JP3046405B2 - Manufacturing method of porous body - Google Patents

Manufacturing method of porous body

Info

Publication number
JP3046405B2
JP3046405B2 JP3177448A JP17744891A JP3046405B2 JP 3046405 B2 JP3046405 B2 JP 3046405B2 JP 3177448 A JP3177448 A JP 3177448A JP 17744891 A JP17744891 A JP 17744891A JP 3046405 B2 JP3046405 B2 JP 3046405B2
Authority
JP
Japan
Prior art keywords
porous body
powder
ptfe
filler
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3177448A
Other languages
Japanese (ja)
Other versions
JPH04372631A (en
Inventor
敬三 溝部
陽二 内田
厚生 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP3177448A priority Critical patent/JP3046405B2/en
Publication of JPH04372631A publication Critical patent/JPH04372631A/en
Application granted granted Critical
Publication of JP3046405B2 publication Critical patent/JP3046405B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はポリテトラフルオロエチ
レン(以下、PTFEという)を必須成分として含む多
孔質体の新規な製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for producing a porous material containing polytetrafluoroethylene (hereinafter referred to as PTFE) as an essential component.

【0002】[0002]

【従来の技術】PTFEは耐熱性、耐薬品性、摺動特
性、電気絶縁性等種々の特性に優れている。そして、P
TFEを所定形状に成形して成る多孔質体は上記諸特性
を備えると共に気体透過性をも有しているので、シール
材、パッキン、緩衝材、フィルター等広範な用途に適用
されつつある。
2. Description of the Related Art PTFE is excellent in various properties such as heat resistance, chemical resistance, sliding characteristics, and electrical insulation. And P
Since a porous body formed by molding TFE into a predetermined shape has the above-mentioned characteristics and also has gas permeability, it is being applied to a wide range of uses such as sealing materials, packings, cushioning materials, and filters.

【0003】かようなPTFE多孔質体の製造法とし
て、例えば、特開昭61−66730号公報に開示され
ているように、先ず未焼成のPTFEをその融点以上の
温度で加熱することにより焼成し、この焼成したPTF
Eを粉砕して粉末とし、次いでこの焼成粉末を加圧条件
下で所定形状に成形し、その後再度PTFEの融点以上
の温度に加熱する方法が知られている。
[0003] As a method for producing such a porous PTFE body, for example, as disclosed in Japanese Patent Application Laid-Open No. Sho 61-66730, unfired PTFE is first heated at a temperature not lower than its melting point. And this fired PTF
A method is known in which E is pulverized into a powder, and then the fired powder is formed into a predetermined shape under a pressurized condition, and then heated again to a temperature equal to or higher than the melting point of PTFE.

【0004】[0004]

【発明が解決しようとする課題】ところで、従来の方法
によって得られるPTFE多孔質体はクリープ変形(コ
ールドフロー)が大きく、大荷重あるいは大締つけ力の
作用する場所での使用には不適であるという問題があっ
た。
By the way, the porous PTFE obtained by the conventional method has a large creep deformation (cold flow) and is not suitable for use in a place where a large load or a large tightening force acts. There was a problem.

【0005】[0005]

【課題を解決するための手段】本発明者は従来技術の有
する上記問題を解決するため種々研究の結果、PTFE
粉末として造粒された未焼成粉末を用いると共にこれに
充填材を混合し、この混合物を成形し、次いで焼成する
ことにより耐クリープ性の向上した多孔質体が得られる
ことを見い出し、本発明を完成するに至ったものであ
る。
The inventor of the present invention has conducted various studies to solve the above-mentioned problems of the prior art and found that PTFE
It has been found that a porous body having improved creep resistance can be obtained by using an unfired powder that has been granulated as a powder, mixing a filler with the unfired powder, molding the mixture, and then firing the mixture. It has been completed.

【0006】即ち、本発明に係る多孔質体の製造法は、
造粒された未焼成のPTFE粉末と充填材との混合物を
所定形状に成形し、次いでPTFEの融点以上の温度に
加熱して焼成することを特徴とするものである。
That is, the method for producing a porous body according to the present invention comprises:
The mixture of the granulated unfired PTFE powder and the filler is formed into a predetermined shape, and then heated to a temperature equal to or higher than the melting point of PTFE and fired.

【0007】本発明においてはPTFE粉末として未焼
成であり且つ造粒されたものを用いる。「造粒」とはP
TFEの一次粒子および/または二次粒子の複数個を凝
集させることを意味し、粒径は通常30〜700μm程
度である。かような造粒された未焼成PTFE粉末は、
ダイキン工業株式会社からM−31、M−32、M−3
3等、三井デュポンフロロケミカル株式会社から800
−J、820−J等、旭フロロポリマー株式会社からG
−307等、ヘキスト社からTF−1400等の商品名
で市販されているので、これらを入手して用いることが
できる。
In the present invention, unfired and granulated PTFE powder is used. "Granulation" means P
It means that a plurality of primary particles and / or secondary particles of TFE are aggregated, and the particle size is usually about 30 to 700 μm. Such granulated unfired PTFE powder,
M-31, M-32, M-3 from Daikin Industries, Ltd.
Third prize, 800 from Mitsui DuPont Fluorochemicals Co., Ltd.
-J, 820-J, etc. from Asahi Fluoropolymer Co., Ltd.
Since they are commercially available from Hoechst under the trade name of TF-1400 and the like, these can be obtained and used.

【0008】PTFEの未焼成粉末としては、一般に
「モールディングパウダー」と称されるものも知られて
いるが、本発明に係る方法に非造粒タイプの「モールデ
ィングパウダー」を使用した場合には、実用に適する程
の気孔率を有する成形体を得ることができない。
As the unfired powder of PTFE, what is generally called “molding powder” is also known, but when a non-granulated type “molding powder” is used in the method according to the present invention, A molded article having a porosity suitable for practical use cannot be obtained.

【0009】また、上記PTFE粉末と混合して用いら
れる充填材としては、従来からフッ素樹脂の耐クリープ
性の向上のために添加されているものであれば特に限定
されることなく使用できるが、本発明者の実験によれ
ば、「繊維状フィラー」を用いるのが好適であることが
判明した。
The filler used as a mixture with the above-mentioned PTFE powder can be used without any particular limitation as long as it is conventionally added for improving the creep resistance of the fluororesin. According to experiments performed by the inventor, it has been found that it is preferable to use “fibrous filler”.

【0010】そして、繊維状フィラーとしては、径が約
5〜50μm、長さが約5〜5000μmであるものが
好ましく、とりわけその長さ寸法を径寸法で除した値が
約20〜200であるのが、耐クリープ性の向上のため
に好ましいことが判明している。これら繊維状フィラー
の具体例としては炭素繊維、ガラス繊維、チタン酸カリ
ウム繊維等の無機繊維、アラミド繊維等の有機繊維、窒
化ケイ素や炭化ケイ素等のウィスカーを挙げることがで
きる。なお、PTFE粉末と充填材との混合割合は、成
形性や得られる多孔質体の耐クリープ性等を勘案し、P
TFE粉末100重量部に対し充填材5〜50重量部と
するのが好ましい。
As the fibrous filler, those having a diameter of about 5 to 50 μm and a length of about 5 to 5000 μm are preferable, and the value obtained by dividing the length by the diameter is about 20 to 200. Has been found to be preferable for improving creep resistance. Specific examples of these fibrous fillers include inorganic fibers such as carbon fibers, glass fibers and potassium titanate fibers, organic fibers such as aramid fibers, and whiskers such as silicon nitride and silicon carbide. The mixing ratio of the PTFE powder and the filler is determined by considering the moldability and the creep resistance of the obtained porous body.
It is preferable to use 5 to 50 parts by weight of filler based on 100 parts by weight of TFE powder.

【0011】本発明においては、先ず、造粒された未焼
成PTFE粉末と充填材との混合物が所定形状に成形さ
れる。成形は例えば金型内にこの混合物を充填して加圧
する方法で行うことができる。成形時の圧力は通常10
g/cm2〜1000kg/cm2 程度、好ましくは1
0〜300kg/cm2 であり、加圧時間は1〜5分程
度である。なお、この加圧条件下での成形は、通常、室
温で行う。
In the present invention, first, a mixture of the granulated unfired PTFE powder and the filler is formed into a predetermined shape. The molding can be performed, for example, by filling the mixture in a mold and applying pressure. The pressure during molding is usually 10
g / cm 2 to about 1000 kg / cm 2 , preferably 1
The pressure is 0 to 300 kg / cm 2 , and the pressing time is about 1 to 5 minutes. The molding under the pressurized condition is usually performed at room temperature.

【0012】かようにして所定形状の成形物を得た後、
この成形物をPTFEの融点以上の温度に加熱し焼成す
ることにより多孔質体が得られる。加熱時間は温度、成
形物の大きさ等の条件により設定するが、通常、約1〜
5時間である。
After obtaining a molded article of a predetermined shape in this way,
This molded product is heated to a temperature equal to or higher than the melting point of PTFE and fired to obtain a porous body. The heating time is set depending on conditions such as the temperature and the size of the molded product.
5 hours.

【0013】本発明の方法によって得られる多孔質体の
気孔率および気孔の孔径は、通常、気孔率は約5〜40
%、気孔の孔径は約5〜50μmである。これら気孔
率、気孔の孔径は、主として成形時の圧力に影響され
る。例えば、他の条件が同じであれば、成形時の圧力が
高い程、気孔率は低くなり、また、気孔の孔径は小さく
なる。従って、成形時の圧力を適宜設定することによ
り、得られる多孔質体の気孔率、気孔の孔径を調整する
こともできる。
The porosity and pore diameter of the porous body obtained by the method of the present invention are usually about 5 to 40.
%, And the pore diameter is about 5 to 50 μm. The porosity and pore diameter are mainly affected by the pressure during molding. For example, if other conditions are the same, the higher the pressure during molding, the lower the porosity and the smaller the pore diameter. Therefore, the porosity and pore diameter of the obtained porous body can be adjusted by appropriately setting the pressure during molding.

【0014】[0014]

【発明の効果】本発明は上記のように構成され、PTF
E粉末として未焼成で且つ造粒されたものを用いこれに
充填材を配合した混合物を成形して焼成するという簡単
な操作で、耐クリープ性の優れた多孔質体が得られる。
The present invention is constructed as described above, and comprises a PTF
By a simple operation of forming a mixture in which a filler is blended with an unfired and granulated E powder as an E powder and firing the mixture, a porous body having excellent creep resistance can be obtained.

【0015】[0015]

【実施例】以下、実施例により本発明を更に詳細に説明
する。なお、実施例および比較例中における使用材料の
配合量は全て「重量部」である。
The present invention will be described in more detail with reference to the following examples. The amounts of the materials used in Examples and Comparative Examples are all “parts by weight”.

【0016】実施例1 造粒された未焼成のPTFE粉末(ダイキン工業株式会
社製、商品名M−33)100部に対し、直径10μ
m、長さ100μmのガラス繊維20部を加えて均一に
混合する。
Example 1 100 parts of granulated unfired PTFE powder (trade name: M-33, manufactured by Daikin Industries, Ltd.)
m, 20 parts of glass fiber having a length of 100 μm are added and mixed uniformly.

【0017】この混合物を円筒状金型内に充填し、室温
(約25℃)において圧力50kg/cm2 で5分間加
圧して円柱状に成形し、金型から取り出す。
The mixture is filled in a cylindrical mold, and is pressed at room temperature (about 25 ° C.) at a pressure of 50 kg / cm 2 for 5 minutes to form a column, and is taken out of the mold.

【0018】そして、この成形体を370℃の温度で3
時間加熱して焼成することにより、気孔率18%、気孔
の平均孔径17μmの多孔質体を得た。
The molded body is heated at a temperature of 370 ° C. for 3 hours.
By heating and firing for a period of time, a porous body having a porosity of 18% and an average pore diameter of 17 μm was obtained.

【0019】上記気孔率は多孔質体の真比重から見掛け
比重を減じた値を真比重で除し、これに100を乗じて
算出した。なお、多孔質体の真比重はPTFE(焼成)
の真比重と充填材であるガラス繊維の真比重の重量平均
値を用いた。
The porosity was calculated by dividing the value obtained by subtracting the apparent specific gravity from the true specific gravity of the porous body by the true specific gravity, and multiplying the result by 100. The true specific gravity of the porous body is PTFE (fired).
And the weight average value of the true specific gravity of the glass fiber as the filler.

【0020】この多孔質体のクリープ変形率を測定した
ところ、4.9%であった。なお、クリープ変形率は外
径25.6mm、内径20mm、高さ20mmの筒状試
料を作成し、これに20kg/cm2 の荷重を作用さ
せ、温度250℃で24時間放置し、該試料の放置前の
高さ(H1 )および放置後の高さ(H2 )を各々測定
し、H1 からH2 を減じて高さ変形量(S)を求め、こ
のSをH1 で除した値に100を乗じて算出した。
When the creep deformation rate of the porous body was measured, it was 4.9%. The creep deformation rate was determined by preparing a cylindrical sample having an outer diameter of 25.6 mm, an inner diameter of 20 mm, and a height of 20 mm, applying a load of 20 kg / cm 2 to the sample at a temperature of 250 ° C. for 24 hours. The height before leaving (H 1 ) and the height after leaving (H 2 ) were measured, and H 2 was subtracted from H 1 to determine the height deformation (S), and this S was divided by H 1 . The value was calculated by multiplying by 100.

【0021】実施例2 PTFE粉末100部に対し、直径7μm、長さ200
μmの炭素繊維50部を加えること以外は実施例1と同
様に作業して、気孔率33%、気孔の平均孔径41μm
の多孔質体を得た。また、この多孔質体のクリープ変形
率は7.3%であった。
Example 2 A diameter of 7 μm and a length of 200 parts per 100 parts of PTFE powder
The same operation as in Example 1 was carried out except that 50 parts of carbon fiber having a pore size of 33 μm and an average pore diameter of 41 μm were added.
Was obtained. Moreover, the creep deformation rate of this porous body was 7.3%.

【0022】実施例3 PTFE粉末100部に対し、直径7μm、長さ500
μmのアラミド繊維(芳香族ポリアミド繊維)5部を加
えること以外は実施例1と同様に作業して、気孔率6
%、気孔の平均孔径8μmの多孔質体を得た。また、こ
の多孔質体のクリープ変形率は7.9%であった。
Example 3 A diameter of 7 μm and a length of 500 were added to 100 parts of PTFE powder.
The same operation as in Example 1 was carried out except that 5 parts of aramid fiber (aromatic polyamide fiber) having a porosity of 6 μm was added.
%, And a porous body having an average pore diameter of 8 μm was obtained. The creep deformation rate of this porous body was 7.9%.

【0023】実施例4 PTFE粉末100部に対し、直径7μm、長さ50μ
mのチタン酸カリウム繊維20部を加えること以外は実
施例1と同様に作業して、気孔率15%、気孔の平均孔
径20μmの多孔質体を得た。この多孔質体のクリープ
変形率は4.3%であった。
EXAMPLE 4 A diameter of 7 μm and a length of 50 μm were added to 100 parts of PTFE powder.
The same procedure as in Example 1 was carried out except that 20 parts of potassium titanate fiber of m was added, to obtain a porous body having a porosity of 15% and an average pore diameter of 20 μm. The creep deformation rate of this porous body was 4.3%.

【0024】実施例5 PTFE粉末100部に対し、直径5μm、長さ50μ
mの炭化ケイ素ウィスカー20部を加えること以外は実
施例1と同様に作業して、気孔率13%、気孔の平均孔
径15μmの多孔質体を得た。この多孔質体のクリープ
変形率は4.0%であった。
Example 5 A diameter of 5 μm and a length of 50 μm were added to 100 parts of PTFE powder.
The operation was performed in the same manner as in Example 1 except that 20 parts of silicon carbide whiskers were added to obtain a porous body having a porosity of 13% and an average pore diameter of 15 μm. The creep deformation rate of this porous body was 4.0%.

【0025】比較例1 ガラス繊維を用いないこと以外は実施例1と同様に作業
して、気孔率4%、気孔の平均孔径3μmの多孔質体を
得た。この多孔質体のクリープ変形率は11.5%であ
った。
Comparative Example 1 A porous body having a porosity of 4% and an average pore diameter of 3 μm was obtained in the same manner as in Example 1 except that no glass fiber was used. The creep deformation rate of this porous body was 11.5%.

【0026】比較例2 PTFE粉末として非造粒タイプの未焼成モールディン
グパウダー(ダイキン工業株式会社製、商品名M−1
2)を用いること以外は実施例1と同様に作業した。得
られた成形品は非多孔質体であった。
Comparative Example 2 Non-granulated type unfired molding powder (trade name: M-1 manufactured by Daikin Industries, Ltd.) as PTFE powder
The procedure was the same as in Example 1, except that 2) was used. The obtained molded article was a non-porous body.

【0027】比較例3 比較例2で用いたモールディングパウダーを温度370
℃で3時間加熱して焼成する。
Comparative Example 3 The molding powder used in Comparative Example 2 was heated to a temperature of 370
Bake by heating at ℃ for 3 hours.

【0028】この焼成粉末を高速ミキサーに入れて粉砕
し、100メッシュの金網を通過する粉末を得る。
This calcined powder is put into a high-speed mixer and pulverized to obtain a powder that passes through a 100-mesh wire mesh.

【0029】これを円筒状金型に充填し、室温において
圧力200kg/cm2 で5分間加圧して円柱状に成形
し、金型から取り出し、次いで、温度370℃で3時間
加熱して再焼成することにより、気孔率3%、気孔の平
均孔径2μmの多孔質体を得た。この多孔質体のクリー
プ変形率は11.5%であった。
This was filled in a cylindrical mold, pressed at room temperature at a pressure of 200 kg / cm 2 for 5 minutes to form a column, taken out of the mold, and then heated at 370 ° C. for 3 hours to refire. As a result, a porous body having a porosity of 3% and an average pore diameter of 2 μm was obtained. The creep deformation rate of this porous body was 11.5%.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭49−57069(JP,A) 特開 平4−279639(JP,A) 特開 昭57−146633(JP,A) 特開 昭55−105865(JP,A) 特公 昭46−10511(JP,B1) 特公 昭45−28644(JP,B1) 特表 平1−502166(JP,A) (58)調査した分野(Int.Cl.7,DB名) C08J 9/24 B29C 67/20 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-49-57069 (JP, A) JP-A-4-279639 (JP, A) JP-A-57-146633 (JP, A) 105865 (JP, A) JP-B 46-10511 (JP, B1) JP-B 45-28644 (JP, B1) JP-T 1-502166 (JP, A) (58) Fields investigated (Int. 7 , DB name) C08J 9/24 B29C 67/20

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 造粒された未焼成のポリテトラフルオロ
エチレン粉末と充填材との混合物を所定形状に成形し、
次いでポリテトラフルオロエチレンの融点以上の温度に
加熱して焼成することを特徴とする多孔質体の製造法。
1. A mixture of a granulated unfired polytetrafluoroethylene powder and a filler is formed into a predetermined shape,
Next, a method for producing a porous body, comprising heating and firing at a temperature equal to or higher than the melting point of polytetrafluoroethylene.
【請求項2】 充填材として繊維状フィラーを用いる請
求項1記載の多孔質体の製造法。
2. The method for producing a porous body according to claim 1, wherein a fibrous filler is used as the filler.
JP3177448A 1991-06-20 1991-06-20 Manufacturing method of porous body Expired - Lifetime JP3046405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3177448A JP3046405B2 (en) 1991-06-20 1991-06-20 Manufacturing method of porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3177448A JP3046405B2 (en) 1991-06-20 1991-06-20 Manufacturing method of porous body

Publications (2)

Publication Number Publication Date
JPH04372631A JPH04372631A (en) 1992-12-25
JP3046405B2 true JP3046405B2 (en) 2000-05-29

Family

ID=16031127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3177448A Expired - Lifetime JP3046405B2 (en) 1991-06-20 1991-06-20 Manufacturing method of porous body

Country Status (1)

Country Link
JP (1) JP3046405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8207447B2 (en) 2006-09-22 2012-06-26 Kurabe Industrial Co., Ltd. PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire/cable using PTFE porous body

Also Published As

Publication number Publication date
JPH04372631A (en) 1992-12-25

Similar Documents

Publication Publication Date Title
EP0208326B2 (en) Friction material
JPS6116840A (en) Manufacture of porous film of polytetrafluoroethylene
US3574548A (en) Process for manufacturing a cellular carbon body
JPH11503080A (en) Creep resistant molded articles of densified expanded polytetrafluoroethylene
US2907972A (en) Process for producing silicon carbide bodies
US20210362378A1 (en) Method for manufacturing fired body of fluororesin, fired body of fluororesin, method for manufacturing fluororesin dispersion, method for manufacturing fired body, fluororesin dispersion, and fired body
US3280231A (en) Method for manufacture of low permeability carbonaceous products
JPS6166730A (en) Production of porous material of polytetrafluoroethylene resin
EP0304699A2 (en) Composite material of low dielectric constant and method of producing it
JP3046405B2 (en) Manufacturing method of porous body
US3553834A (en) Method of making a heating carpet
US3436179A (en) Method of preparing sintered masses of aluminum nitride
US5168080A (en) Method of manufacturing composite ceramics of silicon nitride and zirconia
US3708451A (en) Method and composition for preparing graphite products
JPH04279639A (en) Porous unit
JPS62105623A (en) Manufacture of molded product having polytetrafluoroethylene for its base
JPS6186411A (en) Preparation of porous carbon plate
JPH0593086A (en) Method for producing porous molded article of polytetrafluoroethylene
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
US3058166A (en) Process for making porous articles from fluoroethylene polymers
JP3260937B2 (en) Method for producing porous polytetrafluoroethylene
JPH01168748A (en) Composite sinter
JPH0651820B2 (en) Composite rubber composition
JPS624750A (en) Composition having positive temperature coefficient and production thereof
JP5578841B2 (en) Method for producing filled fluororesin sheet and filled fluororesin sheet