JPH0653065B2 - β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same - Google Patents

β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same

Info

Publication number
JPH0653065B2
JPH0653065B2 JP23038289A JP23038289A JPH0653065B2 JP H0653065 B2 JPH0653065 B2 JP H0653065B2 JP 23038289 A JP23038289 A JP 23038289A JP 23038289 A JP23038289 A JP 23038289A JP H0653065 B2 JPH0653065 B2 JP H0653065B2
Authority
JP
Japan
Prior art keywords
phenethyl
yeast
strain
phenethyl alcohol
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23038289A
Other languages
Japanese (ja)
Other versions
JPH0394670A (en
Inventor
修 秋田
孝之 小幡
昌道 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUZEICHO JAPAN
Original Assignee
KOKUZEICHO JAPAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUZEICHO JAPAN filed Critical KOKUZEICHO JAPAN
Priority to JP23038289A priority Critical patent/JPH0653065B2/en
Publication of JPH0394670A publication Critical patent/JPH0394670A/en
Publication of JPH0653065B2 publication Critical patent/JPH0653065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、β−フェネチルアルコールと酢酸β−フェネ
チルを同時に高生産する酵母菌の育種法及び分離した酵
母菌株、さらにはその酵母菌を用いた香気に特徴を有す
酒類の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for breeding a yeast that produces a high β-phenethyl alcohol and β-phenethyl acetate at the same time and a separated yeast strain, and further uses the yeast. The present invention relates to a method for producing alcoholic beverages having a characteristic aroma.

香気成分は酒類の品質を決定する重要な要因の一つであ
る。香気成分は酒類醸造に使用される酵母菌サッカロマ
イセス(Saccharomyces)属セレビシエ(cerevisiae)によ
り発酵期間中に主に生成される。
The aroma component is one of the important factors that determine the quality of alcoholic beverages. Aroma components are mainly produced during the fermentation period by the yeast Saccharomyces cerevisiae used for brewing alcoholic beverages.

酒類の需要開発にあたっては特徴ある品質の製品の開発
が望まれており、香気に特徴ある製品もその一つであ
る。バラ様の甘い香りを有すβ−フェネチルアルコール
と酢酸β−フェネチルの弁別閾値はビールにおいてそれ
ぞれ125ppmおよび3ppmとされている(橋本:香料No.11
2,p23(1975))。一方酒類中のβ−フェネチルアルコー
ルと酢酸β−フェネチル含量は、ビールで10〜100ppmと
3〜5ppm、清酒で20〜70ppmと5〜8ppm、ワインで10〜7
5ppmと1〜2ppm、焼酎で9〜27ppmと2〜28ppm、ウィス
キー類で15〜30ppmと1〜5ppmであり(新版醸造成分一
覧 日本醸造協会編(1977))、弁別閾値以下またはそれ
に近い量である。従ってこれらの香気を特徴とする製品
を得るためには、現在の酵母の生成能力をさらに高めた
酵母菌を使用する必要がある。以上のことから、β−フ
ェネチルアルコールと酢酸β−フェネチルを高生産する
酵母菌の育種は、酒類の製造分野において新製品の開発
への寄与が期待されるものである。
In the development of demand for alcoholic beverages, the development of products with characteristic quality is desired, and products with aroma are also one of them. The discrimination thresholds for β-phenethyl alcohol and β-phenethyl acetate, which have a rose-like sweet scent, are 125 ppm and 3 ppm in beer, respectively (Hashimoto: Fragrance No. 11
2, p23 (1975)). On the other hand, the content of β-phenethyl alcohol and β-phenethyl acetate in liquor is 10 to 100 ppm and 3 to 5 ppm for beer, 20 to 70 ppm and 5 to 8 ppm for sake, and 10 to 7 for wine.
5ppm and 1-2ppm, shochu 9-27ppm and 2-28ppm, whiskeys 15-30ppm and 1-5ppm (new edition brewing ingredients list Japan Brewing Association (1977)), below or close to the discrimination threshold. is there. Therefore, in order to obtain products characterized by these aromas, it is necessary to use yeasts having a higher ability to produce current yeasts. From the above, breeding of yeasts that highly produce β-phenethyl alcohol and β-phenethyl acetate is expected to contribute to the development of new products in the field of alcohol production.

(従来の技術) これまでに、β−フェネチルアルコールと酢酸β−フェ
ネチルを高生産する酵母菌の分離を目的とした育種例は
ない。
(Prior Art) Up to now, there is no breeding example aiming at isolation of a yeast that highly produces β-phenethyl alcohol and β-phenethyl acetate.

(発明が解決しようとする問題点と解決するための手
段) 本発明は上記実情に鑑み、新たに醸造酵母からβ−フェ
ネチルアルコールと酢酸β−フェネチルを高生産する酵
母菌の分離育種をめざしたものであり、鋭意実験と研究
を重ねた結果従来の酵母に比べ著量のβ−フェネチルア
ルコールと酢酸β−フェネチルを生産する酵母菌の分離
方法を開発し、この方法により酵母サッカロマイセス(S
accharomyces)属セレビシエ(cerevisiae)Kyokai7-FPAR1
8(微工研菌寄第10868号)を育種したものである。さら
に育種酵母の使用により香気に優れた特徴を持つ酒類の
製造に成功したものである。
(Problems to be Solved by the Invention and Means for Solving the Problems) In view of the above circumstances, the present invention is aimed at the isolation and breeding of a yeast that newly produces β-phenethyl alcohol and β-phenethyl acetate in high yield from brewer's yeast. As a result of repeated intensive experiments and studies, a method for separating yeasts that produce significant amounts of β-phenethyl alcohol and β-phenethyl acetate as compared with conventional yeasts was developed, and yeast Saccharomyces (S
accharomyces) cerevisiae Kyokai7-FPAR1
This is a breeding of No. 8 (Microtechnology Research Institute No. 10868). Furthermore, by using the breeding yeast, it has succeeded in producing alcoholic beverages having excellent aroma.

酵母によるβ−フェネチルアルコールを含む高級アルコ
ール類の生成はアミノ酸の代謝と密接な関係にあり、酵
母に取り込まれたアミノ酸が脱アミノさらに脱炭酸後還
元されて炭素数の一つ少ないアルコールとなる系と、ア
ミノ酸の合成系の中間代謝物であるケト酸から同様の反
応により生成される系の二つの系路がある。合成系から
の高級アルコールの生成はその系を通してできるアミノ
酸が多量にある場合、そのアミノ酸が合成系の酵素をフ
ィードバック阻害することにより抑制される。このフィ
ードバック阻害が不完全になった変異株ではアミノ酸の
存在の有無にかかわらず常に高級アルコールが生産され
ることとなる。フィードバック阻害が不完全になった変
異株を取得する方法の一つに、それ自身もフィードバッ
ク阻害する性質を持つアミノ酸のアナログを用い、この
アナログに対して耐性を獲得した変異株の中から分離す
る方法がある。本発明においてはβ−フェネチルアルコ
ールを高生産する変異株の分離のために、フェニルアラ
ニンのアナログであるp−フルオロフェニルアラニンを
主に用いたが、その他のフェニルアラニンのアナログで
あるm−フルオロフェニルアラニン、o−フルオロフェ
ニルアラニン、グリシルフェニルアラニン、β−2−チ
エニルアラニンの使用も可能である。これはフェニルア
ラニンがフィードバック阻害をする酵素の一つである3
−デオキシ−D−アラビノ−ヘプツロン酸7−リン酸シ
ンターゼに対して上記のアナログがいずれも阻害効果を
有することに基づいている(TAKAHASI et al.:Can.J.B
iochem.,49,1016(1971))。
The production of higher alcohols including β-phenethyl alcohol by yeast is closely related to the metabolism of amino acids, and the amino acid taken up by yeast is deaminated and then decarboxylated and reduced to form an alcohol with one carbon atom less. And, there are two pathways of a system produced by a similar reaction from keto acid, which is an intermediate metabolite of a synthetic system of amino acids. The production of higher alcohols from the synthetic system is suppressed by feedback-inhibiting the enzyme of the synthetic system by the amino acid when a large amount of amino acids are produced through the system. In the mutant strain in which this feedback inhibition is incomplete, higher alcohol is always produced regardless of the presence or absence of amino acids. One of the methods to obtain mutants with incomplete feedback inhibition is to use an analog of an amino acid that itself has feedback-inhibitory properties and isolate from mutants that have acquired resistance to this analog. There is a way. In the present invention, p-fluorophenylalanine, which is an analog of phenylalanine, was mainly used for the isolation of a mutant strain that highly produces β-phenethyl alcohol. It is also possible to use fluorophenylalanine, glycylphenylalanine, β-2-thienylalanine. This is one of the enzymes that phenylalanine inhibits feedback 3
It is based on the fact that all of the above analogs have an inhibitory effect on -deoxy-D-arabino-heptulonate 7-phosphate synthase (TAKAHASI et al .: Can.JB.
iochem. , 49, 1016 (1971)).

酢酸β−フェネチルの高生産はβ−フェネチルアルコー
ル高生産にともなって期待できる。これは酵母のアルコ
ールアセチルトランスフェラーゼによりアセチルCoAと
β−フェネチルアルコールの縮合反応により生成される
ため、基質の一つであるβ−フェネチルアルコールの増
加に伴って酢酸β−フェネチルも高生産となるためであ
る(秋田ら:醸協、82、369(1987))。本育種法において
親株として用いる酵母は変異処理をせずに使用しても目
的のアナログ耐性酵母は分離可能であるが、通常の変異
処理をした後に分離を行ってもなんら支障はない。
High production of β-phenethyl acetate can be expected along with high production of β-phenethyl alcohol. This is because yeast alcohol acetyltransferase produces it by the condensation reaction of acetyl CoA and β-phenethyl alcohol, and β-phenethyl acetate, which is one of the substrates, also increases, and β-phenethyl acetate also becomes highly produced. Yes (Akita et al .: Jyokyo, 82 , 369 (1987)). Although the target analog-resistant yeast can be isolated even if the yeast used as a parent strain in this breeding method is used without being subjected to mutation treatment, there is no problem even if the yeast is used after being subjected to usual mutation treatment.

分離したアナログ耐性変異株を用い発酵試験を行い、発
酵液中のβ−フェネチルアルコールと酢酸β−フェネチ
ルを定量しこれらを著量生産し、発酵も親株と変わりな
いものを目的の酵母菌株として分離する。さらに分離酵
母により酒類の製造を行い、香気に優れた特徴を有し香
味の調和のとれた酒類を製造できる酵母を選択する。
Fermentation test is performed using the isolated analog-resistant mutant strain, β-phenethyl alcohol and β-phenethyl acetate in the fermentation broth are quantified, and these are produced in a large amount, and the yeast strain that does not differ from the parent strain in fermentation is isolated as the target yeast strain. To do. Furthermore, yeasts are produced by using the isolated yeast, and yeasts having excellent aroma and harmonious flavor are selected.

(発明の効果) 実用酵母からその優れた醸造特性を損なうことなく新し
い性質を獲得した変異株を分離するのは一般に多くの労
力を要する極めて困難な作業である。
(Effects of the Invention) Isolation of a mutant strain that has acquired new properties from a yeast for practical use without impairing its excellent brewing properties is generally a very labor-intensive and extremely difficult task.

本発明はアナログ耐性株を分離するポジティブセレクシ
ョンを基本としており、目的とする変異株のみを効率的
に分離できる。本分離法の活用は実用酵母の育種におい
て極めて有効である。さらに育種したβ−フェネチルア
ルコール、酢酸β−フェネチルを高生産する酵母は香気
に特徴を有す酒類の製造に好適である。
The present invention is based on positive selection for separating an analog resistant strain, and can efficiently separate only a target mutant strain. Utilization of this separation method is extremely effective in breeding practical yeast. Further, the cultivated β-phenethyl alcohol and the yeast that highly produces β-phenethyl acetate are suitable for the production of alcoholic beverages having aroma.

(実施例) 実施例1(p−フルオロフェニルアラニン耐性酵母の分
離例1) サッカロマイセス(Saccharomyces)属セレビシエ(cerevi
siae)に属する協会7号清酒酵母を、YCB培地(イー
ストカーボンベース1.17%、カザミノ酸0.5%)に接種
し増殖させた後、無菌的に集菌洗浄し、2%グリコース
を含む0.1M、pH7.0のリン酸バッファー10mlに懸濁し
た。これに0.3mlのエチルメタンスルフォン酸を添加し3
0℃でゆっくり振とうし変異処理を行った。変異処理後
の生存率は57%であった。変異処理後の菌体を10mlのチ
オ硫酸ナトリウムで1回、10mlの減菌水で2回洗浄後10
mlの減菌水に懸濁しその400μ(生酵母数約7×107
をp−フルオロフェニルアラニン0.5mg/mlを含むYNB
寒天培地(イーストナイトロジェンベース0.67%、グル
コース5%、寒天2%)数枚に塗布した。25℃で培養す
ると約1週間でコロニーが認められた。このコロニーを
さらに同様の培地で数回植継いだものをp−フルオロフ
ェニルアラニン耐性酵母として分離した。
(Example) Example 1 (isolation example 1 of p-fluorophenylalanine-resistant yeast) Saccharomyces sp.
The association No. 7 sake yeast belonging to siae) is inoculated in YCB medium (yeast carbon base 1.17%, casamino acid 0.5%) and grown, and then aseptically collected and washed, and 0.1 M containing 2% glucose, pH7. It was suspended in 10 ml of a phosphate buffer of 0.0. Add 0.3 ml of ethyl methane sulfonic acid to this and add 3
Mutagenesis was performed by slowly shaking at 0 ° C. The survival rate after mutation treatment was 57%. After the mutation treatment, the cells were washed once with 10 ml of sodium thiosulfate and twice with 10 ml of sterile water.
Suspended in 100 ml of sterile water, 400μ (7 x 10 7 live yeast)
YNB containing 0.5 mg / ml of p-fluorophenylalanine
It was applied to several sheets of agar medium (0.67% yeast nitrogen base, 5% glucose, 2% agar). When cultured at 25 ° C, colonies were observed in about 1 week. This colony was further subcultured several times in the same medium and isolated as p-fluorophenylalanine-resistant yeast.

実施例2(p−フルオロフェニルアラニン耐性酵母から
のβ−フェネチルアルコール、酢酸β−フェネチル高生
産株の分離) 実施例1で分離したp−フルオロフェニルアラニン耐性
変異株80株について、YCB培地(イーストカーボン
ベース1.17%、カザミノ酸0.5%、グルコース15%)を
用いて25℃、静置で発酵試験を行った。発酵液中のβ−
フェネチルアルコールと酢酸β−フェネチル含量をキャ
ピラリーガスクロマトグラフィーにより定量した。カラ
ムはPEG 20M15m×0.53mm(i.d.)(ガスクロ工業)
を使用した。
Example 2 (Separation of β-phenethyl alcohol and β-phenethyl acetate high-producing strains from p-fluorophenylalanine-resistant yeast) About 80 p-fluorophenylalanine-resistant mutants isolated in Example 1, YCB medium (yeast carbon base Fermentation test was carried out by using 1.17%, casamino acid 0.5%, glucose 15%) at 25 ° C. and stationary. Β- in the fermentation broth
Phenethyl alcohol and β-phenethyl acetate contents were quantified by capillary gas chromatography. The column is PEG 20M 15m x 0.53mm (id) (Gaskuro Industrial Co., Ltd.)
It was used.

第1図に示したように親株の協会7号が100ppm以下のβ
−フェネチルアルコールと5ppm程度の酢酸β−フェネチ
ルを生成したのに対し、p−フルオロフェニルアラニン
耐性変異株の約30%が、300ppm以上のβ−フェネチルア
ルコールと10ppm以上の酢酸β−フェネチルを生成し
た。以上のようにp−フルオロフェニルアラニン耐性変
異株を分離することにより、そのなかから高頻度でβ−
フェネチルアルコールと酢酸β−フェネチルを多量生成
する株が得られた。またこれらの株のうち代表的な9株
でのエタノールおよび香気成分生成量を第1表に示し
た。エタノールの生成は親株と変わりなく、イソアミル
アルコール、酢酸イソアミルは親株より多い傾向にあっ
たが、特異的にβ−フェネチルアルコールを高生産する
変異株であることが判る。またβ−フェネチルアルコー
ルの生成とフェニルアラニンの消費量との間には相関が
なくβ−フェネチルアルコールは脱抑制されたフェニル
アラニン合成系から生成されたものと考えられる。
As shown in Fig. 1, the parent strain association No. 7 has β of 100 ppm or less.
-Phenethyl alcohol and about 5 ppm β-phenethyl acetate were produced, whereas about 30% of the p-fluorophenylalanine-resistant mutants produced 300 ppm or more β-phenethyl alcohol and 10 ppm or more β-phenethyl acetate. By isolating the p-fluorophenylalanine-resistant mutant strain as described above, β-
A strain producing a large amount of phenethyl alcohol and β-phenethyl acetate was obtained. Table 1 shows the amounts of ethanol and aroma components produced by 9 representative strains. The production of ethanol was the same as that of the parent strain, and the amount of isoamyl alcohol and isoamyl acetate tended to be higher than that of the parent strain. Further, there is no correlation between the production of β-phenethyl alcohol and the consumption amount of phenylalanine, and it is considered that β-phenethyl alcohol was produced from the derepressed phenylalanine synthesis system.

実施例3(β−フェネチルアルコール、酢酸β−フェネ
チル高生産変異株による糖化後発酵試験) 実施例2で得られたβ−フェネチルアルコール、酢酸β
−フェネチル高生産変異株を用い我々の開発した糖化後
発酵(秋田ら:醸協誌、81、537(1986))を行った。糖化
液は精白歩合75%の白米と麹を6:1の比率で、水は白
米の3倍量使用し、耐熱性液化酵素と糖化酵素により液
化糖化して調整した(大場、秋田、中村:特公昭61-518
64)。糖化液の組成をグルコース18.2%、アミノ酸17.7
mM(アミノ態窒素327mg/とした。発酵は発酵栓をつけ
た500mlの三角フラスコに300mlの糖化液を入れ、スター
ラーで攪拌しながら15℃一定条件で行った。初発の酵母
数は5×106/mlとした。グルコースが1%以下になった
時点で発酵終了とした。発酵酒の成分組成を第2表に示
した。合成培地を発酵させた場合と同様変異株で特異的
にβ−フェネチルアルコールと酢酸β−フェネチルの含
有量が親株に比べ著しく多くなった。変異株によるエタ
ノール、酸度の生成とも親株と顕著な差がなく実用上問
題がなかった。
Example 3 (Post-saccharification fermentation test using β-phenethyl alcohol and β-phenethyl acetate high-producing mutant strain) β-phenethyl alcohol and β acetate obtained in Example 2
-The post-saccharification fermentation we developed (Akita et al .: Jōkyo, 81 , 537 (1986)) was carried out using a phenethyl highly producing mutant strain. The saccharified solution was prepared by using white rice and koji with a polishing rate of 75% at a ratio of 6: 1, and water was used in an amount three times that of white rice. Japanese Patent Sho 61-518
64). The composition of the saccharified liquid is glucose 18.2%, amino acids 17.7
mM (amino nitrogen 327 mg /). Fermentation was carried out at a constant temperature of 15 ° C with stirring with a stirrer, adding 300 ml of saccharified solution to a 500 ml Erlenmeyer flask equipped with a fermentation stopper. The fermentation was terminated when glucose became 1% or less.The composition of the fermented liquor was shown in Table 2. As in the case of fermenting the synthetic medium, β was specifically used in the mutant strain. -The content of phenethyl alcohol and β-phenethyl acetate was significantly higher than that of the parent strain, and there was no significant difference in ethanol and acidity produced by the mutant strain from the parent strain, and there was no practical problem.

実施例4(β−フェネチルアルコール、酢酸β−フェネ
チル高生産変異株による清酒醸造試験) 難波らの方法(醸協誌、73、295(1978))により総米150
gの清酒醸造試験を実施し結果を第3表に示した。22
日目に発酵終了とし遠心分離により上槽した。
Example 4 The method of Nanba et al. (Beta-phenethyl alcohol, Sake Brewing tests with acetic acid beta-phenethyl highly productive mutant) (醸協Journal, 73, 295 (1978)) Total US 150 by
g of sake brewing test was conducted and the results are shown in Table 3. 22
The fermentation was completed on the day, and the upper tank was prepared by centrifugation.

耐性株のエタノール生成は親株と変わりなく香気成分で
はβ−フェネチルアルコール、酢酸β−フェネチルが顕
著に多く、イソアミルアルコール、酢酸イソアミルも親
株より多い傾向にあった。酸度、アミノ酸度は親株と大
きな差はなかった。なおアミノ酸度がすべてに低いのは
α化米を使用したためである。以上のことから分離耐性
株が実際の清酒仕込みにおいても十分な実用性を有し、
さらに本株の特性であるβ−フェネチルアルコール、酢
酸β−フェネチル高生産性が発揮され香気にこれまでに
ない特徴を有する清酒を製造することができた。
The ethanol production of the resistant strain was the same as that of the parent strain, and β-phenethyl alcohol and β-phenethyl acetate were remarkably large in the aroma components, and isoamyl alcohol and isoamyl acetate tended to be higher than those of the parent strain. The acidity and amino acid content were not significantly different from the parent strain. The low amino acid content is due to the use of pregelatinized rice. From the above, the isolation resistant strain has sufficient practicality even in the actual sake preparation,
Furthermore, β-phenethyl alcohol and β-phenethyl acetate high productivity, which are the characteristics of this strain, were exhibited, and it was possible to produce sake having aroma which was unprecedented.

実施例5(p−フルオロフェニルアラニン耐性酵母の分
離例2) サッカロマイセス(Saccharomyces)属セレビシエ(cerevi
siae)に属する1倍体酵母A5-8-1(aleul)から実施例1と
同様の方法にてp−フルオロフェニルアラニン耐性株の
分離を行った。本酵母は実験室酵母でありサッカロマイ
セス(Saccharomyces)属セレビシエ(cerevisiae)の代表
的な株である。分離した耐性株はロイシン要求性を示し
親株の変異株であることを確認した。分離株によるYC
B培地(イーストカーボンベース1.17%、カザミノ酸0.
5%、グルコース15%)を用いた発酵試験でのβ−フェ
ネチルアルコール、酢酸β−フェネチルの生産量を第4
表に示した。
Example 5 (separation example 2 of p-fluorophenylalanine-resistant yeast) Saccharomyces cerevisiae
A p-fluorophenylalanine-resistant strain was isolated from the haploid yeast A5-8-1 (aleul) belonging to siae) in the same manner as in Example 1. This yeast is a laboratory yeast and is a representative strain of the genus Saccharomyces cerevisiae. It was confirmed that the isolated resistant strain showed leucine auxotrophy and was a mutant strain of the parent strain. YC by isolate
B medium (yeast carbon base 1.17%, casamino acid 0.
Production rate of β-phenethyl alcohol and β-phenethyl acetate in the fermentation test using 5%, glucose 15%)
Shown in the table.

耐性株から親株に比べ著量のβ−フェネチルアルコー
ル、酢酸β−フェネチルを生成する株が分離できた。
From the resistant strain, a strain capable of producing significantly higher amounts of β-phenethyl alcohol and β-phenethyl acetate than the parent strain could be isolated.

実施例6(p−フルオロフェニルアラニン耐性酵母の分
離例3) サッカロマイセス(Saccharomyces)属セレビシエ(cerevi
siae)に属する1倍体酵母C4488-1A(α leu2〔KIL-
k〕)から実施例1と同様の方法にてp−フルオロフェ
ニルアラニン耐性株の分離を行った。本酵母は実験室酵
母でありサッカロマイセス(Saccharomyces)属セレビシ
エ(cerevisiae)の代表的な株である。耐性株はロイシン
要求性を示し親株の変異株であることを確認した。分離
株によるYCB培地(イーストカーボンベース1.17%、
カザミノ酸0.5%、グルコース15%)を用いた発酵試験
を行いその時のβ−フェネチルアルコール、酢酸β−フ
ェネチルの生成量を第5表に示した。
Example 6 (isolation example 3 of p-fluorophenylalanine-resistant yeast) Saccharomyces cerevisiae
haploid yeast C4488-1A (α leu2 [KIL-
From k]), a p-fluorophenylalanine-resistant strain was isolated in the same manner as in Example 1. This yeast is a laboratory yeast and is a representative strain of the genus Saccharomyces cerevisiae. It was confirmed that the resistant strain showed leucine auxotrophy and was a mutant strain of the parent strain. YCB medium (Yeast carbon base 1.17%,
Fermentation test using casamino acid 0.5%, glucose 15%) was carried out, and the production amounts of β-phenethyl alcohol and β-phenethyl acetate at that time are shown in Table 5.

耐性株から親株に比べ著量のβ−フェネチルアルコー
ル、酢酸β−フェネチルを生成する株を分離できた。
From the resistant strain, it was possible to isolate a strain producing a significantly higher amount of β-phenethyl alcohol and β-phenethyl acetate than the parent strain.

実施例5、6から本発明のβ−フェネチルアルコール、
酢酸β−フェネチル高生産酵母菌株の分離法はサッカロ
マイセス(Saccharomyces)属セレビシエ(cerevisiae)に
広く活用できることが示された。
Β-phenethyl alcohol of the present invention from Examples 5 and 6,
It was shown that the method for isolating β-phenethyl acetate high-producing yeast strain can be widely applied to Saccharomyces cerevisiae.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例2における、親株の協会7号清酒酵母と
親株から分離したp−フルオロフェニルアラニン耐性株
によるβ−フェネチルアルコールと酢酸β−フェネチル
の生産を示す図。
FIG. 1 is a diagram showing the production of β-phenethyl alcohol and β-phenethyl acetate by a parent strain Association No. 7 sake yeast and a p-fluorophenylalanine-resistant strain isolated from the parent strain in Example 2.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】サッカロマイセス(Saccharomyces)属セレ
ビシエ(cerevisiae)に属する酵母を変異処理または変異
処理することなく、通常では生育できない濃度のフェニ
ルアラニンのアナログを含む培地で生育できるようにな
ったアナログ耐性変異株を分離し、さらに耐性変異株か
らβ−フェネチルアルコールと酢酸β−フェネチル高生
産性酵母を分離育種する方法。
1. An analog-resistant mutant strain capable of growing in a medium containing a concentration of an analog of phenylalanine that cannot be normally grown without mutating or mutating yeast belonging to the genus Saccharomyces cerevisiae. And further separating and breeding β-phenethyl alcohol and β-phenethyl acetate high-producing yeast from the resistant mutant.
【請求項2】サッカロマイセス(Saccharomyces)属セレ
ビシエ(cerevisiae)に属する清酒酵母を変異処理または
変異処理することなく、通常では生育できない濃度のp
−フルオロフェニルアラニンを含む培地で生育できるよ
うになった耐性変異株を分離し、さらに耐性変異株から
β−フェネチルアルコールと酢酸β−フェネチル高生産
性酵母を分離育種する方法。
2. A strain of sake yeast belonging to the genus Saccharomyces cerevisiae, which is mutated or is not mutated and has a concentration at which it cannot grow normally.
A method of isolating a resistant mutant strain that has become able to grow in a medium containing fluorophenylalanine, and further separating and breeding β-phenethyl alcohol and β-phenethyl acetate high-producing yeast from the resistant mutant strain.
【請求項3】上記(2)の方法により分離されたサッカ
ロマイセス(Saccharomyces)属セレビシエ(cerevisiae)K
yokai7-FPAR18(微工研菌寄第10868号)で表示されるβ
−フェネチルアルコールと酢酸β−フェネチル高生産性
酵母。
3. A cerevisiae K genus of the genus Saccharomyces isolated by the method of (2) above.
β displayed by yokai7-FPAR18 (Microtechnology Research Institute, No. 10868)
-Phenethyl alcohol and β-phenethyl acetate high-producing yeast.
【請求項4】上記(1)の方法により分離されたサッカ
ロマイセス(Saccharomyces)属セレビシエ(cerevisiae)
に属するβ−フェネチルアルコールと酢酸β−フェネチ
ル高生産性酵母を用いることを特徴とする酒類の製造
法。
4. A cerevisiae of the genus Saccharomyces isolated by the method of (1) above.
A method for producing alcoholic beverages, which comprises using β-phenethyl alcohol belonging to the category of β-phenethyl alcohol and yeast highly producing β-phenethyl acetate.
JP23038289A 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same Expired - Lifetime JPH0653065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23038289A JPH0653065B2 (en) 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23038289A JPH0653065B2 (en) 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same

Publications (2)

Publication Number Publication Date
JPH0394670A JPH0394670A (en) 1991-04-19
JPH0653065B2 true JPH0653065B2 (en) 1994-07-20

Family

ID=16906993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23038289A Expired - Lifetime JPH0653065B2 (en) 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same

Country Status (1)

Country Link
JP (1) JPH0653065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220073466A (en) * 2020-11-26 2022-06-03 한국식품연구원 Yeast saccharomyces cerevisiae gnpea4, manufacturing method of distilled spirit with phehylethyl alcohol and phenethyl acetate flavour compounds using it, and distilled spirit manufactured therefrom

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4098841B2 (en) * 1996-02-23 2008-06-11 カゴメ株式会社 Method for producing fermented food and drink
CN102203274B (en) * 2008-10-29 2017-04-05 株式会社钟化 The manufacture method of L aminoacid
JP6946358B2 (en) * 2017-05-25 2021-10-06 チアンナン ユニヴァーシティ Yeast strain for brewing that produces β-phenethyl alcohol in high yield and its use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292265A (en) * 1988-09-27 1990-04-03 Kyowa Hakko Kogyo Co Ltd Production of alcohol drink or fermented seasoning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292265A (en) * 1988-09-27 1990-04-03 Kyowa Hakko Kogyo Co Ltd Production of alcohol drink or fermented seasoning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220073466A (en) * 2020-11-26 2022-06-03 한국식품연구원 Yeast saccharomyces cerevisiae gnpea4, manufacturing method of distilled spirit with phehylethyl alcohol and phenethyl acetate flavour compounds using it, and distilled spirit manufactured therefrom

Also Published As

Publication number Publication date
JPH0394670A (en) 1991-04-19

Similar Documents

Publication Publication Date Title
JP2530650B2 (en) Method for producing low alcohol or no alcohol beer
JP3898652B2 (en) Tyrosol high-productivity yeast mutant and method for producing fermented alcoholic beverage using the yeast
JPH0653065B2 (en) β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same
JP3506280B2 (en) New yeast and its use
JPS626669A (en) Method of cultivating variant yeast
JPH0292265A (en) Production of alcohol drink or fermented seasoning
JP4269037B2 (en) Process for producing organic acid-rich sake
JP4402207B2 (en) Alcohol-resistant yeast
JP3835564B2 (en) New yeast and its use
JP4008539B2 (en) New yeast with high organic acid production and its use
JP2670037B2 (en) Distilled liquor manufacturing method
JP3094107B1 (en) Breeding method of high alcohol resistant yeast
CN112011473B (en) Genetic engineering bacterium with low-yield 2-phenethyl alcohol and application thereof
JP3069689B2 (en) Breeding yeast with increased fermentation rate
JP2583549B2 (en) Alcohol production method
JPH06169747A (en) Method for breeding yeast having low decomposition of isoamyl acetate, its yeast strain and production of refined sake using the same
JP2001314182A (en) Method for producing sake using lactobacillus
JP3865324B2 (en) New yeast and its use
JP3026200B2 (en) Breeding method of yeast producing moromi with high concentration of alcohol
JP3942718B2 (en) Liquor, food production method
JP6748884B2 (en) Method for producing yeast strain with improved brewing characteristics
JPH03112479A (en) Production of alcoholic beverage or the like
JP4059454B2 (en) Liquor, food production method
JP3100697B2 (en) Food and beverage manufacturing method
JPH0751053A (en) Yeast for brewing shochu and method for producing shochu with the yeast