JPH0652566B2 - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0652566B2
JPH0652566B2 JP8719687A JP8719687A JPH0652566B2 JP H0652566 B2 JPH0652566 B2 JP H0652566B2 JP 8719687 A JP8719687 A JP 8719687A JP 8719687 A JP8719687 A JP 8719687A JP H0652566 B2 JPH0652566 B2 JP H0652566B2
Authority
JP
Japan
Prior art keywords
magnetic layer
magnetic
recording medium
magnetic recording
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8719687A
Other languages
Japanese (ja)
Other versions
JPS63253526A (en
Inventor
泰之 山田
信 長尾
一彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP8719687A priority Critical patent/JPH0652566B2/en
Publication of JPS63253526A publication Critical patent/JPS63253526A/en
Priority to US07/433,399 priority patent/US4943479A/en
Publication of JPH0652566B2 publication Critical patent/JPH0652566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/733Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the addition of non-magnetic particles
    • G11B5/7334Base layer characterised by composition or structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/733Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the addition of non-magnetic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31609Particulate metal or metal compound-containing

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録媒体、特に、高密度記録に適し、走
行耐久性が改良された磁気記録媒体に関する。
Description: TECHNICAL FIELD The present invention relates to a magnetic recording medium, particularly to a magnetic recording medium suitable for high-density recording and having improved running durability.

〔従来の技術〕[Conventional technology]

近年、開発が進められてきている高密度記録用磁気記録
媒体においては磁気ヘッドと磁気テープとの間のいわゆ
る間隙損失を軽減させるため、磁性層の表面性をより高
度なものとすることが要求される。この目的のために
は、磁性層の製造技術、すなわち磁性粒子の分散、塗
布、表面成形技術などの改良により磁性層の表面性を向
上させることが必要であると同時に、支持体の表面性を
向上させることもまた必要となる。とくに、記録密度が
高くなるにともない記録波長が小となることにより、厚
み損失を逃がれるために磁性層を薄くする試みがなされ
てきている。それにより、支持体の表面性が磁性層の表
面性に与える影響はますます大となってきている。
In the magnetic recording medium for high-density recording, which has been developed in recent years, it is required that the surface property of the magnetic layer be higher in order to reduce so-called gap loss between the magnetic head and the magnetic tape. To be done. For this purpose, it is necessary to improve the surface property of the magnetic layer by improving the manufacturing technology of the magnetic layer, that is, improving the dispersion, coating, surface molding technology of magnetic particles, etc. Improvements are also needed. In particular, attempts have been made to reduce the thickness of the magnetic layer in order to escape the thickness loss as the recording wavelength becomes smaller as the recording density becomes higher. As a result, the influence of the surface property of the support on the surface property of the magnetic layer is becoming more and more significant.

最近、さらに高密度記録を実現させるために、蒸着、ス
パッタリング等により、Co−Ni,Co−Cr,Fe
−N等の強磁性金属薄膜を設けた磁気記録媒体も開発さ
れつつあるが、磁性層が塗布型の磁性層にくらべてはる
かに薄いので上記の問題はさらに増大している。
Recently, in order to realize higher density recording, Co-Ni, Co-Cr, Fe have been formed by vapor deposition, sputtering, etc.
Although magnetic recording media provided with a ferromagnetic metal thin film such as -N are being developed, the above problem is further increased because the magnetic layer is much thinner than the coating type magnetic layer.

しかしながら磁気記録媒体に使用される支持体の表面性
を向上させることは下記の理由から限界がある。つま
り、製膜して巻き取る工程において、フィルムの表面性
が良いと搬送ローラーに対する摩擦抵抗が大となり、し
ばしば蛇行を起こしたり、シワが生じたりする。またフ
ィルム間の摩擦抵抗が増大し巻き取りロールの形状にユ
ガミが生じたりもする。
However, improving the surface properties of the support used for the magnetic recording medium is limited for the following reasons. That is, in the step of forming a film and winding it, if the surface property of the film is good, the frictional resistance with respect to the transport roller becomes large, and often meandering or wrinkling occurs. Further, the frictional resistance between the films increases, and the shape of the take-up roll may be distorted.

前期の背反する問題点の解決のために、これまでに種々
の試みがなされてきている。たとえば特開昭53−10
9605には、支持体上には熱可塑性樹脂の微粒子を突
出させ、その后溶剤にて溶解除去しその表面に磁性層を
形成する方法が記載されている。
Various attempts have been made to solve the contradictory problems of the first half. For example, JP-A-53-10
9605 describes a method in which fine particles of a thermoplastic resin are projected on a support and then dissolved and removed with a solvent to form a magnetic layer on the surface.

また、特公昭46−14555には、支持体上にポリア
ミド、ポリエステル等のポリマー溶液を塗布、乾燥させ
て、微小しわを形成し、その表面に磁性層を形成する方
法が記載されている。特公昭47−6117には、支持
体上に塗布するポリマーとして、ポリエステル等を使っ
て、また特公昭50−38001には、熱可塑性ポリエ
ステル等を使って、特公昭46−14555と同じよう
に表面に微小しわを形成し、その表面に磁性層を形成す
る方法が記載されている。
Japanese Patent Publication No. 46-14555 describes a method in which a polymer solution such as polyamide or polyester is applied on a support and dried to form fine wrinkles, and a magnetic layer is formed on the surface thereof. In Japanese Patent Publication No. 47-6117, polyester or the like is used as a polymer to be coated on a support, and in Japanese Patent Publication No. 38001/1975, thermoplastic polyester or the like is used, and the surface is the same as in Japanese Patent Publication No. 46-14555. There is described a method of forming fine wrinkles on the surface and forming a magnetic layer on the surface thereof.

しかし、上述の4つの方法のいずれも、高密度記録用磁
気記録媒体としての満足すべき特性を安定的に賦与しう
るにはいたっていない。
However, none of the above-mentioned four methods can stably provide satisfactory characteristics as a magnetic recording medium for high-density recording.

本出願人は先に、上記問題を解決するために、放射線に
より重合可能な化合物と微粒子とを含有する非磁性層を
支持体上に設け、紫外線照射した下塗層に磁性層を設け
た磁気記録媒体を提案した(特開昭60−251510
号公報)。
In order to solve the above problems, the present applicant has previously provided a non-magnetic layer containing a compound capable of being polymerized by radiation and fine particles on a support, and a magnetic layer provided with a magnetic layer in an undercoat layer irradiated with ultraviolet rays. A recording medium has been proposed (JP-A-60-251510).
Issue).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記提案によって磁性層の表面性と耐久性にかなりの改
良が見られたが、その走行耐久性が十分とは云えず、ま
た下塗層(非磁性層)を設けた支持体の耐熱性に問題が
あり、特に支持体両面に蒸着、スパッタリング等によっ
て金属薄膜を形成する場合に両面に下塗層を形成し、一
方の面に蒸着、スパッタリング等によって磁性層を設け
る場合にバック面の下塗層が基板やキャンの表面にはり
付くという問題がある。また、この問題は塗布により磁
性層を両面に設ける場合にも、磁性層を乾燥後カレーダ
ロールによって表面処理する場合にバック面の下塗層
(非磁性層)に生ずる。
Although the above proposal showed a considerable improvement in the surface property and durability of the magnetic layer, its running durability was not sufficient, and the heat resistance of the support provided with the undercoat layer (nonmagnetic layer) was not improved. There is a problem, especially when a metal thin film is formed on both sides of the support by vapor deposition, sputtering, etc., an undercoat layer is formed on both sides, and when a magnetic layer is provided on one side by vapor deposition, sputtering, etc. The problem is that the layer sticks to the surface of the substrate or can. Further, this problem also occurs in the undercoat layer (nonmagnetic layer) of the back surface when the magnetic layer is provided on both sides by coating and the surface of the magnetic layer is dried and then surface-treated with a calender roll.

従って、本発明の目的は走行耐久性が改良された磁気記
録媒体を提供することにある。
Therefore, an object of the present invention is to provide a magnetic recording medium having improved running durability.

本発明の他の目的は支持体の耐熱変形性を改良し、支持
体の両面に磁性層を設ける場合基板やロール等にはり付
きを生じない下塗層を提供することにある。
Another object of the present invention is to improve the heat distortion resistance of the support and to provide an undercoat layer which does not stick to a substrate or roll when magnetic layers are provided on both sides of the support.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記の目的を達成するために、下塗層(非
磁性層)の放射線により重合可能な化合物と、微粒子に
ついて種々検討を重ね、同化合物として、トリアジン環
を有する(メタ)アクリレート化合物、微粒子として、
径が18〜1000mμのシリカ(SiO)の微粒子
を用いた場合、その目的を達成し得ることを見出した。
しかしながら、シリカを固体粒子として用いる場合には
分散しにくく、塗布液を作るのが困難であるか著しく時
間がかかったが、シリカゾルの状態で用いることによ
り、短時間で均一に分布でき、上記目的を達し得ること
を見出し、本発明を達成した。
In order to achieve the above-mentioned object, the inventors of the present invention have conducted various studies on a compound capable of being polymerized by radiation in an undercoat layer (nonmagnetic layer) and fine particles, and as the compound, a (meth) acrylate having a triazine ring. As compounds and fine particles,
It has been found that the purpose can be achieved by using fine particles of silica (SiO 2 ) having a diameter of 18 to 1000 mμ.
However, when silica is used as solid particles, it is difficult to disperse, and it is difficult or extremely time-consuming to prepare a coating solution. However, when it is used in the state of silica sol, it can be uniformly distributed in a short time. The present invention has been achieved by finding that the above can be achieved.

すなわち、本発明は非磁性支持体と磁性層との中間に結
合剤と微粒子とを含有する非磁性層を設け、該非磁性層
が放射線により照射されている磁気記録媒体において、
該微粒子がシリカゾルから導入された微粒子であり且つ
該結合剤の45重量%以上がトリアジン環を有する(メ
タ)アクリレート化合物であることを特徴とする磁気記
録媒体である。
That is, the present invention provides a non-magnetic layer containing a binder and fine particles between the non-magnetic support and the magnetic layer, and the non-magnetic layer is irradiated with radiation in a magnetic recording medium,
The magnetic recording medium is characterized in that the fine particles are fine particles introduced from silica sol and 45% by weight or more of the binder is a (meth) acrylate compound having a triazine ring.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明は後記する如き、蒸着、スパッタリング等による
強磁性金沿薄膜型の磁気記録媒体に適用することが好ま
しいが、塗布型の磁気記録媒体にも適用することができ
る。
As described below, the present invention is preferably applied to a ferromagnetic gold-side thin film magnetic recording medium by vapor deposition, sputtering, etc., but can also be applied to a coating type magnetic recording medium.

本発明の非磁性層(下塗層)に使用される結合剤のう
ち、放射線照射により重合可能な化合物はトリアジン環
を含む(メタ)アクリレート化合物であって、例えば、
トリス(2−アクリロイロキシエチル)インシアヌレー
ト、 が好ましい。
Among the binders used in the non-magnetic layer (undercoat layer) of the present invention, the compound polymerizable by irradiation with radiation is a (meth) acrylate compound containing a triazine ring.
Tris (2-acryloyloxyethyl) incyanurate, Is preferred.

上記化合物の添加量は全結合剤に対し45重量%以上で
あり、70重量%以上が好ましい。45重量%より少な
い場合には、塗布後はりつきが生じ易く、また十分な走
行耐久性が得られない。
The amount of the above compound added is 45% by weight or more, preferably 70% by weight or more, based on the total amount of the binder. If it is less than 45% by weight, sticking tends to occur after coating and sufficient running durability cannot be obtained.

上記化合物は単独で用いても2種以上用いてもよく、さ
らにまた他の共重合性化合物例えば、ウレタン(メタ)
アクリレート、オリゴエスル(メタ)アクリレート、エ
ポキシ(メタ)アクリレート、スチレン、塩化ビニル、
塩化ビニリデンジエチレングリコールジアクリレート、
ヘキサメチレンシアクリレート等と共に用いることがで
きる。
The above compounds may be used alone or in combination of two or more, and also other copolymerizable compounds such as urethane (meth)
Acrylate, oligoester (meth) acrylate, epoxy (meth) acrylate, styrene, vinyl chloride,
Vinylidene chloride diethylene glycol diacrylate,
It can be used together with hexamethylene acrylate.

本発明で用いる上記放射線により重合可能な化合物はさ
らに他の結合剤と共に用いることができ、これらの結合
剤としては、例えば塩ビ酢ビ系共重合体、セルロース系
樹脂、アセタール系樹脂、塩ビ−塩化ビニリデン系樹
脂、ウレタン樹脂、アクリロニトリル−ブタジエン樹脂
等の熱可塑性樹脂の如き従来の磁気記録媒体の結合剤と
して用いられているものを用いることができる。
The radiation-polymerizable compound used in the present invention can be used together with other binders. Examples of these binders include vinyl chloride-vinyl acetate copolymers, cellulose resins, acetal resins, and vinyl chlorides. A thermoplastic resin such as vinylidene-based resin, urethane resin, or acrylonitrile-butadiene resin, which is used as a binder for conventional magnetic recording media, can be used.

本発明に用いられる微粒子としては、シリカゾル(ここ
ではシリカゾルとは、有機溶媒中に不定形の無水ケイ酸
(シリカ)微粒子が分散されたものをいう)から導入さ
れるシリカ微粒子が用いられる。シリカ粒子の径として
は18〜1000mμ、好ましくは30〜160mμで
ある。このように微細なシリカは、前記したように固体
粉末としてはバインダー塗布液に分散しにくいが、例え
ばメタノール、イソプロピルアルコール、トルエン等中
の分散液の如きシリカゾル(たとえば、商品名「OSC
AL」、触媒化成工業(株)製)として用いると分散性が
良く、均一な塗布液が得られる。下塗層(非磁性層)と
して塗布後乾燥して溶媒を除くと均一に分散したシリカ
微粒子となる(本発明では、このような微粒子をシリカ
ゾルから導入される微粒子と称する)。
As the fine particles used in the present invention, silica fine particles introduced from silica sol (here, silica sol refers to a dispersion of amorphous silicic acid anhydride (silica) fine particles in an organic solvent). The silica particles have a diameter of 18 to 1000 mμ, preferably 30 to 160 mμ. Such fine silica is difficult to disperse in a binder coating solution as a solid powder as described above, but silica sol such as a dispersion in methanol, isopropyl alcohol, toluene, etc. (for example, trade name “OSC
AL ”, manufactured by Catalyst Kasei Kogyo Co., Ltd., has good dispersibility and a uniform coating solution can be obtained. After coating as an undercoat layer (non-magnetic layer) and drying to remove the solvent, silica fine particles are uniformly dispersed (in the present invention, such fine particles are referred to as fine particles introduced from silica sol).

シリカ微粉末(乾燥されたもの)の非磁性層における含
有量はバインダー全量の0.04〜20重量%、好まし
くは1〜12重量%である。
The content of fine silica powder (dried) in the non-magnetic layer is 0.04 to 20% by weight, preferably 1 to 12% by weight based on the total amount of the binder.

本発明では、上記バインダーとシリカゾルを有機溶媒を
用いて分散調合し、支持体に塗布する。
In the present invention, the above binder and silica sol are dispersed and prepared by using an organic solvent, and applied on a support.

本発明の分散、調合、塗布の際に使用する有機溶媒とし
ては、任意の比率でアセトン、メチルエチルケントン、
メチルイソブチルケトン、シクロヘキサノン、イソホロ
ン、テトラヒドロフラン等のケトン系;メタノール、エ
タノール、プロパノール、ブタノール、イソブチルアル
コール、イソプロピルアルコール、メチルシクロヘキサ
ノールなどのアルコール系;酢酸メチル、酢酸エチル、
酢酸ブチル、酢酸イソブチル、酢酸イソプロピル、乳酸
エチル、酢酸グリコールモノエチルエーテル等のエステ
ル系;ジエチルエーテル、テトラヒドロフラン、グリコ
ールジメチルエーテル、グリーコールモノエチルエーテ
ル、ジオキサンなどのエーテル系;ベンゼン、トルエ
ン、キシレン、クレゾール、クロルベンゼン、スチレン
などのタール系(芳香族炭化水素);メチレンクロライ
ド、エチレンクロライド、四塩化炭素、クロロホルム、
エチレンクロルヒドリン、ジクロルベンゼン等の塩素化
炭化水素、N,N−ジメチルホルムアルデヒド、ヘキサ
ン等のものが使用できる。
As the organic solvent used in the dispersion, preparation, and coating of the present invention, acetone, methyl ethyl kentone, and
Methyl isobutyl ketone, cyclohexanone, isophorone, tetrahydrofuran and other ketones; methanol, ethanol, propanol, butanol, isobutyl alcohol, isopropyl alcohol, methyl cyclohexanol and other alcohols; methyl acetate, ethyl acetate,
Ester systems such as butyl acetate, isobutyl acetate, isopropyl acetate, ethyl lactate, glycol monoethyl ether acetate; ether systems such as diethyl ether, tetrahydrofuran, glycol dimethyl ether, glycol monoethyl ether, dioxane; benzene, toluene, xylene, cresol, Tar-based (aromatic hydrocarbons) such as chlorobenzene and styrene; methylene chloride, ethylene chloride, carbon tetrachloride, chloroform,
Chlorinated hydrocarbons such as ethylene chlorohydrin and dichlorobenzene, N, N-dimethylformaldehyde, and hexane can be used.

本発明の支持体の素材としては、ポリエチレンテレフタ
レート、ポリエチレン−2、6−ナフタレート等のポリ
エステル類;ポリエチレン、ポリプロピレン等のポリオ
レフィン類、セルローストリアセテート等のセルロース
誘導体、ポリカーボネート、ポリイミド、ポリアミドイ
ミド等のプラスチック、さらにアルミニウム、またはそ
の合金、銅、ガラス、セラミックス等が用いられる。
Examples of the material for the support of the present invention include polyesters such as polyethylene terephthalate, polyethylene-2, and 6-naphthalate; polyolefins such as polyethylene and polypropylene; cellulose derivatives such as cellulose triacetate; polycarbonates, polyimides, plastics such as polyamideimides; Further, aluminum, an alloy thereof, copper, glass, ceramics or the like is used.

上記のように支持体に非磁性層を塗布した後に乾燥し、
次いで放射線を照射して前記化合物を重合させる。
After coating the non-magnetic layer on the support as described above, dried,
Then, the compound is polymerized by irradiation with radiation.

放射線としては電子線加速器による電子線や紫外線を用
いることができる。
As the radiation, an electron beam from an electron beam accelerator or ultraviolet rays can be used.

電子線加速器としてはスキャニング方式、ダブルスキャ
ニング方式あるいはカーテンビーム方式ブロードビーム
カーテン方式などが採用できる。
As the electron beam accelerator, a scanning method, a double scanning method, a curtain beam method or a broad beam curtain method can be adopted.

電子線特性としては、加速電圧が100〜1000kV、好
ましくは150〜300kVであり、吸収線量として
1.0〜2メガラッド、好ましくは2〜10メガラッド
である。加速電圧が100kV以下の場合は、エネルギ
ーの透過量が不足し1000kVを超えると重合に使われる
エネルギー効率が低下し経済的でない。吸収線量とし
て、1.0メガラッド以下では硬化反応が不充分で非磁
性層強度が得られず、20メガラッド以上になると、硬
化に使用されるエネルギー効率が低下したり、被照射体
が発熱し、特にプラスティック支持体が変形するので好
ましくない。
As electron beam characteristics, the acceleration voltage is 100 to 1000 kV, preferably 150 to 300 kV, and the absorbed dose is 1.0 to 2 megarads, preferably 2 to 10 megarads. When the accelerating voltage is 100 kV or less, the energy transmission amount is insufficient, and when the accelerating voltage exceeds 1000 kV, the energy efficiency used for polymerization is reduced, which is not economical. If the absorbed dose is 1.0 megarad or less, the curing reaction is insufficient and the strength of the non-magnetic layer cannot be obtained. If the absorbed dose is 20 megarads or more, the energy efficiency used for curing is lowered, or the irradiated object generates heat. In particular, the plastic support is deformed, which is not preferable.

なお、放射線として紫外線を用いる場合には、光重合開
始剤として、例えば、アセトフェノン、ベンゾフェノ
ン、ベンゾインエチルエーテル、ベンジルメチルケター
ル、ベンジルエチルケタール等の芳香族ケトン族を添加
する。添加量はバインダに対して1〜10重量%であ
る。
When ultraviolet rays are used as the radiation, aromatic ketones such as acetophenone, benzophenone, benzoin ethyl ether, benzyl methyl ketal, and benzyl ethyl ketal are added as photopolymerization initiators. The addition amount is 1 to 10% by weight with respect to the binder.

紫外線光源としては、水銀灯が用いられる。水銀灯は2
0〜200W/cmのランプを用い、速度0.3m/分〜
20m/分で使用される。基体と水銀灯との距離は一般
に1〜30cmであることが好ましい。
A mercury lamp is used as the ultraviolet light source. 2 mercury lamps
Using a lamp of 0-200W / cm, speed 0.3m / min.
Used at 20 m / min. Generally, the distance between the substrate and the mercury lamp is preferably 1 to 30 cm.

上記のようにして形成された非磁性層上に蒸着、スパッ
タリング等によって強磁金属薄膜からなる磁性層を設け
るか、強磁性微粉末バインダー中に分散した磁性層を塗
設する。
On the non-magnetic layer formed as described above, a magnetic layer made of a strong magnetic metal thin film is provided by vapor deposition, sputtering or the like, or a magnetic layer dispersed in a ferromagnetic fine powder binder is applied.

本発明に適用される磁性金属薄膜の形成法は真空槽内で
膜を形成する方法あるいはメッキ法によればよく、金属
薄膜の形成速度の速いこと、製造工程が簡単であるこ
と、あるいは排液処理等の必要のないこと等の利点を有
する真空槽内で膜を形成する方法が好ましい。真空槽内
で形成する方法とは希薄な気体あるいは真空空間中にお
いて析出させようとする物質またはその化合物を蒸気あ
るいはイオン化した蒸気として基体となる支持体上に析
出させる方法で真空蒸着法、スパッタリング法、イオン
プレーティング法、化学気相メッキ法等がこれに相当す
る。
The method of forming the magnetic metal thin film applied to the present invention may be a method of forming a film in a vacuum chamber or a plating method, which has a high formation speed of the metal thin film, a simple manufacturing process, or a drainage method. A method of forming a film in a vacuum chamber, which has advantages such as not requiring treatment, is preferable. The method of forming in a vacuum chamber is a method of depositing a substance or a compound thereof to be deposited in a dilute gas or a vacuum space as vapor or ionized vapor on a support which is a base, vacuum vapor deposition method, sputtering method. The ion plating method, the chemical vapor deposition method, etc. correspond to this.

さらに本発明において磁気記録層となるべき強磁性金属
層としては鉄、コバルト、ニッケルその他の強磁性金属
あるいはFe−Co、Fe−Ni、Co−Ni、Fe−
Si、Fe−Rh、Co−P、Co−B、Co−Si、
Co−V、Co−Y、Co−La、Co−Ce、Co−
Pr、Co−Sm、Co−Pt、Co−Mn、Fe−C
o−Ni、Co−Ni−P、Co−Ni−B、Co−N
i−Ag、Co−Ni−Na、Co−Ni−Ce、Co
−Ni−Zn、Co−Ni−Cu、Co−Ni−W、C
o−Ni−Re、Co−Sm−Cu等の強磁性合金を真
空槽内で膜を形成する方法あるいはメッキ法によって薄
膜状に形成せしめたもので、その膜厚は磁気記録媒体と
して使用する場合0.05μm〜2μmの範囲であり特
に0.1μm〜0.4μmが好ましい。
Further, in the present invention, as the ferromagnetic metal layer to be the magnetic recording layer, iron, cobalt, nickel and other ferromagnetic metals or Fe--Co, Fe--Ni, Co--Ni, Fe--
Si, Fe-Rh, Co-P, Co-B, Co-Si,
Co-V, Co-Y, Co-La, Co-Ce, Co-
Pr, Co-Sm, Co-Pt, Co-Mn, Fe-C
o-Ni, Co-Ni-P, Co-Ni-B, Co-N
i-Ag, Co-Ni-Na, Co-Ni-Ce, Co
-Ni-Zn, Co-Ni-Cu, Co-Ni-W, C
A ferromagnetic alloy such as o-Ni-Re or Co-Sm-Cu is formed into a thin film by a method of forming a film in a vacuum chamber or a plating method, and the film thickness is used as a magnetic recording medium. The thickness is in the range of 0.05 μm to 2 μm, and particularly preferably 0.1 μm to 0.4 μm.

本発明で塗布型の磁性層に用いられる強磁性粉末として
は、強磁性酸化鉄微粉末、Coドープの強磁性酸化鉄微
粉末、強磁性二酸化クロム微粉末、強磁性合金粉末バリ
ウムフェライトなどが使用できる。強磁性酸化鉄、二酸
化クロムの針状比は2/1〜20/1程度、好ましくは
5/1以上平均長は0.2〜2.0μm程度の範囲が有
効である。強磁性合金粉末は金属分が75wt%以上で
あり、金属分の80wt%以上が強磁性金属(即ち、F
e、Co、Ni、Fe−Co、Fe−Ni、Co−N
i、Fe−Co−Ni)で長径が役1.0μm以下の粒
子である。
As the ferromagnetic powder used in the coating type magnetic layer in the present invention, ferromagnetic iron oxide fine powder, Co-doped ferromagnetic iron oxide fine powder, ferromagnetic chromium dioxide fine powder, ferromagnetic alloy powder barium ferrite, etc. are used. it can. It is effective that the acicular ratio of ferromagnetic iron oxide and chromium dioxide is about 2/1 to 20/1, preferably 5/1 or more and the average length is about 0.2 to 2.0 μm. The ferromagnetic alloy powder has a metal content of 75 wt% or more, and a metal content of 80 wt% or more is a ferromagnetic metal (that is, F
e, Co, Ni, Fe-Co, Fe-Ni, Co-N
i, Fe-Co-Ni) and the major axis is 1.0 μm or less.

磁性層のバインダーとしては、一般に用いられる熱可塑
性樹脂、熱硬化性樹脂、反応型樹脂又はこれらの混合物
が使用できる。
As the binder for the magnetic layer, generally used thermoplastic resins, thermosetting resins, reactive resins, or mixtures thereof can be used.

これらを塗布するに用いる溶媒としては、非磁性層を塗
布するに用いた前記溶媒から適宜選択して用いることが
できる。
The solvent used for coating these can be appropriately selected and used from the above-mentioned solvents used for coating the nonmagnetic layer.

また、本発明の磁性塗液には、潤滑剤、研磨剤、分散
剤、帯電防止剤、防錆剤などの添加剤を加えてもよい。
Further, additives such as a lubricant, an abrasive, a dispersant, an antistatic agent and an anticorrosive agent may be added to the magnetic coating liquid of the present invention.

なお、本発明の非磁性層及び磁性層は支持体の片面に設
けてもよいし、また両面に設けてもよい。
The non-magnetic layer and the magnetic layer of the present invention may be provided on one side or both sides of the support.

〔実施例〕〔Example〕

以下、本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically.

実施例 1 50μm厚のポリイミドベースの両面に次に示す処方の
塗布液をそれぞれ乾燥厚が0.7μmになるように塗布
乾燥し、80W/cmの水銀灯を用いUV照射を各面に3
秒間づつ行い硬化させた。
Example 1 A coating solution having the following formulation was applied and dried on both sides of a polyimide base having a thickness of 50 μm to a dry thickness of 0.7 μm, and UV irradiation was performed on each surface with a mercury lamp of 80 W / cm for 3 times.
It was cured for 2 seconds.

成分 (A) トリス(2アクリロイロキシエチル)イソシアヌ
レート(メチルエチルケトン10%溶液) X重量部 (B) ウレタンアクリレート分子量8000 (メチルエチルケトン10%溶液) Y重量部 (C) シリカゾル 固形分10%、平均粒径80mμ イソプロピルアルコール/メチルエチルケトン(1/1
VoLtt )Z重量部 (D) ベンジルエチルケタール 4重量部 得られたサンプル#1〜#6について、片方の非磁性層
上に次の方法でスパッタリングを行いCo−Crの薄膜
磁性層を設け、スパッタリング中の基板へのサンプルの
バック面はり付け状態をテストした。
Ingredient (A) Tris (2acryloyloxyethyl) isocyanurate (10% solution of methyl ethyl ketone) X parts by weight (B) Urethane acrylate molecular weight 8000 (10% solution of methyl ethyl ketone) Y parts by weight (C) Silica sol 10% solid content, average particle size Diameter 80mμ Isopropyl alcohol / methyl ethyl ketone (1/1
VoLtt) Z parts by weight (D) Benzylethyl ketal 4 parts by weight For each of the obtained samples # 1 to # 6, a Co-Cr thin film magnetic layer was provided on one of the non-magnetic layers by the following method to test the state of the back surface of the sample adhered to the substrate during sputtering. did.

銅製の基板に上記下塗層を有するバック面を密着させて
サンプルをはり付け、真空槽内にセットし、3×10-7
torrに排気した後に3×10-3torrまでアルゴンを導入
した。基板温度を170℃に保ちながら、DCマグネト
ロンスパッタ法でパワー密度3W/cm2にてCo−Cr
膜を2000Å厚に設けた。磁性膜形成後、サンプルの
基板へのはり付き具合をしらべた。次に得られたCo−
Cr膜にパーフルオロポリエーテル系潤滑剤を50〜1
00Å厚に塗布し、乾燥後、3.5吋のフロッピーディ
スに打ち抜き、走行耐久性テストを次のように行った。
すなわち、600r.p.m.500Hzの記録再生を最外周ト
ラックで行った。この場合、ヘッド圧20g、雰囲気2
3℃、50%RHであった。
The back surface having the above-mentioned undercoat layer is brought into close contact with a copper substrate, and the sample is attached and set in a vacuum chamber to obtain 3 × 10 −7.
After evacuation to torr, argon was introduced up to 3 × 10 −3 torr. Co-Cr with a power density of 3 W / cm 2 by DC magnetron sputtering while maintaining the substrate temperature at 170 ° C.
The film was provided to a thickness of 2000Å. After forming the magnetic film, the adhesion of the sample to the substrate was examined. Next obtained Co-
50 to 1 perfluoropolyether lubricant on Cr film
After being applied to a thickness of 00Å and dried, it was punched into a 3.5-inch floppy disk and a running durability test was conducted as follows.
That is, recording / reproduction at 600 rpm at 500 Hz was performed on the outermost track. In this case, head pressure 20g, atmosphere 2
It was 3 ° C. and 50% RH.

得られた結果を次表に示した。The obtained results are shown in the following table.

実施例2 実施例1における(A)成分を次のものに変え、(C)
成分を4重量部に変え、且つ(D)成分を添加せずに非
磁性層を乾燥厚0.7μmになるように両面に塗布、乾
燥した。
Example 2 The component (A) in Example 1 was changed to the following, and (C)
The components were changed to 4 parts by weight, and the non-magnetic layer was coated on both sides so as to have a dry thickness of 0.7 μm without adding the component (D) and dried.

次いで、各面にそれぞれ加速電圧150kV、ビーム電
流5mAで5Mrad の電子線照射を行った。
Next, each surface was irradiated with an electron beam of 5 Mrad at an acceleration voltage of 150 kV and a beam current of 5 mA.

得られたサンプリングについて、実施例1と同様にスパ
ッタリングによってCo−Cr膜を形成し、はり付き具
合をしらべると共に、走行耐久性をしらべた。
With respect to the obtained sampling, a Co—Cr film was formed by sputtering in the same manner as in Example 1, and the sticking condition and the running durability were investigated.

実施例3 実施例1において、(A)成分を次のものに変え且つ
(C)成分を16重量部に変えて同様に非磁性層を乾燥
厚0.7μmになるように両面に塗布、乾燥した。
Example 3 In Example 1, except that the component (A) was changed to the following and the component (C) was changed to 16 parts by weight, the nonmagnetic layer was similarly coated on both surfaces so as to have a dry thickness of 0.7 μm and dried. did.

次いで各面に実施例と同様UV照射を行い、片面にCo
−Cr膜を同様にスパッタリングで設け、裏面のはり付
き具合とサンプルの走行耐久性をしらべ次の結果を得
た。
Then, UV irradiation is performed on each surface as in the example, and Co is applied to one surface.
A -Cr film was similarly provided by sputtering, and the following results were obtained by examining the adhesiveness of the back surface and the running durability of the sample.

〔発明の効果〕 上記の各結果から明らかなように、本発明による非磁性
層(下塗層)を設けた磁気記録材料は走行耐久性に優
れ、且つ磁性層を設ける場合、バックの面の下塗層が基
体等へのはり付きを生ぜず、支持体の耐熱変形性が改良
されていることがわかる。
[Effects of the Invention] As is clear from the above results, the magnetic recording material provided with the non-magnetic layer (undercoat layer) according to the present invention has excellent running durability, and when a magnetic layer is provided, It can be seen that the undercoat layer does not stick to the substrate or the like, and the thermal deformation resistance of the support is improved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性支持体と磁性層との中間に結合剤と
微粒子とを含有する非磁性層を設け、該非磁性層が放射
線により照射されている磁気記録媒体において、該微粒
子がシリカゾルから導入された微粒子であり且つ該結合
剤の45重量%以上がトリアジン環を有する(メタ)ア
クリレート化合物であることを特徴とする磁気記録媒
体。
1. A magnetic recording medium in which a non-magnetic layer containing a binder and fine particles is provided between a non-magnetic support and a magnetic layer, and the fine particles are made of silica sol in a magnetic recording medium irradiated with radiation. A magnetic recording medium comprising the introduced fine particles and 45% by weight or more of the binder is a (meth) acrylate compound having a triazine ring.
JP8719687A 1987-04-10 1987-04-10 Magnetic recording medium Expired - Lifetime JPH0652566B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8719687A JPH0652566B2 (en) 1987-04-10 1987-04-10 Magnetic recording medium
US07/433,399 US4943479A (en) 1987-04-10 1989-11-07 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8719687A JPH0652566B2 (en) 1987-04-10 1987-04-10 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63253526A JPS63253526A (en) 1988-10-20
JPH0652566B2 true JPH0652566B2 (en) 1994-07-06

Family

ID=13908227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8719687A Expired - Lifetime JPH0652566B2 (en) 1987-04-10 1987-04-10 Magnetic recording medium

Country Status (2)

Country Link
US (1) US4943479A (en)
JP (1) JPH0652566B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3843442A1 (en) * 1988-12-23 1990-06-28 Basf Ag MAGNETIC RECORDING CARRIERS
US5827600A (en) * 1991-01-21 1998-10-27 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5645917A (en) * 1991-04-25 1997-07-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
US5639546A (en) * 1991-09-03 1997-06-17 Minnesota Mining And Manufacturing Company Coated article having improved adhesion to organic coatings
EP0927991B1 (en) * 1992-01-08 2001-12-19 Fuji Photo Film Co., Ltd. Magnetic recording medium
EP0562395A1 (en) * 1992-03-25 1993-09-29 Bayer Ag Magnetic recording system for the fabrication of computer hard discs
US6579592B1 (en) 1996-11-29 2003-06-17 Fuji Photo Film Co., Ltd Magnetic recording tape with controlled Hc and magnetic flux/unit area value and controlled Cl/Fe intensity
EP0962919A1 (en) 1997-02-10 1999-12-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6432503B2 (en) 1997-03-31 2002-08-13 Fuji Photo Film Co., Ltd. Magnetic recording medium
DE69817697T2 (en) 1997-06-30 2004-07-08 Fuji Photo Film Co. Ltd., Minamiashigara Magnetic recording medium
US6096406A (en) * 1997-07-15 2000-08-01 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPH11185240A (en) 1997-10-14 1999-07-09 Fuji Photo Film Co Ltd Magnetic recording medium
US6444290B1 (en) 1998-06-11 2002-09-03 Fuji Photo Film Co., Ltd. Magnetic recording medium comprising a support containing a specific size filler and having a specific concentration of surface protrusions
JP2000011352A (en) 1998-06-22 2000-01-14 Fuji Photo Film Co Ltd Magnetic recording medium
US6572922B1 (en) 2000-07-25 2003-06-03 Seagate Technology Llc Eliminating gel particle-related defects for obtaining sub-micron flyability over sol-gel—coated disk substrates
US7026371B2 (en) * 2002-03-29 2006-04-11 Tdk Corporation Electron beam curable urethane resin for magnetic recording medium, method of manufacturing the same, and magnetic recording medium using the same
JP4119704B2 (en) 2002-07-31 2008-07-16 Tdk株式会社 Magnetic recording medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098520A (en) * 1983-11-01 1985-06-01 Fuji Photo Film Co Ltd Megnetic recording medium
JPS60109020A (en) * 1983-11-17 1985-06-14 Tdk Corp Magnetic recording medium and its production
US4619856A (en) * 1984-05-28 1986-10-28 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPS6151620A (en) * 1984-08-21 1986-03-14 Fuji Photo Film Co Ltd Magnetic recording medium
JPH0715736B2 (en) * 1985-02-21 1995-02-22 富士写真フイルム株式会社 Magnetic recording medium
DE3609261C2 (en) * 1985-03-19 1997-03-06 Tdk Corp Magnetic recording medium

Also Published As

Publication number Publication date
JPS63253526A (en) 1988-10-20
US4943479A (en) 1990-07-24

Similar Documents

Publication Publication Date Title
JPH0652566B2 (en) Magnetic recording medium
US4619856A (en) Magnetic recording medium
JPH0435809B2 (en)
US4664965A (en) Magnetic recording medium
US4781965A (en) Magnetic recording medium
US4810435A (en) Method of making substrate for magnetic recording medium
JPH0762892B2 (en) Magnetic recording medium for image recording
JPS60133531A (en) Magnetic recording medium
JPS60150227A (en) Magnetic recording medium
JPS6173236A (en) Magnetic recording medium
JPH0458651B2 (en)
JPH0522968B2 (en)
JPH0673172B2 (en) Magnetic recording medium
JPS6113429A (en) Magnetic recording medium
JPH01217725A (en) Production of base for magnetic recording medium
JPS6113430A (en) Magnetic recording medium
JPH03134819A (en) Magnetic recording medium and its production
JPS6113431A (en) Magnetic recording medium
JPS60224120A (en) Magnetic recording medium
JPH11316948A (en) Manufacture of magnetic recording medium
JPS6194240A (en) Preparation of magnetic recording medium
JPH01104632A (en) Production of support for magnetic recording medium
JPS60205825A (en) Magnetic recording medium and its production
JPS60154329A (en) Magnetic recording medium
JPS60143426A (en) Magnetic recording medium

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070706

Year of fee payment: 13