素子の電気抵抗値とそれぞれの計測された周波数の積を求め、求められた複数の積から、最小二乗法によって積が周波数の1次関数となるように関数を設定することにより、前記課題を解決するものである。   In the invention according to claim 9, in addition to the configuration of the measurement method according to claim 8, the oscillating unit includes a plurality of reference resistance elements having different electric resistance values, and is a linear function of the frequency. When the function is set to, the product of the electrical resistance values of the plurality of reference resistance elements and the respective measured frequencies is obtained, and the product becomes a linear function of the frequency by the least square method from the obtained plurality of products. By setting the function as described above, the above-mentioned problem is solved.

本請求項1に係る計測装置および本請求項8に係る計測方法によれば、測定対象の物理量の計測前、あるいは、計測中に既知の電気抵抗値を持つ基準抵抗素子に切替えることが可能となり、基準抵抗素子が接続された際の周波数を計測することで、随時、温度等の環境変化による発振回路の特性変化を特定し、測定された周波数と測定対象の物理量との関係を簡単に校正することができる。
したがって、発振回路の環境変動に対する安定化や補償等のために高精度のパーツを使用したり、複雑な回路構成とする必要がなく、簡単で安価な回路構成で、温度等の環境変化があっても測定対象の物理量を高精度に測定することが可能となる。
本請求項9に記載の構成によれば、測定された周波数と測定対象の物理量との関係をより高精度に校正することができ、測定対象の物理量をさらに高精度に測定することが可能となる。
According to the measuring apparatus according to claim 1 and the measuring method according to claim 8, it is possible to switch to a reference resistance element having a known electric resistance value before or during measurement of a physical quantity to be measured. By measuring the frequency when the reference resistance element is connected, the characteristics of the oscillation circuit due to changes in the environment, such as temperature, are identified as needed, and the relationship between the measured frequency and the physical quantity to be measured is easily calibrated. can do.
Therefore, there is no need to use high-precision parts to stabilize or compensate for environmental fluctuations of the oscillation circuit, or to make a complicated circuit configuration. However, the physical quantity to be measured can be measured with high accuracy.
According to the configuration of the ninth aspect, the relationship between the measured frequency and the physical quantity to be measured can be calibrated with higher accuracy, and the physical quantity to be measured can be measured with higher accuracy. Become.

本請求項2に記載の構成によれば、複数の既知の電気抵抗値を持つ基準抵抗素子が接続された際の周波数を計測することで、より精度良く温度等の環境変化による特性変化の影響を特定することが可能となり、より正確に測定された周波数と測定対象の物理量との関係を校正することができる。
本請求項3に記載の構成によれば、長期間にわたって測定対象の物理量の変化をモニタリングするような場合であっても、人手を介することなく、適宜の間隔で基準抵抗素子に切り替えて自動的に温度等の環境変化による特性変化を特定し、測定された周波数と測定対象の物理量との関係を正確に校正することで、常に測定対象の物理量を高精度に測定することが可能となる。
本請求項4に記載の構成によれば、基準抵抗素子や回路内部の電気抵抗値、静電容量等の温度による変化があったとしても、温度補償用抵抗素子によってさらにそれを校正することが可能となるため、測定された周波数と測定対象の物理量との関係を正確に校正することが可能となり、基準抵抗素子として温度による特性変化のない高価なものを使用することなく、より高精度に測定することが可能となる。
According to the configuration of the second aspect of the present invention, by measuring the frequency when a plurality of reference resistance elements having known electrical resistance values are connected, the influence of characteristic changes due to environmental changes such as temperature can be more accurately performed. Can be specified, and the relationship between the frequency measured more accurately and the physical quantity to be measured can be calibrated.
According to the configuration of the third aspect of the present invention, even when monitoring the change in the physical quantity of the measurement target over a long period of time, it is automatically switched to the reference resistance element at an appropriate interval without manual intervention. In addition, it is possible to always measure the physical quantity of the measurement target with high accuracy by specifying the characteristic change due to the environmental change such as temperature and accurately calibrating the relationship between the measured frequency and the physical quantity of the measurement target.
According to the configuration of the present invention, even if there is a change due to temperature such as the reference resistance element, the electric resistance value inside the circuit, or the capacitance, it can be further calibrated by the temperature compensating resistance element. This makes it possible to accurately calibrate the relationship between the measured frequency and the physical quantity to be measured, and without using an expensive reference resistance element that does not change characteristics due to temperature. It becomes possible to measure.

本請求項5に記載の構成によれば、所定時間内の平均周波数を算出して測定対象の物理量を演算することにより、発振部から出力される出力信号に高周波ノイズ等が含まれても、その影響を排除することが可能となり、フィルタ回路等を付加することなく簡単な構成で測定対象の物理量を高精度に測定することが可能となる。
本請求項6に記載の構成によれば、測定対象の物理量の長期間にわたる微小な変化をモニタリングする際に計測のサンプリング周期を大きくしても、所定時間を長く設定することにより、計測時以外に発生した一時的な測定対象の物理量の変化を所定時間内の平均周波数の変化として検出することが可能となり、測定対象の物理量の測定の態様に応じた測定値を得ることが可能となる。
本請求項7に記載の構成によれば、出力信号がパルス状となることにより、発振部の出力信号にノイズ等が含まれていても、複雑なフィルタ回路等を設けることなく正確に波数の計数が可能となり、発振部や演算部の構成をより簡単なものとすることができる。
According to the configuration of claim 5, even if high frequency noise or the like is included in the output signal output from the oscillating unit by calculating an average frequency within a predetermined time and calculating a physical quantity to be measured, The influence can be eliminated, and the physical quantity to be measured can be measured with high accuracy with a simple configuration without adding a filter circuit or the like.
According to the configuration of the sixth aspect, even when the measurement sampling cycle is increased when monitoring a minute change in the physical quantity of the measurement target over a long period of time, by setting the predetermined time longer, the time other than the measurement time It is possible to detect a change in the physical quantity of the measurement target temporarily generated as a change in the average frequency within a predetermined time, and it is possible to obtain a measurement value corresponding to the measurement mode of the physical quantity of the measurement target.
According to the configuration of the seventh aspect of the invention, since the output signal is in a pulse shape, even if noise is included in the output signal of the oscillating unit, the wave number can be accurately adjusted without providing a complicated filter circuit or the like. Counting is possible, and the configuration of the oscillation unit and the calculation unit can be simplified.

本発明の計測装置の基本構成概略図。The basic composition schematic of the measuring device of the present invention. 本発明の第1実施例である計測装置の発振部の回路説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit explanatory diagram of an oscillation unit of a measuring apparatus according to a first embodiment of the present invention. 連続モニタリング時の計測結果を示す説明図。Explanatory drawing which shows the measurement result at the time of continuous monitoring. 基準抵抗素子による補正の有無による計測結果の比較図。The comparison figure of the measurement result by the presence or absence of correction | amendment by a reference resistance element.

本発明の一実施例の計測装置100は、図1に模式的に示すように、測定対象Tに検出用抵抗素子である歪センサー110を貼付し、該歪センサー110の電気抵抗値を測定することで、測定対象Tの歪を測定するものである。
歪センサー110は、発振部120に接続され、発振部120は歪センサー110の電気抵抗値に応じた周波数のパルス信号を出力信号として出力する。
発振部120から出力された出力信号は、演算部130に入力され、演算部130は、任意に設定される所定時間(以下「ゲート時間」と言う)の出力信号のパルス波数を計数することで、ゲート時間における平均周波数を算出し、該周波数から測定対象Tの歪量を演算する。
なお、演算部130で演算された測定対象Tの歪量は、演算部130が表示部を備えて直接表示されるようにしても良く、計測データとしてさらに外部に出力するようにしても良い。
また、演算部130に記憶部を設けて、複数回の計測データを演算部内に記憶し、履歴として保持するようにしても良い。
As schematically shown in FIG. 1, the measuring apparatus 100 according to an embodiment of the present invention attaches a strain sensor 110 that is a detection resistance element to a measurement target T, and measures the electrical resistance value of the strain sensor 110. Thus, the distortion of the measurement target T is measured.
The strain sensor 110 is connected to the oscillation unit 120, and the oscillation unit 120 outputs a pulse signal having a frequency corresponding to the electrical resistance value of the strain sensor 110 as an output signal.
The output signal output from the oscillation unit 120 is input to the calculation unit 130, and the calculation unit 130 counts the pulse wave number of the output signal for a predetermined time (hereinafter referred to as “gate time”) that is arbitrarily set. The average frequency in the gate time is calculated, and the distortion amount of the measurement target T is calculated from the frequency.
Note that the distortion amount of the measurement target T calculated by the calculation unit 130 may be displayed directly by the calculation unit 130 with a display unit, or may be further output to the outside as measurement data.
In addition, a storage unit may be provided in the calculation unit 130 so that measurement data of a plurality of times is stored in the calculation unit and held as a history.

計測装置100の具体的な機器の形態として、検出用抵抗素子である歪センサー110は従来慣用されたもので良く、発振部120と演算部130は、別個の筐体であっても同一の筐体に組み込まれても良く、発振部120と演算部130の機能が存在すれば、どのような形態であっても良い。
また、発振部120あるいは演算部130の機能の他に、様々な付加的な機能が組み込まれても良く、複数の発振部120あるいは演算部130の機能を物理的に1つの装置内で実現させても良い。
As a specific form of the measuring apparatus 100, the strain sensor 110, which is a resistance element for detection, may be conventionally used, and the oscillation unit 120 and the calculation unit 130 may be the same case even if they are separate cases. Any form may be employed as long as the functions of the oscillation unit 120 and the calculation unit 130 exist.
In addition to the functions of the oscillating unit 120 or the arithmetic unit 130, various additional functions may be incorporated, and the functions of the plurality of oscillating units 120 or the arithmetic units 130 are physically realized in one apparatus. May be.

発振部120は、図2に示すように、前段のCMOSインバータ124の出力を後段のCMOSインバータ125の入力に接続するとともに、測定すべき検出用抵抗素子である歪センサー110の一方の端子を、前段のCMOSインバータ124の出力(後段のCMOSインバータ125の入力)に、測定すべき検出用抵抗素子である歪センサー110の他方の端子を、前段のCMOSインバータ124の入力、および、キャパシタ126を介して後段のCMOSインバータ125の出力に接続することで、後段のCMOSインバータ125の出力から、測定すべき検出用抵抗素子である歪センサー110の電気抵抗値に応じた周波数を有するパルス状の出力信号127を生成するように構成されている。   As shown in FIG. 2, the oscillating unit 120 connects the output of the preceding CMOS inverter 124 to the input of the subsequent CMOS inverter 125, and connects one terminal of the strain sensor 110, which is a detection resistive element to be measured, The other terminal of the strain sensor 110, which is a detection resistive element to be measured, is connected to the output of the preceding CMOS inverter 124 (the input of the subsequent CMOS inverter 125) via the input of the preceding CMOS inverter 124 and the capacitor 126. By connecting to the output of the subsequent CMOS inverter 125, a pulse-like output signal having a frequency corresponding to the electric resistance value of the strain sensor 110, which is a resistance element for detection, is measured from the output of the subsequent CMOS inverter 125. 127 is generated.

接続される歪センサー110は、切替回路122によって複数の既知の電気抵抗値を持つ基準抵抗素子121(本実施例では電気抵抗値の異なる3つの基準抵抗素子121)と切り替えることが可能に構成されている。
なお、内部抵抗123は発振回路の周波数に影響する内部抵抗を代表して図示したものであり、また、CMOSインバータ124、125に供給する電源回路は図示を省略している。
The strain sensor 110 to be connected is configured to be able to be switched to a plurality of reference resistance elements 121 having a known electric resistance value (three reference resistance elements 121 having different electric resistance values in this embodiment) by a switching circuit 122. ing.
The internal resistor 123 is shown as a representative internal resistor that affects the frequency of the oscillation circuit, and the power supply circuit supplied to the CMOS inverters 124 and 125 is not shown.

以上の構成の計測装置100の計測動作について説明する。
演算部130は、発振部120の出力信号127の周波数と電気抵抗値の関係、および該電気抵抗値と測定対象Tの歪量の関係の演算式、あるいは、直接の対応マップ等を記憶保持している。
温度等の環境変化によって内部抵抗123、CMOSインバータ124、125、キャパシタ126の特性が変化するため、実際の計測に先立ち、発振部120の切替回路によって基準抵抗素子121を接続して発振部120の出力信号127の周波数を測定し、前記記憶保持されている出力信号127の周波数と電気抵抗値の関係を校正する。
この時、異なる電気抵抗を持つ複数の基準抵抗素子121を接続して、それぞれの発振部120の出力信号127の周波数を測定することで、より正確に校正をすることが可能となる。
また、複数の基準抵抗素子121の内の少なくとも1つを、温度と電気抵抗値の関係が既知の温度補償用抵抗素子とすることで、さらに正確に校正をすることが可能となる。
A measurement operation of the measurement apparatus 100 having the above configuration will be described.
The calculation unit 130 stores and holds a relationship between the frequency of the output signal 127 of the oscillating unit 120 and the electrical resistance value, an arithmetic expression of the relationship between the electrical resistance value and the distortion amount of the measurement target T, or a direct correspondence map. ing.
Since the characteristics of the internal resistance 123, the CMOS inverters 124 and 125, and the capacitor 126 change due to environmental changes such as temperature, the reference resistance element 121 is connected by the switching circuit of the oscillation unit 120 prior to actual measurement, and the oscillation unit 120 The frequency of the output signal 127 is measured, and the relationship between the stored frequency of the output signal 127 and the electrical resistance value is calibrated.
At this time, it is possible to calibrate more accurately by connecting a plurality of reference resistance elements 121 having different electric resistances and measuring the frequency of the output signal 127 of each oscillation unit 120.
Further, at least one of the plurality of reference resistance elements 121 is a temperature compensation resistance element having a known relationship between temperature and electric resistance value, thereby enabling more accurate calibration.

演算部130における発振部120の出力信号127の周波数の測定は、任意に設定されるゲート時間の出力信号127のパルス波数を計数することで、ゲート時間における平均周波数として算出することで測定するように構成されている。
したがって、測定対象Tの微小な歪の増減であっても、ゲート時間を長く設定することによって、ノイズ等による計測誤差の影響を低減することが可能となる。
また、測定対象Tの歪を長期間にわたってモニタリングする場合、適宜の周期で前述した校正動作を自動的に行うことで、環境変化が生じた場合でも常に正確な計測を行うことができる。
The frequency of the output signal 127 of the oscillation unit 120 in the arithmetic unit 130 is measured by calculating the average frequency in the gate time by counting the pulse wave number of the output signal 127 of the gate time that is arbitrarily set. It is configured.
Therefore, even if the distortion of the measurement target T is increased or decreased, the influence of the measurement error due to noise or the like can be reduced by setting the gate time longer.
In addition, when monitoring the distortion of the measurement target T over a long period of time, the above-described calibration operation is automatically performed at an appropriate period, so that accurate measurement can always be performed even when an environmental change occurs.

さらに、長期間のモニタリングの際の計測値のサンプリング周期を長くとった場合でも、当該サンプリング周期と同等のゲート時間を設定することによって、サンプリング周期中の測定対象Tの歪の変化も、測定される平均周波数の変化として計測することが可能となる。
例えば、図3に示すように、t1およびt2の時点で計測するようなサンプリング周期が設定されており、測定対象Tの歪の変化がt1とt2の間にAからBに変化し再びAに戻ったような場合、従来のホイートストンブリッジ等による測定では、図3(a)に示すようにt1でもt2でも計測値はAとなるため、そのサンプリング期間の測定対象Tの歪はAであると推定することとなり、変化があったことを検出することが出来ない。
しかしながら、本発明の実施例によれば、図3(b)に示すように、ゲート時間Gをサンプリング周期と同等とすることにより、t1からt2までの波数を計数してその平均周波数からそのサンプリング期間の測定対象Tの歪の平均値はCであると推定することが可能となり、その変化を検出することが可能となる。
Furthermore, even when the sampling period of the measurement value during long-term monitoring is set long, by setting a gate time equivalent to the sampling period, a change in distortion of the measurement target T during the sampling period is also measured. It is possible to measure as a change in average frequency.
For example, as shown in FIG. 3, a sampling period is set such that measurement is performed at time points t1 and t2, and a change in distortion of the measurement target T changes from A to B between t1 and t2, and then changes to A again. In such a case, in the measurement using the conventional Wheatstone bridge or the like, the measurement value is A at both t1 and t2 as shown in FIG. 3A, and therefore the distortion of the measurement target T during the sampling period is A. It will be estimated, and it cannot be detected that there has been a change.
However, according to the embodiment of the present invention, as shown in FIG. 3 (b), the number of waves from t1 to t2 is counted and the sampling is performed from the average frequency by making the gate time G equal to the sampling period. It is possible to estimate that the average value of the distortion of the measurement target T during the period is C, and it is possible to detect the change.

次に、本発明の計測方法の一実施例について説明する。
まず、上述した計測装置100において、歪センサー110による計測前に、複数の基準抵抗素子121を切り替えて接続して、それぞれの基準抵抗素子121が接続された際の発振部120の出力信号127の周波数を演算部130で計測する。
演算部130では、複数の基準抵抗素子121の電気抵抗値とそれぞれの計測された周波数の積を求め、求められた複数の積から、最小二乗法により積が周波数の1次関数となるように関数を設定する。
その後、歪センサー110を接続して、発振部120の出力信号127の周波数を演算部130で計測し、該周波数を前記設定された関数に代入して歪センサー110の電気抵抗値を演算し、該演算された電気抵抗値から測定対象の物理量を測定する。
Next, an embodiment of the measuring method of the present invention will be described.
First, in the measurement apparatus 100 described above, a plurality of reference resistance elements 121 are switched and connected before measurement by the strain sensor 110, and the output signal 127 of the oscillation unit 120 when each reference resistance element 121 is connected is switched. The frequency is measured by the calculation unit 130.
The arithmetic unit 130 obtains a product of the electrical resistance values of the plurality of reference resistance elements 121 and the respective measured frequencies so that the product becomes a linear function of frequency by the least square method from the obtained plurality of products. Set the function.
Thereafter, the strain sensor 110 is connected, the frequency of the output signal 127 of the oscillation unit 120 is measured by the calculation unit 130, the electric resistance value of the strain sensor 110 is calculated by substituting the frequency into the set function, A physical quantity to be measured is measured from the calculated electrical resistance value.

図4(a)は、上記の基準抵抗素子121による校正を行わず、計測装置の理論値のみによる測定対象の物理量の測定結果を示し、図4(b)は、上記の基準抵抗素子121による計測を行って校正した場合の測定対象の物理量の測定結果を示している。
なお、両図とも、計測精度の高いブリッジ回路による測定対象の物理量の測定結果を◆で示している。
FIG. 4A shows the measurement result of the physical quantity to be measured based only on the theoretical value of the measuring device without performing calibration with the reference resistance element 121, and FIG. 4B shows the measurement result with the reference resistance element 121. The measurement result of the physical quantity to be measured when the measurement is performed and calibrated is shown.
In both figures, the measurement results of the physical quantity to be measured by the bridge circuit with high measurement accuracy are indicated by ◆.

図4に示すとおり、発振部120の出力をそのまま理論値のみで物理量に換算しただけでは、計測精度が大幅に下がっているのに対し、本発明の計測方法を適用して校正した場合は精度が大幅に向上していることがわかる。
すなわち、未知の内部抵抗値や静電容量の変動誤差分が存在していても、複数の電気抵抗値と周波数の積から最小二乗法で関数を設定することで、それらの誤差分を含めて校正することが可能となり、精度が大幅に向上する。
なお、電気抵抗値の変化が数%程度の歪センサー110においては、上述したような1次関数近似でも十分な精度が得られるが、当然、さらに精度を高めるよう関数を多項式として設定しても良い。
また、図4から見て明らかなように、荷重ゼロの場合、測定対象の物理量の測定結果の誤差はほとんどないことから、基準抵抗素子121による計測を1つの基準抵抗素子121での1回のみとして、1次関数を設定し、校正のための演算量や処理時間を短縮しても良い。
As shown in FIG. 4, when the output of the oscillation unit 120 is converted into a physical quantity using only the theoretical value as it is, the measurement accuracy is significantly lowered, whereas when the calibration is applied using the measurement method of the present invention, the accuracy is reduced. It can be seen that is significantly improved.
In other words, even if there are unknown internal resistance values and capacitance fluctuation errors, by setting the function using the least square method from the product of multiple electrical resistance values and frequencies, including those errors Calibration is possible, and accuracy is greatly improved.
In the strain sensor 110 whose change in electrical resistance value is about several percent, sufficient accuracy can be obtained even by the linear function approximation as described above. Naturally, the function may be set as a polynomial so as to further improve the accuracy. good.
Further, as apparent from FIG. 4, when there is no load, there is almost no error in the measurement result of the physical quantity to be measured. Therefore, the measurement by the reference resistance element 121 is performed only once with one reference resistance element 121. As an alternative, a linear function may be set to shorten the calculation amount and processing time for calibration.

本発明の計測装置および計測方法は、上記実施例では、検出用抵抗素子として歪センサー110を用い、測定対象Tの歪を計測するものとしたが、検出用抵抗素子として、温度、圧力、磁気等の他のいかなる物理量によって抵抗が変化するものを使用してもよく、歪のみならず、様々な物理量の計測装置および計測方法として利用可能である。   In the measurement apparatus and the measurement method of the present invention, in the above embodiment, the strain sensor 110 is used as the detection resistance element and the strain of the measurement target T is measured. However, as the detection resistance element, temperature, pressure, magnetic Any other physical quantity whose resistance varies depending on any other physical quantity may be used, and it can be used as a measuring device and a measuring method for various physical quantities as well as distortion.

100 ・・・ 計測装置
110 ・・・ 歪センサー(検出用抵抗素子)
120 ・・・ 発振部
121 ・・・ 基準抵抗素子
122 ・・・ 切替回路
123 ・・・ 内部抵抗
124 ・・・ CMOSインバータ
125 ・・・ CMOSインバータ
126 ・・・ キャパシタ
127 ・・・ 出力信号
130 ・・・ 演算部
DESCRIPTION OF SYMBOLS 100 ... Measuring device 110 ... Strain sensor (resistive element for detection)
120 ... Oscillator 121 ... Reference resistance element 122 ... Switching circuit 123 ... Internal resistance 124 ... CMOS inverter 125 ... CMOS inverter 126 ... Capacitor 127 ... Output signal 130 ..Calculation unit

Claims (9)

測定対象の物理量の変化を電気抵抗値の変化に変換する検出用抵抗素子と、該検出用抵抗素子が接続されその電気抵抗値に応じた周波数の出力信号を出力する発振部と、前記出力信号の周波数から測定対象の物理量を演算する演算部とを有して、測定対象の物理量を測定する計測装置であって、
前記発振部が、既知の電気抵抗値を持つ基準抵抗素子を少なくとも1つ有し、前記検出用抵抗素子と該基準抵抗素子とを切替えて接続可能に構成されていることを特徴とする計測装置。
A detection resistance element that converts a change in a physical quantity to be measured into a change in electrical resistance value, an oscillation unit that is connected to the detection resistance element and outputs an output signal having a frequency corresponding to the electrical resistance value, and the output signal A measurement device that measures a physical quantity of a measurement target, having a calculation unit that calculates the physical quantity of the measurement target from the frequency of
The oscillation device includes at least one reference resistance element having a known electrical resistance value, and is configured to be able to connect the detection resistance element and the reference resistance element by switching. .
前記発振部が、異なる電気抵抗値を持つ複数の基準抵抗素子を有し、前記検出用抵抗素子と該複数の基準抵抗素子とを切替えて接続可能に構成されていることを特徴とする請求項1に記載の計測装置。   The oscillation unit includes a plurality of reference resistance elements having different electric resistance values, and is configured to be connectable by switching between the detection resistance element and the plurality of reference resistance elements. 1. The measuring device according to 1. 前記発振部が、前記検出用抵抗素子と基準抵抗素子の切替えを自動的に行うことを特徴とする請求項1または請求項2に記載の計測装置。   The measuring apparatus according to claim 1, wherein the oscillation unit automatically switches between the detection resistance element and the reference resistance element. 前記発振部が、温度影響特性が既知の温度補償用抵抗素子をさらに有していることを特徴とする請求項1乃至請求項3のいずれかに記載の計測装置。   The measuring device according to claim 1, wherein the oscillating unit further includes a temperature compensating resistance element whose temperature influence characteristic is known. 前記演算部が、所定時間の前記出力信号の波数を計数し、該波数から前記所定時間の平均周波数を算出して測定対象の物理量を演算することを特徴とする請求項1乃至請求項4のいずれかに記載の計測装置。   5. The calculation unit according to claim 1, wherein the calculation unit counts the wave number of the output signal for a predetermined time, calculates an average frequency for the predetermined time from the wave number, and calculates a physical quantity to be measured. The measuring device according to any one of the above. 前記演算部が、前記所定時間を変更設定可能に構成されていることを特徴とする請求項5に記載の計測装置。   The measurement apparatus according to claim 5, wherein the calculation unit is configured to change and set the predetermined time. 前記発振部が、CMOSインバータを有し、接続された前記検出用抵抗素子の電気抵抗値に応じた周波数のパルス信号を出力することを特徴とする請求項1乃至請求項6のいずれかに記載の計測装置。   The said oscillation part has a CMOS inverter, and outputs the pulse signal of the frequency according to the electrical resistance value of the said resistance element for a detection connected. Measuring device. 測定対象の物理量の変化を電気抵抗値の変化に変換する検出用抵抗素子と、該検出用抵抗素子が接続されその電気抵抗値に応じた周波数の出力信号を出力する発振部と、前記出力信号の周波数から測定対象の物理量を演算する演算部とを有して、測定対象の物理量を測定する計測方法であって、
前記発振部が、既知の電気抵抗値を持つ基準抵抗素子を少なくとも1つ有し、前記検出用抵抗素子と該基準抵抗素子とを切替えて接続可能に構成されており、
基準抵抗素子を接続した際の出力信号の周波数と該基準抵抗素子の電気抵抗値との積から、積が周波数の1次関数となるように関数を設定し、
検出用抵抗素子を接続した際の周波数を、前記関数に代入して検出用抵抗素子の電気抵抗値を演算し、
該演算された電気抵抗値から測定対象の物理量を測定することを特徴とする計測方法。
A detection resistance element that converts a change in a physical quantity to be measured into a change in electrical resistance value, an oscillation unit that is connected to the detection resistance element and outputs an output signal having a frequency corresponding to the electrical resistance value, and the output signal A measurement method for measuring the physical quantity of the measurement object, comprising a calculation unit that calculates the physical quantity of the measurement object from the frequency of
The oscillating unit has at least one reference resistance element having a known electric resistance value, and is configured to be connectable by switching between the detection resistance element and the reference resistance element,
From the product of the frequency of the output signal when the reference resistance element is connected and the electrical resistance value of the reference resistance element, set the function so that the product is a linear function of the frequency,
Substituting the frequency at the time of connecting the resistance element for detection into the function, the electric resistance value of the resistance element for detection is calculated,
A measurement method characterized by measuring a physical quantity to be measured from the calculated electrical resistance value.
前記発振部が、異なる電気抵抗値を持つ複数の基準抵抗素子を有し、
前記周波数の1次関数となるように関数を設定する際に、複数の基準抵抗素子の電気抵抗値とそれぞれの計測された周波数の積を求め、
求められた複数の積から、最小二乗法によって積が周波数の1次関数となるように関数を設定することを特徴とする請求項8に記載の計測方法。
The oscillation unit has a plurality of reference resistance elements having different electrical resistance values,
When setting the function to be a linear function of the frequency, obtain the product of the electrical resistance values of the plurality of reference resistance elements and the respective measured frequencies,
9. The measurement method according to claim 8, wherein a function is set from a plurality of obtained products so that the product becomes a linear function of frequency by a least square method.
JP2011162190A 2011-07-25 2011-07-25 Measuring apparatus and measuring method Pending JP2013024808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011162190A JP2013024808A (en) 2011-07-25 2011-07-25 Measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162190A JP2013024808A (en) 2011-07-25 2011-07-25 Measuring apparatus and measuring method

Publications (1)

Publication Number Publication Date
JP2013024808A true JP2013024808A (en) 2013-02-04

Family

ID=47783307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162190A Pending JP2013024808A (en) 2011-07-25 2011-07-25 Measuring apparatus and measuring method

Country Status (1)

Country Link
JP (1) JP2013024808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105626A (en) * 2017-11-13 2019-06-27 株式会社村田製作所 Method and device for cancelling wiring capacity
WO2021145428A1 (en) * 2020-01-15 2021-07-22 常生 山内 Output device for sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101724A (en) * 1986-10-20 1988-05-06 Matsushita Electric Ind Co Ltd Weight detector
JPH0843213A (en) * 1994-07-29 1996-02-16 T & D:Kk Instrument for measuring temperature, etc.
JPH08181329A (en) * 1994-12-22 1996-07-12 Matsushita Electric Works Ltd Pressure sensor and manufacture of pressure sensor
JPH11248547A (en) * 1998-03-02 1999-09-17 T & D:Kk Measuring device and measuring method therefor
JP2003254992A (en) * 2002-03-04 2003-09-10 Denso Corp Physical quantity detecting circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101724A (en) * 1986-10-20 1988-05-06 Matsushita Electric Ind Co Ltd Weight detector
JPH0843213A (en) * 1994-07-29 1996-02-16 T & D:Kk Instrument for measuring temperature, etc.
JPH08181329A (en) * 1994-12-22 1996-07-12 Matsushita Electric Works Ltd Pressure sensor and manufacture of pressure sensor
JPH11248547A (en) * 1998-03-02 1999-09-17 T & D:Kk Measuring device and measuring method therefor
JP2003254992A (en) * 2002-03-04 2003-09-10 Denso Corp Physical quantity detecting circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105626A (en) * 2017-11-13 2019-06-27 株式会社村田製作所 Method and device for cancelling wiring capacity
US11248977B2 (en) 2017-11-13 2022-02-15 Murata Manufacturing Co., Ltd. Method and apparatus for cancelling interconnection capacitance
WO2021145428A1 (en) * 2020-01-15 2021-07-22 常生 山内 Output device for sensor

Similar Documents

Publication Publication Date Title
US9857782B2 (en) Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
CN206057424U (en) A kind of current measuring device
JPH07113709A (en) Pressure difference measuring method and displacement converting device
CN104970776B (en) A kind of body temperature detection method and a kind of Dynamic High-accuracy calibration electric body-temperature counter device
JP2019509491A (en) Crosstalk calibration for multi-channel systems
CN104969473A (en) Sensor signal processing apparatus and sensor apparatus
KR20120082607A (en) Temperature compensation method of sensor, and sensor including temperature compensating function
CN112415458A (en) Current sensor linearity testing system and calibration method
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
KR101375363B1 (en) Apparatus for measuring temperature using thermistor
KR101446669B1 (en) Method for calibrating the measurement output distortion using continuous full-scale voltage/current sampling about circuit
CN210123318U (en) Strain measurement circuit based on strain gauge
KR100909660B1 (en) Error compensator of sensor measurement circuit and its method
TWI399564B (en) Phase difference correcting method of the power meter
JP2013024808A (en) Measuring apparatus and measuring method
JP4682668B2 (en) A / D converter and sensor device including A / D converter
KR101306407B1 (en) Temperature measuring method using piezoresistive pressure sensor and temperature measuring device
JPH0769232B2 (en) Method and apparatus for temperature compensation of load cell
EP2579052A1 (en) Method for measuring resistance value of conversion resistance of current mode analog /digital converter
CN103502775A (en) Method for correcting the voltage measured across the terminals of a sensor
JP7407617B2 (en) Acceleration measurement device and acceleration measurement method
JP6364232B2 (en) Calibration system
CN102080994A (en) Isolated measurement technology of strain bridge circuit
RU2585486C1 (en) Method of measuring pressure and calibration based on tensobridge integrated pressure transducer
JP6315273B2 (en) Insulation state measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150610