JPH0651820B2 - Composite rubber composition - Google Patents

Composite rubber composition

Info

Publication number
JPH0651820B2
JPH0651820B2 JP62145147A JP14514787A JPH0651820B2 JP H0651820 B2 JPH0651820 B2 JP H0651820B2 JP 62145147 A JP62145147 A JP 62145147A JP 14514787 A JP14514787 A JP 14514787A JP H0651820 B2 JPH0651820 B2 JP H0651820B2
Authority
JP
Japan
Prior art keywords
fluororubber
polytetrafluoroethylene
composite
vulcanized
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62145147A
Other languages
Japanese (ja)
Other versions
JPS63178149A (en
Inventor
実 吉田
康順 佐々木
Original Assignee
エヌオーケー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌオーケー株式会社 filed Critical エヌオーケー株式会社
Publication of JPS63178149A publication Critical patent/JPS63178149A/en
Publication of JPH0651820B2 publication Critical patent/JPH0651820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複合体ゴム組成物に関する。更に詳しくは、
ガスバリヤー性などにすぐれた加硫成形品を与え得る複
合体ゴム組成物に関する。
TECHNICAL FIELD The present invention relates to a composite rubber composition. For more details,
The present invention relates to a composite rubber composition capable of giving a vulcanized molded article having excellent gas barrier properties.

〔従来の技術〕および〔発明が解決しようとする問題
点〕 ゴム類は、一般にガスバリヤー性が悪く、そのガス透過
率は樹脂の約10〜100倍程度大きいことが知られてい
る。これは、分子オーダーの運動性によるものと考えら
れており、樹脂に比べてゴムの分子運動が活発なことに
よる(ミクロブラウン運動)。一方、樹脂類は、一般に
硬く、ゴムと比べて柔軟性、伸び性が低く、このように
ガスバリヤー性と柔軟性、伸び性とは相反する性質とし
て示される。
[Prior Art] and [Problems to be Solved by the Invention] It is known that rubbers generally have poor gas barrier properties and their gas permeability is about 10 to 100 times higher than that of resin. This is thought to be due to the mobility of the molecular order, and the molecular motion of rubber is more active than that of resin (micro Brownian motion). On the other hand, resins are generally hard and have lower flexibility and extensibility than rubber, and thus the gas barrier property and the flexibility and extensibility are shown as properties contradictory to each other.

そこで、本発明者らは、ゴム類が本来有する好ましい性
質である柔軟性および伸び性を実質的に損うことなく、
その加硫成形品にガスバリヤー性を付与し得るゴム組成
物を求めて種々の検討の結果、フッ素ゴムに一般的に示
される配合剤を添加したフッ素ゴム配合物に、フィブリ
ル化高分子多孔質体を添加した複合体とすることによ
り、かかる課題が効果的に解決されることを見出した。
Therefore, the present inventors, without substantially impairing the flexibility and extensibility, which are preferable properties inherent in rubbers,
As a result of various investigations for a rubber composition capable of imparting a gas barrier property to the vulcanized molded product, as a result, a fluororubber compound containing a compounding agent generally shown in fluororubber was added to a fibrillated polymer porous material. It has been found that such a problem can be effectively solved by using a complex to which a body is added.

〔問題点を解決するための手段〕および〔作用〕 従って、本発明はガスバリヤー性にすぐれた加硫成形品
を与え得る複合体ゴム組成物に係り、この複合体ゴム組
成物は、配合剤を添加したフッ素ゴム配合物およびポリ
テトラフルオロエチレンまたはポリクロルトリフルオロ
エチレンのフィブリル化多孔質体よりなる。
[Means for Solving Problems] and [Action] Accordingly, the present invention relates to a composite rubber composition capable of providing a vulcanized molded article having excellent gas barrier properties. The composite rubber composition comprises a compounding agent. And a fibrillated porous body of polytetrafluoroethylene or polychlorotrifluoroethylene.

改質さるべきフッ素ゴムの配合物は、フッ素ゴムに、一
般的に示される配合剤、例えばカーボンブラック、ホワ
イトカーボンなどの補強剤、炭酸カルシウムなどの充填
剤、フタル酸エステルなどの可塑剤、ナフチルアミン系
化合物などの老化防止剤、イオウ、ポリアミン、有機過
酸化物などの加硫剤、グアニジン系化合物、チウラム系
化合物などの加硫促進剤などの配合剤を適宜配合して調
製されたものである。
The compound of the fluororubber to be modified is a compounding agent generally shown in the fluororubber, for example, a reinforcing agent such as carbon black or white carbon, a filler such as calcium carbonate, a plasticizer such as phthalate ester, and naphthylamine. It is prepared by appropriately compounding an antiaging agent such as a compound, a vulcanizing agent such as sulfur, polyamine and organic peroxide, and a compounding agent such as a vulcanization accelerator such as a guanidine compound and a thiuram compound. .

かかるフッ素ゴム配合物に添加されるフィブリル化高分
子多孔質体は、ポリテトラフルオロエチレン(PTFE)また
はポリクロルトリフルオロエチレンから形成される。フ
ィブリル化多孔質体の形成は、一般に粒径μmオーダー
の高分子微粉末を原料とする延伸法により行われ、かか
る微粉末に適度のせん断力をかけることにより、通常連
結部といわれる塊状部とフィブリル部とからなる連続相
を形成させる。
The fibrillated polymer porous material added to such a fluororubber compound is formed from polytetrafluoroethylene (PTFE) or polychlorotrifluoroethylene. The formation of the fibrillated porous body is generally performed by a stretching method using a polymer fine powder having a particle size of μm order as a raw material, and by applying an appropriate shearing force to the fine powder, a lumped portion usually called a connecting portion is formed. A continuous phase consisting of fibril parts is formed.

フッ素ゴム配合物へのフィブリル化高分子多孔質体の添
加による複合化は、フィブリル化高分子多孔質体が形成
する連続相のフィブリル部の空隙部にフッ素ゴムが充填
された形で行われる。例えば、フィブリル化PTFEおよび
フッ素ゴムの組合せを例にとり、2,3の複合化方法を説
明すると、次の如くである。
The compounding by adding the fibrillated polymer porous material to the fluororubber compound is performed in a form in which the fluororubber is filled in the voids of the fibril portion of the continuous phase formed by the fibrillated polymer porous material. For example, taking a combination of fibrillated PTFE and fluororubber as an example, a few methods of compounding will be described as follows.

(1)まず、PTFE微粉末(粒径約0.1〜50μm)を炭化水
素、ハロゲン化炭化水素、ケトン、アルコールなどのPT
FEを濡らす溶媒中に添加し、これをボールミルなどを用
いて混合する。この混練物を例えば押出し、圧延などの
せん断条件下での成形法によってシート状に成形し、溶
媒をそのままにしてあるいは乾燥させてから、毎分約0.
1〜1000%の延伸速度で約30〜500%延伸する。この延伸状
態を保持したままあるいは延伸後、PTFEの軟化点乃至融
点付近(約310〜400℃)で数分間程度加熱焼成すると、延
伸率に応じて体積で約50〜90%と空隙部の割合の多いフ
ィブリル化多孔質体が得られる。かかるフィブリル化多
孔質体に、フッ素ゴム配合物のケトン溶液などを含浸さ
せ、溶媒を除去すると、空隙部でフッ素ゴムと複合化さ
れた組成物がそこに得られる。
(1) First, PTFE fine powder (particle size of about 0.1 to 50 μm) is PT of hydrocarbons, halogenated hydrocarbons, ketones, alcohols, etc.
FE is added to a wetting solvent and mixed using a ball mill or the like. This kneaded product is extruded, molded into a sheet by a molding method under shearing conditions such as rolling, and after leaving the solvent as it is or after drying, about 0.
About 30 to 500% is drawn at a drawing speed of 1 to 1000%. While maintaining this stretched state or after stretching, when heated and baked for about several minutes near the softening point or melting point of PTFE (about 310 to 400 ° C), the proportion of voids to about 50 to 90% by volume depending on the stretching ratio. A fibrillated porous body having a high content can be obtained. When such a fibrillated porous material is impregnated with a ketone solution of a fluororubber compound and the solvent is removed, a composition in which the fluororubber is composited in the voids is obtained.

(2)PTFE微粉末をフッ素ゴム配合物の溶液中に、固形分
の体積比でPTFEが約10〜80%、フッ素ゴム配合物が約90
〜20%の割合となるように添加し、これをボールミルな
どを用いて混合する。以下、上記(1)と同様にシート成
形、延伸および加熱焼成すると、フィブリル化多孔質体
の形成とそれとフッ素ゴムとの複合化が行われる。
(2) PTFE fine powder in a solution of fluororubber compound, about 10 to 80% PTFE by volume ratio of solid content, about 90% fluororubber compound.
It is added so that the ratio becomes ˜20%, and this is mixed using a ball mill or the like. Thereafter, when the sheet is formed, stretched, and heated and fired in the same manner as in the above (1), the fibrillated porous body is formed and the fluororubber is compounded.

(3)フッ素ゴム配合物をロールに巻き付けておき、これ
にPTFE微粉末を普通のロール混練法と同様に徐々に添加
し、フィブリル化多孔質体の形成と複合化とを同時に行
わせる方法。この方法は、上記2つの方法と比較して操
作が簡単であるという長所を有する。ただし、PTFE微粉
末の混入時にせん断力がかかりすぎるとPTFEが塊まって
しまったり、あるいはPTFE微粉末の体積分率が約40%以
上となった場合にも塊まってしまうことがあるので注意
を要する。
(3) A method in which the fluororubber compound is wound around a roll, and the PTFE fine powder is gradually added to the roll in the same manner as in a normal roll kneading method to simultaneously form a fibrillated porous body and compound it. This method has the advantage of being easier to operate than the above two methods. However, be careful that if too much shear force is applied when mixing the PTFE fine powder, the PTFE may clump, or even if the volume fraction of the PTFE fine powder becomes approximately 40% or more. Requires.

上記各方法の内、(2)の方法では加熱焼成時にフッ素ゴ
ムの加硫も同時に行われるが、(1)および(3)の方法では
形成された複合体組成物についての加熱加硫が行われ
る。
Among the above methods, in the method (2), the vulcanization of the fluororubber is simultaneously performed at the time of heating and firing, but in the methods (1) and (3), the heat vulcanization of the formed composite composition is performed. Be seen.

(4)ポリテラフルオロエチレンまたはポリクロルトリフ
ルオロエチレンの水性けん濁液または有機溶媒分散液
に、有機溶媒を用いながらフッ素ゴム配合物を添加し、
そこに形成された複合体ゴム組成物混合液を流延するな
どして溶媒を除去し、得られた複合体ゴム組成物を予備
成形または押出し後圧延または延伸することにより、フ
ィブリル化多孔質体の形成とそれとフッ素ゴムとの複合
化が行われる。
(4) To a polyterafluoroethylene or polychlorotrifluoroethylene aqueous suspension or organic solvent dispersion, add a fluororubber formulation while using an organic solvent,
The solvent is removed by, for example, casting the composite rubber composition mixed liquid formed therein, and the obtained composite rubber composition is preformed or extruded and then rolled or stretched to give a fibrillated porous body. Is formed and compounded with fluororubber.

〔発明の効果〕〔The invention's effect〕

本発明に係る複合体ゴム組成物は、フッ素ゴムが本来有
する好ましい性質である柔軟性および伸び性を実質的に
損うことなく、その加硫成形品のガスバリヤー性を大幅
に改善させ、またそれの力学的強度の点においてもすぐ
れている。
The composite rubber composition according to the present invention significantly improves the gas barrier property of the vulcanized molded product without substantially impairing the flexibility and the extensibility, which are desirable properties inherent in the fluororubber, and It is also excellent in its mechanical strength.

従って、本発明の複合体ゴム組成物は、耐熱性、耐薬品
性などの点からフッ素ゴムが使えず、ポリテトラフルオ
ロエチレンなどの樹脂でシールする個所に使用されるガ
スケット、パッキンなどに成形されて、有効に用いられ
る。また、ポリテトラフルオロエチレンがフィブリル化
多孔質体材料として用いられた場合には、それの潤滑性
により、薄膜化、摺動性が要求される用途にも有効に用
いられる。
Therefore, the composite rubber composition of the present invention cannot be used with fluororubber from the viewpoint of heat resistance, chemical resistance, etc., and is molded into a gasket, packing, etc. used at a place to be sealed with a resin such as polytetrafluoroethylene. Be used effectively. When polytetrafluoroethylene is used as the material for the fibrillated porous material, it can be effectively used for applications requiring thinness and slidability due to its lubricity.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be described with reference to examples.

実施例1 ポリテトラフルオロエチレン粉末(三井フロロケミカル
製品テフロン6J)500部(重量、以下同じ)にソルベントナ
フサ100部を混和し、この混和物を成形機を用いて60kg/
cm2の圧力で1分間加圧し、断面50×50mmの角棒状に予
備成形した。次いで、これをラム押出機を用いて、幅50
mm、厚さ1mmのシート状に押出した。このシートを、100
mmの長さに切りとり、延伸機を用いて1400mm/分の延伸
速度で100%延伸し、この後340℃で5分間熱処理した。
Example 1 500 parts of polytetrafluoroethylene powder (Teflon 6J, a product of Mitsui Fluorochemicals) (weight, hereinafter the same) was mixed with 100 parts of solvent naphtha, and this mixture was mixed with a molding machine at 60 kg /
It was pressurized with a pressure of cm 2 for 1 minute and preformed into a square rod shape having a cross section of 50 × 50 mm. Then, using a ram extruder, it was
mm, and a sheet having a thickness of 1 mm was extruded. This sheet, 100
It was cut into a length of 100 mm, 100% stretched at a stretching speed of 1400 mm / min using a stretching machine, and then heat-treated at 340 ° C. for 5 minutes.

このようにして得られたポリテトラフルオロエチレン多
孔質体(多孔度46%)を、下記配合組成のフッ素ゴム溶液
中に浸漬(20分間)-乾燥(減圧乾燥器を用い、50℃で12時
間乾燥)する工程を3回くり返して行ない、ポリテトラフ
ルオロエチレン多孔質体中にフッ素ゴムを含浸させた複
合体(体積比による組成52/48)を得た。
The thus obtained polytetrafluoroethylene porous body (porosity 46%) was immersed in a fluororubber solution having the following composition (20 minutes) -drying (using a vacuum dryer, at 50 ° C. for 12 hours. The step of drying) was repeated 3 times to obtain a composite (composition 52/48 by volume ratio) in which fluororubber was impregnated in the polytetrafluoroethylene porous body.

フッ素ゴム(デュポン社製品バイトンE60C) 100部 MgO 4 Ca(OH)2 3 MTカーボンブラック 15 メチルエチルケトン 400 このシート状複合体(50×100×1.3mm)をヒートプレスし
て加硫成形し、得られた加硫シート(50 ×100×1.0mm)
を引張試験機に取り付け、20%伸長時の応力および残留
伸び、初期および20%伸長を10回行なった後の水素ガス
透過係数P 2をそれぞれ測定した。
Fluororubber (Viton E60C manufactured by DuPont) 100 parts MgO 4 Ca (OH) 2 3 MT Carbon black 15 Methyl ethyl ketone 400 This sheet composite (50 × 100 × 1.3 mm) was vulcanized by heat pressing to obtain Vulcanized sheet (50 x 100 x 1.0 mm)
The attachment to the tensile tester, 20% stress and elongation residual elongation at the initial and 20% elongation of 10 times-performed after a hydrogen gas permeability coefficient P H 2 were measured.

比較例1a ポリテトラフルオロエチレン粉末(テフロン6J)500部お
よび塩化ナトリウム粉末500部の混合物を、340℃で5分
間プレス成形し、得られた厚さ1mmのシート状物を50℃
の水中に12時間浸漬し、塩化ナトリウムを溶出させた。
Comparative Example 1a A mixture of 500 parts of polytetrafluoroethylene powder (Teflon 6J) and 500 parts of sodium chloride powder was press-molded at 340 ° C. for 5 minutes, and a sheet having a thickness of 1 mm was obtained at 50 ° C.
Sodium chloride was eluted by immersing in water for 12 hours.

このようにして得られたポリテトラフルオロエチレン多
孔質体について、実施例1と同様にしてフッ素ゴムの含
浸-乾燥を行ない、その複合体(体積比53/47)から得られ
たシート状複合体(50×100×1.4mm)をヒートプレスして
加硫成形した。この加硫シート(50×100×1.0mm)につい
て、実施例1と同様の測定を行なった。
The polytetrafluoroethylene porous body thus obtained was impregnated with fluororubber and dried in the same manner as in Example 1 to obtain a sheet-like composite obtained from the composite (volume ratio 53/47). (50 × 100 × 1.4 mm) was heat pressed to be vulcanized and molded. The same measurement as in Example 1 was performed on this vulcanized sheet (50 × 100 × 1.0 mm).

比較例1b ポリテトラフルオロエチレン粉末(テフロン6J)500部と
実施例1で用いられたフッ素ゴム溶液1942部とを室温で
攪拌混合した後、エタノール3000部を徐々に加えてポリ
テトラフルオロエチレンとフッ素ゴムとを共沈させた。
この沈殿物をロ別し、1000部のエタノールで洗浄した
後、減圧乾燥器を用い、50℃で24時間乾燥させた。
Comparative Example 1b 500 parts of polytetrafluoroethylene powder (Teflon 6J) and 1942 parts of the fluororubber solution used in Example 1 were stirred and mixed at room temperature, and then 3000 parts of ethanol were gradually added to the polytetrafluoroethylene and fluorine. Coprecipitated with rubber.
This precipitate was separated by filtration, washed with 1000 parts of ethanol, and then dried at 50 ° C. for 24 hours using a vacuum dryer.

このようにして得られたポリテトラフルオロエチレン-
フッ素ゴム(体積比50/50)複合物をヒートプレスして加
硫成形し、この加硫シート(50×100×1.0mm)について、
実施例1と同様の測定を行なった。
Polytetrafluoroethylene-obtained in this way
Fluorine rubber (volume ratio 50/50) composite was heat-pressed to be vulcanized and molded, and for this vulcanized sheet (50 × 100 × 1.0 mm),
The same measurement as in Example 1 was performed.

実施例2 ポリテトラフルオロエチレン粉末(テフロン6J)500部と
実施例1で用いられたフッ素ゴム溶液1235部とを室温で
攪拌混合した後、エタノール2000部を徐々に加えてポリ
テトラフルオロエチレンとフッ素ゴムとを共沈させた。
この沈澱物をロ別し、1000部のエタノールで洗浄した
後、減圧乾燥器を用い、50℃で24時間乾燥させた。
Example 2 500 parts of polytetrafluoroethylene powder (Teflon 6J) and 1235 parts of the fluororubber solution used in Example 1 were stirred and mixed at room temperature, and then 2000 parts of ethanol were gradually added to the polytetrafluoroethylene and fluorine. Coprecipitated with rubber.
The precipitate was separated by filtration, washed with 1000 parts of ethanol, and then dried at 50 ° C. for 24 hours using a vacuum dryer.

このようにして得られたポリテトラフルオロエチレン-
フッ素ゴム(体積比61/39)複合物を、60kg/cm2の圧力で
1分間加圧し、断面50×50mmの角棒状に予備成形した。
次いで、これをラム押出機を用いて、幅50mm、厚さ2mm
のシート状に押出した。
Polytetrafluoroethylene-obtained in this way
The fluororubber (volume ratio 61/39) composite was pressed for 1 minute at a pressure of 60 kg / cm 2 , and was preformed into a square rod shape having a cross section of 50 × 50 mm.
Then, using a ram extruder, this is 50 mm wide and 2 mm thick.
Was extruded into a sheet form.

このシートを、100mmの長さに切りとり、延伸機を用い
て1400mm/分の延伸速度で100%延伸し、この後340℃で5
分間プレス成形し、この加硫シート(50×100×1.0mm)を
得た。この加硫シートについて、実施例1と同様の測定
を行なった。
This sheet is cut into a length of 100 mm, 100% stretched using a stretching machine at a stretching speed of 1400 mm / min, and then 5% at 340 ° C.
It was press-molded for a minute to obtain this vulcanized sheet (50 × 100 × 1.0 mm). The same measurement as in Example 1 was performed on this vulcanized sheet.

比較例2a 比較列1aにおいて、ポリテトラフルオロエチレン多孔
質体のフッ素ゴム溶液中への浸漬-乾燥工程を2回くり返
して行ない、得られた複合体(体積比62/38)について、
加硫シートの成形およびそれの評価を行なった。
Comparative Example 2a In Comparative Row 1a, the polytetrafluoroethylene porous body was dipped in a fluororubber solution-the drying step was repeated twice, and the obtained composite (volume ratio 62/38) was
A vulcanized sheet was molded and evaluated.

比較例2b 実施例2で用いられたポリテトラフルオロエチレン-フ
ッ素ゴム複合体を、ヒートプレスで加硫成形し、得られ
た加硫シート(50×50×1.0mm)についての評価を行なっ
た。
Comparative Example 2b The polytetrafluoroethylene-fluororubber composite used in Example 2 was vulcanized and molded by a heat press, and the obtained vulcanized sheet (50 × 50 × 1.0 mm) was evaluated.

実施例3 実施例2において、フッ素ゴム溶液を792部用い、ポリ
テトラフルオロエチレン-フッ素ゴム(体積比69/31)複合
体を得、以下同様にして加硫シートの成形およびそれの
評価を行なった。
Example 3 In Example 2, using 792 parts of the fluororubber solution, a polytetrafluoroethylene-fluororubber (volume ratio 69/31) composite was obtained, and thereafter, a vulcanized sheet was molded and evaluated in the same manner. It was

比較例3a 比較例1aにおいて、ポリテトラフルオロエチレン多孔
質体のフッ素ゴム溶液中への浸漬(ただし15分間に変更)
-乾燥工程を2回くり返して行ない、得られた複合体(体
積比72/28)について、加硫シートの成形およびそれの評
価を行なった。
Comparative Example 3a In Comparative Example 1a, the polytetrafluoroethylene porous body was immersed in a fluororubber solution (however, changed to 15 minutes).
-The drying step was repeated twice, and the obtained composite (volume ratio 72/28) was molded into a vulcanized sheet and evaluated.

比較例3b 実施例3で用いられたポリテトラフルオロエチレン-フ
ッ素ゴム複合体を、ヒートプレスで加硫成形し、得られ
た加硫シート(50×100×1.0mm)についての評価を行なっ
た。
Comparative Example 3b The polytetrafluoroethylene-fluororubber composite used in Example 3 was vulcanized and molded by heat pressing, and the obtained vulcanized sheet (50 × 100 × 1.0 mm) was evaluated.

以上の各実施例および比較例で得られた結果は、次の表
1に示される。
The results obtained in each of the above Examples and Comparative Examples are shown in Table 1 below.

上記の結果から、本発明に係る複合体ゴム組成物は、柔
軟性があり、伸長試験後においてもガスバリヤー性を有
することが分かる。
From the above results, it is understood that the composite rubber composition according to the present invention is flexible and has gas barrier properties even after the elongation test.

更に、伸びと応力との関係は第1図のグラフに示され、
またガス透過係数の温度との関係は第2図のグラフに示
される。
Furthermore, the relationship between elongation and stress is shown in the graph of FIG.
The relationship between the gas permeability coefficient and the temperature is shown in the graph of FIG.

実施例4 ポリクロルトリフルオロエチレン(分子量約100〜120万)
の50重量%水性けん濁液2152部を、フッ素ゴム(昭和電工
・デュポン製品Viton GF)286.5部を20重量%となる濃度
で溶解させた酢酸エチル溶液中に、9℃の液温を保ちな
がら滴下し、攪拌しながら混合した。十分に混合を行な
った後、エタノールを滴下して固形分を沈殿させ、これ
を取り出し、減圧乾燥した粉状体を得た。
Example 4 Polychlorotrifluoroethylene (Molecular weight: about 100 to 1.2 million)
2152 parts of 50% by weight aqueous suspension of Fluorine rubber (Viton GF from Showa Denko / DuPont) at a concentration of 20% by weight in an ethyl acetate solution in which the solution temperature of 9 ° C was maintained. The mixture was added dropwise and mixed with stirring. After thorough mixing, ethanol was added dropwise to precipitate a solid content, which was taken out to obtain a powdery body dried under reduced pressure.

この粉状体を、圧力20kg/cm2、温度100℃の条件下で円
柱状に予備成形し、これを温度120℃、押出圧4ton/c
m2、絞り率100の条件下で厚さ2mmのシート状に押出し、
次いで2本カレンダーを用い、150℃でドラフト比4で引
取りながら1.1mmの厚さに圧延し、最後に温度280℃、圧
力100kg/cm2でプレスして、100×100×1.0mmの加硫シー
トを得た。
This powdery material was preformed into a columnar shape under the conditions of pressure 20 kg / cm 2 and temperature 100 ° C, and this was molded at temperature 120 ° C and extrusion pressure 4ton / c.
Extruded into a sheet with a thickness of 2 mm under the condition of m 2 and drawing rate of 100,
Then, using two calenders, roll it to a thickness of 1.1 mm while taking it off at a draft ratio of 4 at 150 ° C, and finally press it at a temperature of 280 ° C and a pressure of 100 kg / cm 2 to apply a pressure of 100 × 100 × 1.0 mm. A sulfurized sheet was obtained.

比較例4 実施例4にならい、フッ素ゴムの加硫シートを製造し
た。
Comparative Example 4 According to Example 4, a vulcanized sheet of fluororubber was produced.

以上の実施例4および比較例4においてそれぞれ得られ
た加硫シートについて、下記項目の測定を行なった。
The following items were measured for the vulcanized sheets obtained in Example 4 and Comparative Example 4 described above.

引張強度(kg/cm2): 島津製作所製オートグラフによる 表面摩擦係数: バウデンレーベン型;すべり速度0.1cm/秒、荷重20g、8
mm形鋼球 ガス透過係数[×10-12cc(stp)・cm/cm2・秒・cmHg]: バラトロン真空圧力計を用いる圧力法により、 窒素ガスについて、20℃で測定 得られた結果は、次の表2に示される。
Tensile strength (kg / cm 2 ): According to Shimadzu autograph Surface friction coefficient: Bowden Leben type; Sliding speed 0.1 cm / sec, load 20 g, 8
mm-shaped steel ball Gas permeability coefficient [× 10 -12 cc (stp) ・ cm / cm 2・ sec ・ cmHg]: Nitrogen gas measured at 20 ℃ by pressure method using Baratron vacuum pressure gauge , As shown in Table 2 below.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る複合体組成物の加硫成形品の伸
びと応力との関係を示すグラフであり、また第2図はガ
ス透過係数の温度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the elongation and stress of the vulcanized molded product of the composite composition according to the present invention, and FIG. 2 is a graph showing the relationship between the gas permeation coefficient and temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】配合剤を配合したフッ素ゴム配合物および
ポリテトラフルオロエチレンまたはポリクロルトリフル
オロエチレンのフィブリル化多孔質体よりなる複合体ゴ
ム組成物。
1. A composite rubber composition comprising a fluororubber compound containing a compounding agent and a fibrillated porous material of polytetrafluoroethylene or polychlorotrifluoroethylene.
JP62145147A 1986-09-02 1987-06-12 Composite rubber composition Expired - Lifetime JPH0651820B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20753386 1986-09-02
JP61-207533 1986-09-02

Publications (2)

Publication Number Publication Date
JPS63178149A JPS63178149A (en) 1988-07-22
JPH0651820B2 true JPH0651820B2 (en) 1994-07-06

Family

ID=16541302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145147A Expired - Lifetime JPH0651820B2 (en) 1986-09-02 1987-06-12 Composite rubber composition

Country Status (1)

Country Link
JP (1) JPH0651820B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545660B2 (en) * 1991-05-09 1996-10-23 ニチアス株式会社 Rubber composition and method for producing the same
JP2008285562A (en) * 2007-05-16 2008-11-27 Mitsubishi Cable Ind Ltd Self-lubricating rubber composition and sealing material using the same
JP5672978B2 (en) * 2010-11-02 2015-02-18 中西金属工業株式会社 Rubber composition and rubber molded body
CN109369990A (en) * 2018-10-31 2019-02-22 江苏伊顿航天材料股份有限公司 A kind of refractory seals part and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117274A (en) * 1974-08-01 1976-02-12 Matsushita Electric Ind Co Ltd TAKOSHITSUFUIRUMU
JPS5385845A (en) * 1977-01-03 1978-07-28 American Cyanamid Co Method of improving wear resistance of elastomer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117274A (en) * 1974-08-01 1976-02-12 Matsushita Electric Ind Co Ltd TAKOSHITSUFUIRUMU
JPS5385845A (en) * 1977-01-03 1978-07-28 American Cyanamid Co Method of improving wear resistance of elastomer

Also Published As

Publication number Publication date
JPS63178149A (en) 1988-07-22

Similar Documents

Publication Publication Date Title
EP0296240B1 (en) Process of producing a fibrillated semi-interpenetrating polymer network of polytetrafluoroethylene and silicone elastomer and shaped products thereof
EP0274010B1 (en) Use of a composition for a gasket
US5494301A (en) Wrapped composite gasket material
US5071609A (en) Process of manufacturing porous multi-expanded fluoropolymers
US5912278A (en) Foamed fluoropolymer
DE68905525T2 (en) Process for molding a filler containing polytetrafluoroethylene.
US20060292324A1 (en) Uniaxially and biaxially-oriented polytetrafluoroethylene structures
US7060210B2 (en) Method of processing colloidal size polytetrafluoroethylene resin particles to produce biaxially-oriented structures
EP0613921A1 (en) Porous polytetrafluoroethylene material and process for producing the same
JPH0651820B2 (en) Composite rubber composition
JPH0125769B2 (en)
JP4509492B2 (en) Filled fluororesin sheet and method for producing the same
US3325434A (en) Polytetrafluoroethylene-silicone rubber extrusion composition
JP3763781B2 (en) Method for producing polyketone molded body
FR2519344A1 (en) EXPANDABLE MIXTURE BASED ON POLYVINYL CHLORIDE PROVIDING A LOW DENSITY HAVING PRODUCT
JPS60104319A (en) Polytetrafluoroethylene porous material and manufacture thereof
DE69028661T2 (en) Thermoplastic elastomer composition, process for molding it and molded articles thereof
JPH04279639A (en) Porous unit
JP2000313024A (en) Production of thermoplastic elastomer foam
JPH01198676A (en) Sheetlike gasket material
JPH032455B2 (en)
JPH01152042A (en) Production of conductive composite material
JP3046405B2 (en) Manufacturing method of porous body
JPH08209436A (en) Production of polytetrafluoroethylene-based yarn
JPH0342223A (en) Method for molding polytetrafluoroethylene

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term