JPH0651325A - Electrooptical device and its production - Google Patents

Electrooptical device and its production

Info

Publication number
JPH0651325A
JPH0651325A JP4201334A JP20133492A JPH0651325A JP H0651325 A JPH0651325 A JP H0651325A JP 4201334 A JP4201334 A JP 4201334A JP 20133492 A JP20133492 A JP 20133492A JP H0651325 A JPH0651325 A JP H0651325A
Authority
JP
Japan
Prior art keywords
display
color filter
optical device
electro
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4201334A
Other languages
Japanese (ja)
Other versions
JP3147512B2 (en
Inventor
Hiroshi Obara
浩志 小原
Shinya Momose
信也 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP20133492A priority Critical patent/JP3147512B2/en
Publication of JPH0651325A publication Critical patent/JPH0651325A/en
Application granted granted Critical
Publication of JP3147512B2 publication Critical patent/JP3147512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To improve the image quality of the electrooptical device for which color filters are used and more particularly the electrooptical device having a large display capacity by forming light shielding layers consisting of metallic layers on the color filters and connecting these metallic layers, which are commonly used as electrical conductors, to transparent electrodes for display. CONSTITUTION:The transparent conductive films consisting of ITO are formed on the color filters 2 and the transparent electrodes 3 for display are formed on the color filters. The transparent electrodes 3 for display are formed face to face on the one side of the color filters 2 at this time. The light shielding layers 4 consisting of chromium-gold are formed in a stripe form in the positions corresponding to the parts between the respective color filters 2 in such a manner as to cover the adjacent color filters 2 to each other. Electrical junctures 3 slightly wider than the gaps between the transparent electrodes for display are formed to a projecting shape from the striped parts in the positions where the junctures do not overlap on the counter electrode at this time. These junctures are intersected with the transparent electrodes 3 for display to assure electrical connection. As a result, the dulling of the electrical driving waveforms is prevented and the degradation in the contrast and crosstalks are eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気光学装置に関す
る。詳しくはカラーフィルター層を有する電気光学装置
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electro-optical device. Specifically, it relates to an electro-optical device having a color filter layer and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、カラーフィルターの形成方法や平
坦化層等の材質、形成方法について幾つか提案されてい
る。又、カラーフィルター上に透明電極を形成する方法
として特開昭61−198131号公報、特開昭61−
233720号公報や特開昭61−260224号公報
等が提案されている。前記従来技術と特開昭62−12
1701号公報で提案されている光学的表示セルと光学
的異方体を組合せ大容量表示対応させた電気光学装置と
を組み合わせる事により表示容量の大きい、高画質のカ
ラー表示可能な電気光学装置が提案されている。しか
し、表示容量を上げると、前記電気光学装置では時分割
駆動を用いているため、表示部に印加される波形の配線
抵抗や、液晶層等の容量等による電気的なまりの為実効
電圧が低下し表示特性を劣化させる事が知られている。
そこで、特開昭63−273834号公報などの方法が
提案されている。
2. Description of the Related Art Heretofore, there have been proposed several methods for forming a color filter, materials for a flattening layer and the like. Further, as a method for forming a transparent electrode on a color filter, JP-A-61-198131 and JP-A-61-19811
Japanese Patent Laid-Open No. 233720 and Japanese Patent Laid-Open No. 61-260224 have been proposed. The above-mentioned prior art and JP-A-62-12
An electro-optical device having a large display capacity and capable of color display with high image quality is proposed by combining the electro-optical device proposed in Japanese Patent Publication No. 1701 and a combination of an optical anisotropic cell and an optical anisotropic body for large-capacity display. Proposed. However, when the display capacity is increased, since the electro-optical device uses time division driving, the effective voltage decreases due to electrical resistance due to the wiring resistance of the waveform applied to the display section and the capacity of the liquid crystal layer and the like. However, it is known that the display characteristics are deteriorated.
Therefore, methods such as JP-A-63-273834 have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述の
従来技術前者では、行、列電極によるマトリクス配列で
表示を行う電気光学装置に適用したりすると、より大容
量化させるためにダイナミック駆動時のデューティー数
を上げるためカラーフィルター上に表示用透明電極を形
成して実効電圧の低下を防止しなくてはならない。しか
し、カラーフィルター及び平坦化層は有機樹脂で殆どが
形成される為、例えば、酸化インジュウム−酸化スズ
(以下ITO)を真空蒸着法やスパッタリング法で形成
する場合、該カラーフィルター及び平坦化層のシワより
や他のダメージの為、基板温度を通常のガラス基板並に
上げる事が出来ず比抵抗が1.5×10-4Ω・cm位ま
でしか下げれないという問題を有しており、ITOだけ
で配線抵抗を所望の数値まで下げるのには限界があっ
た。そこで、従来技術後者で示した方法が提案されてい
るが本質的に同じ問題を抱えている。その為、表示用透
明電極上もしくは下に金属よりなる細い配線を設置する
事で配線抵抗の低減化を図る方法等が用いられている
が、表示部の開口率を低下させ表示品位の向上に対して
不十分であった。また、金属層の上はカラーフィルター
形成方法により、特に顔料を分散させた光感光性樹脂を
用いフォトリソグラフ法により形成する方法や、顔料を
分散させた樹脂を他の光感光性樹脂をレジストとして用
いパターニングする方法では該金属層上に現像されにく
い樹脂層が残り易く、絶縁層を形成し該金属層と電気的
接続を安定して確保することが製造上非常に難しいと言
う問題を有していた。
However, in the former case of the above-mentioned prior art, when it is applied to an electro-optical device which performs display in a matrix arrangement of row and column electrodes, the duty during dynamic driving is increased in order to increase the capacity. In order to increase the number, a transparent electrode for display must be formed on the color filter to prevent a decrease in effective voltage. However, since the color filter and the flattening layer are mostly formed of an organic resin, for example, when indium oxide-tin oxide (hereinafter ITO) is formed by a vacuum deposition method or a sputtering method, the color filter and the flattening layer are Due to damage such as wrinkles and other damage, the substrate temperature cannot be raised to the level of a normal glass substrate, and the specific resistance can be reduced to only about 1.5 × 10 −4 Ω · cm. However, there is a limit in reducing the wiring resistance to a desired value. Therefore, the method shown in the latter of the related art has been proposed, but it has essentially the same problem. Therefore, a method of reducing the wiring resistance by installing a thin wiring made of metal on or below the transparent electrode for display is used, but it improves the display quality by reducing the aperture ratio of the display section. In contrast, it was insufficient. Further, on the metal layer by a color filter forming method, in particular, a method of forming by a photolithographic method using a photosensitive resin in which a pigment is dispersed, or a resin in which a pigment is dispersed is used as a resist with another photosensitive resin. In the method of patterning using, there is a problem that a resin layer that is difficult to develop is likely to remain on the metal layer, and it is very difficult in manufacturing to form an insulating layer and stably secure electrical connection with the metal layer. Was there.

【0004】そこで、本発明はこの様な問題点を解決す
るもので、その目的とする所は、カラーフィルターを用
いた電気光学装置、特に表示容量の大きな電気光学装置
の画質を向上させる構造及び方法を提供する物である。
Therefore, the present invention solves such a problem, and an object of the present invention is to improve the image quality of an electro-optical device using a color filter, especially an electro-optical device having a large display capacity. It is the one that provides the method.

【0005】[0005]

【課題を解決するための手段】本発明の電気光学装置
は、シール部を介して液晶層を挟持する二枚の透明基板
の、少なくとも一方の透明基板上にカラーフィルターを
有し、該カラーフィルター上に表示用透明電極を有して
なる電気光学装置において、前記カラーフィルター上に
遮光層を金属層で形成し、該金属層が電気的導体を兼ね
表示用透明電極と電気的に接続されてなる事を特徴とす
る。
An electro-optical device according to the present invention has a color filter on at least one transparent substrate of two transparent substrates sandwiching a liquid crystal layer via a seal portion. In an electro-optical device having a transparent electrode for display thereon, a light shielding layer is formed of a metal layer on the color filter, and the metal layer also serves as an electric conductor and is electrically connected to the transparent electrode for display. It is characterized by

【0006】また、本発明の電気光学装置の製造方法
は、シール部を介して液晶層を挟持する二枚の透明基板
の、少なくとも一方の透明基板上にカラーフィルターを
有し、該カラーフィルター上に表示用透明電極を有し、
電気的導体を兼ねた金属層を有してなる電気光学装置を
製造するにあたり、前記カラーフィルターを印刷法、顔
料を分散させた光感光性樹脂を用いフォトリソグラフ法
により形成する方法、顔料を分散させた樹脂を他の光感
光性樹脂をレジストとして用いパターニングする方法、
電着法の何れかで形成し、前記金属層を湿式成膜法もし
くは真空成膜法を用いて成膜後、フォトリソグラフ法で
パターニングする事を特徴とする。
Further, according to the method of manufacturing an electro-optical device of the present invention, a color filter is provided on at least one of the two transparent substrates sandwiching the liquid crystal layer via the seal portion, and the color filter is provided on the transparent substrate. Has a transparent electrode for display,
In manufacturing an electro-optical device having a metal layer that also serves as an electric conductor, the color filter is printed by a printing method, a photolithographic method using a photosensitive resin in which a pigment is dispersed, and a pigment are dispersed. A method of patterning the resin thus obtained using another photosensitive resin as a resist,
It is characterized in that it is formed by any of the electrodeposition methods, the metal layer is formed by a wet film forming method or a vacuum film forming method, and then patterned by a photolithographic method.

【0007】[0007]

【作用】本発明の上記構成によれば、金属層よりなる遮
光層をカラーフィルターに沿ってストライプ状に形成
し、該金属層が電気的導体を兼ね表示用透明電極と電気
的に接続される為、電気的な駆動波形のなまりを防止し
てコントラスト低下及び、クロストークを無くすという
作用を生じる。
According to the above structure of the present invention, the light-shielding layer made of a metal layer is formed in stripes along the color filter, and the metal layer also functions as an electric conductor and is electrically connected to the display transparent electrode. Therefore, there is an effect that the rounding of the electric drive waveform is prevented, the contrast is lowered, and the crosstalk is eliminated.

【0008】[0008]

【実施例】以下、本発明を実施例に基づき、より詳細に
説明する。尚、本発明の電気光学装置及び製造方法は以
下各々の実施例で示す本発明の内容を明確にする為、基
本構成は同じ設定としたが以下に示す構成に限定されな
いことは言うまでもない。表示部はカラーフィルター側
はカラーフィルターピッチ100μm、カラーフィルタ
ー上表示用透明電極は幅75μm、電極間ギャップ25
μmとして3色に対応させて各々640本,計1920
本の電極を形成し、対向電極はITOで膜厚2000
Å、面抵抗5Ω/□で幅275μm、電極間ギャップ2
5μmとして400本形成した。表示部の配線抵抗は4
kΩであった。配向処理はポリイミドをラビングする従
来より用いられている周知の方法を適応したが、配向処
理によるねじれ配向されるものばかりでなく基板と平行
に配向(ねじれていない)するもの、強誘電性の液晶を
用いた場合でも適用できるもので、以下に述べる実施例
に限定されるものでもない。更に、ねじれ配向させる場
合には、そのねじれ角に制限があるわけではないが、コ
ントラストや表示特性又製造上の安定性から90゜〜3
60゜が望ましい。しかし、ねじれ角に制限があるわけ
ではないので90゜未満や360゜以上でも適用は可能
である。本実施例では捻れ角を左230゜とし、液晶層
の厚み(以下セルギャップ)は7.0μmに設定した。
又、本発明に於いてはカラーフィルターは耐熱性を考慮
して顔料系とし赤(以下R)、緑(以下G)、青(以下
B)の3原色を用い、一般的な色純度(彩度)と透過率
(明度)を得るため各色の膜厚は1.5〜2.5μmと
設定した。しかし、各材料の形成方法によって耐熱性に
制限が無いときには、染料系を適応しても問題の無いこ
とは言うまでもない。製造方法については、カラーフィ
ルター、平坦化層による制約は無い。又、金属層の形成
方法及び材料の組み合せ等制約が無いことはいうまでも
ない。
EXAMPLES The present invention will now be described in more detail based on examples. Incidentally, the electro-optical device and the manufacturing method of the present invention have the same basic configuration for clarifying the content of the present invention shown in each embodiment below, but needless to say, the present invention is not limited to the configuration described below. The display has a color filter pitch of 100 μm on the color filter side, a transparent electrode for display on the color filter has a width of 75 μm, and an interelectrode gap 25.
640 lines each corresponding to 3 colors as μm, total of 1920
A book electrode is formed, and the counter electrode is made of ITO and has a film thickness of 2000.
Å, surface resistance 5Ω / □, width 275μm, gap between electrodes 2
400 pieces were formed with a size of 5 μm. The wiring resistance of the display is 4
It was kΩ. The well-known method of rubbing polyimide has been applied for the alignment treatment. However, not only those which are twisted by the alignment treatment but also those which are aligned parallel to the substrate (not twisted), ferroelectric liquid crystal The present invention can also be applied to the case of using, and is not limited to the examples described below. Furthermore, in the case of twist orientation, the twist angle is not limited, but 90 ° to 3 ° from the viewpoint of contrast, display characteristics and manufacturing stability.
60 ° is desirable. However, since the twist angle is not limited, it can be applied at less than 90 ° or at 360 ° or more. In this example, the twist angle was set to 230 ° to the left and the thickness of the liquid crystal layer (hereinafter referred to as cell gap) was set to 7.0 μm.
Further, in the present invention, the color filter is a pigment type in consideration of heat resistance, and three primary colors of red (hereinafter R), green (hereinafter G) and blue (hereinafter B) are used, and general color purity (color Degree) and transmittance (brightness), the film thickness of each color is set to 1.5 to 2.5 μm. However, it is needless to say that there is no problem even if a dye-based material is applied when the heat resistance is not limited by the forming method of each material. The manufacturing method is not limited by the color filter and the flattening layer. Needless to say, there are no restrictions on the method of forming the metal layer and the combination of materials.

【0009】〔実施例1〕図1を用いて説明する。ガラ
ス基板1に赤、緑、青の各々の顔料を紫外線硬化型樹脂
に分散させたカラーレジストを塗布し、露光−現像工程
を各3回繰り返し、カラーフィルター2を幅95μmで
隣合うカラーフィルター同士が少なくとも重ならない様
にストライプ状に膜厚1.2μm厚で形成した。次に該
カラーフィルター上に低温マグネトロンスパッタ法によ
り180℃の成膜温度でITOよりなる透明導伝性膜を
1000Å形成し、フォトリソグラフ法にて表示用透明
電極3をカラーフィルター2上に形成した。この際、前
記表示用透明電極3は前記カラーフィルター2上の片側
に面合わせで形成した。次に、各カラーフィルター間に
当たる位置に隣合うカラーフィルター同士にかかるよう
に15μm幅でストライプ状にクロム−金よりなる遮光
層4を形成した。この時対向電極と重ならない位置にス
トライプ状部から凸状に表示用透明電極間ギャップより
広めの30μmで電気的接続部5を形成し、前記表示用
透明電極3と交差させて形成し電気的接続を確保した。
このようにして形成された遮光層4は隣の表示用透明電
極と10μm間隔が開いていることとなる。但し、間隔
の設定に付いては表示特性、加工精度の関係から設定で
きる事はいうまでも無い。又、遮光層4のクロムと金は
真空蒸着法にてクロム約500Å、金を約1000Å連
続成膜後、フォトリソ法を用いてパターニングした。ク
ロムは第2硝酸セリウムアンモン、金はヨウ素−ヨウ化
カリウムで各々エッチングした。図2は図1のA−A’
より見た構造図、図3は図1のB−B’より見た構造を
示した図である。次に図4を用いて本発明の電気光学装
置の構造を説明する。図1で示したガラス基板1と同じ
くガラス基板6上にITOにてマトリックス状に成るよ
うに対向電極7を形成する。この後ポリイミドを用いて
配向膜8を300〜400Åで各々形成した。シール9
で基板1,6を接着後ギャップ材10を介して液晶11
を封入した。本実施例に於いては上記で説明した表示用
透明電極3を含む基板としての各色上の表示部の抵抗を
測定した所4kΩであった。この電気光学装置と遮光層
が無くカラーフィルター上の透明電極を同じく低温マグ
ネトロンスパッタ法で2000Å(面抵抗20Ω/
□)、表示部の配線抵抗を25kΩとした以外同じ電気
光学装置を用いて表示を比較した所、本実施例の方法で
作成した電気光学装置はクロストークの無い高品位を得
る事が出来た。又、本実施例にて作成した電気光学装置
を、60℃−90RH%恒温恒湿下放置試験にて300
時間変化無く、50℃−90RH%恒温恒湿下通電試験
に於いては250時間電蝕や画質の変化は確認されず良
好な安定性を得る事ができた。尚、表示用透明電極3と
遮光層4は本実施例1で示した物と逆に先に遮光層4を
形成後表示用透明電極3を形成しても良い。
[First Embodiment] A description will be given with reference to FIG. A glass substrate 1 is coated with a color resist in which red, green, and blue pigments are dispersed in an ultraviolet curable resin, and the exposure-development process is repeated three times, and color filters 2 are adjacent to each other with a width of 95 μm. Are formed in a stripe shape with a thickness of 1.2 μm so that they do not at least overlap. Then, 1000 liters of transparent conductive film made of ITO was formed on the color filter by a low temperature magnetron sputtering method at a film forming temperature of 180 ° C., and a transparent electrode 3 for display was formed on the color filter 2 by a photolithography method. . At this time, the display transparent electrode 3 was formed on one side of the color filter 2 so as to be face-to-face. Next, a light-shielding layer 4 made of chrome-gold was formed in a stripe shape with a width of 15 μm so as to cover adjacent color filters between the color filters. At this time, the electrical connection portion 5 is formed at a position not overlapping the counter electrode so as to be convex from the stripe-shaped portion with a width of 30 μm wider than the gap between the transparent electrodes for display, and is formed by intersecting with the transparent electrode 3 for display. Secured the connection.
The light-shielding layer 4 formed in this manner is spaced from the adjacent display transparent electrode by 10 μm. However, it goes without saying that the interval can be set based on the display characteristics and the processing accuracy. Further, chromium and gold of the light-shielding layer 4 were continuously deposited by vacuum vapor deposition with about 500 Å of chromium and about 1000 Å of gold, and then patterned by photolithography. Chromium was etched with diammonium cerium nitrate, and gold was etched with iodine-potassium iodide. FIG. 2 shows AA ′ of FIG.
FIG. 3 is a diagram showing the structure seen more, and FIG. 3 is a diagram showing the structure seen from BB 'in FIG. Next, the structure of the electro-optical device of the present invention will be described with reference to FIG. Similar to the glass substrate 1 shown in FIG. 1, the counter electrode 7 is formed of ITO on the glass substrate 6 so as to form a matrix. After that, the alignment film 8 was formed to a thickness of 300 to 400 Å using polyimide. Seal 9
After bonding the substrates 1 and 6 with the liquid crystal 11 through the gap material 10.
Was enclosed. In this example, the resistance of the display portion on each color as the substrate including the above-mentioned transparent electrode 3 for display was measured and found to be 4 kΩ. This electro-optical device and the transparent electrode on the color filter without the light-shielding layer are also 2000 Å (sheet resistance 20Ω /
□), when the display was compared using the same electro-optical device except that the wiring resistance of the display section was 25 kΩ, the electro-optical device produced by the method of this example was able to obtain high quality without crosstalk. . In addition, the electro-optical device manufactured in this example was subjected to a standing test at 60 ° C.-90 RH% constant temperature and humidity for 300
In the current-carrying test under constant temperature and constant humidity of 50 ° C.-90 RH%, there was no change over time, and 250 hours of electrolytic corrosion and no change in image quality were confirmed, and good stability could be obtained. Incidentally, the display transparent electrode 3 and the light-shielding layer 4 may be formed by first forming the light-shielding layer 4 and then forming the display transparent electrode 3 contrary to the one shown in the first embodiment.

【0010】〔実施例2〕図5を用いて説明する。ガラ
ス基板1上に実施例1と同様にカラーフィルター2を形
成した後、エポキシアクリレート樹脂に紫外線硬化感光
性を付与してスピンコート法により1.2μm厚でコー
トした後、紫外線照射して平坦化層12を形成した。図
6は図5をA−A’より見た構造、図7は図5をB−
B’より見た構造を示す。次に実施例1と同様に遮光層
4と表示用透明電極3を形成した。本実施例2で示した
カラーフィルター付基板1を用いて図8に示す用にシー
ル9を介して対向基板6と組み合わせ電気光学装置を作
成した。この時、平坦化層12は本実施例ではセル厚が
制御しやすいようにシール9の下まで形成したが、シー
ル9より内側でも、外側でも同様の結果が得られる事は
言うまでもない。この様にして作成した電気光学装置を
実施例1と同様にしてクロストーク等画質に関して評価
した所同様の良好な結果を得ることが出来ると共に安定
性に於いても良好な結果を得る事が出来た。
[Second Embodiment] A second embodiment will be described with reference to FIG. After the color filter 2 was formed on the glass substrate 1 in the same manner as in Example 1, the epoxy acrylate resin was imparted with ultraviolet curing photosensitivity and was coated by a spin coating method to a thickness of 1.2 μm, and then was irradiated with ultraviolet rays to be flattened. Layer 12 was formed. FIG. 6 shows a structure of FIG. 5 seen from AA ′, and FIG. 7 shows FIG.
The structure seen from B'is shown. Next, in the same manner as in Example 1, the light shielding layer 4 and the display transparent electrode 3 were formed. Using the substrate 1 with a color filter shown in the second embodiment, an electro-optical device was prepared by combining with the counter substrate 6 via the seal 9 as shown in FIG. At this time, the flattening layer 12 is formed under the seal 9 in this embodiment so that the cell thickness can be easily controlled, but it goes without saying that the same result can be obtained inside or outside the seal 9. The electro-optical device produced in this manner was evaluated in terms of image quality such as crosstalk in the same manner as in Example 1, and the same good results could be obtained and also good results in stability could be obtained. It was

【0011】実施例1,2を通じて説明してきたが本発
明の構造は他のカラーフィルター形成方法(例えば電着
法、印刷インクに顔料を分散させ例えばオフセット印刷
法等によってカラーフィルターを形成する方法、顔料を
ポリイミド樹脂等の基質に分散させフォトレジストを用
いてカラーフィルターをパターニングする方法等)や平
坦化層として他の材料(例えば、熱硬化性メラミン樹
脂、エポキシ樹脂、シリコーン系樹脂等)による材料、
形成方法の制約は受けない。
Although the structure of the present invention has been described with reference to Examples 1 and 2, another color filter forming method (for example, an electrodeposition method, a method of forming a color filter by dispersing a pigment in a printing ink, for example, an offset printing method, A method in which a pigment is dispersed in a substrate such as a polyimide resin and a color filter is patterned using a photoresist), or a material made of another material (for example, a thermosetting melamine resin, an epoxy resin, a silicone resin) as a flattening layer. ,
There is no restriction on the forming method.

【0012】〔実施例3〕実施例1,2で述べた基板の
遮光層4をニッケルを真空蒸着法により、又金を該ニッ
ケルをフォトリソグラフ法によりパターニング後、無電
解メッキ法で選択的にニッケル上に析出させて実施例
,2と同様の膜厚で形成した以外はカラーフィルタ
ー、及び表示用透明電極は同様に作成し、該基板を用い
て対向電極を同様に用い粒系の揃ったガラスビーズをギ
ャップ材10としてセルギャップ2μmに設定し、強誘
電液晶を注入しパルス幅とリフレッシュ駆動の周波数を
変えて表示を確認した所パルス幅は約60μs、リフレ
ッシュ駆動周波数は約20Hzまで良好な波形飽和状態
で応答した。本実施例の電気光学装置に対して金属層に
よる遮光層を形成しない従来構造の電気光学装置はパル
ス幅約250μs、リフレッシュ駆動周波数約8Hzと
なりフリッカーが目立った表示となった。以上よりカラ
ー表示の良好な強誘電液晶表示装置を作成する事が可能
となった。
[Embodiment 3] The light-shielding layer 4 of the substrate described in Embodiments 1 and 2 is selectively patterned by electroless plating after patterning nickel by vacuum deposition and gold by photolithography. A color filter and a transparent electrode for display were prepared in the same manner except that they were deposited on nickel and formed to have the same film thickness as in Example 2 and the substrate was used in the same manner as the counter electrode to prepare the grain system. When the cell gap was set to 2 μm using the glass beads as the gap material 10, the ferroelectric liquid crystal was injected, and the display was confirmed by changing the pulse width and refresh driving frequency. The pulse width was about 60 μs, and the refresh driving frequency was good up to about 20 Hz. It responded in the waveform saturation state. In contrast to the electro-optical device of this embodiment, the electro-optical device having the conventional structure in which the light-shielding layer made of a metal layer is not formed has a pulse width of about 250 μs and a refresh driving frequency of about 8 Hz, and a display with conspicuous flicker is obtained. As described above, it has become possible to produce a ferroelectric liquid crystal display device that exhibits good color display.

【0013】〔実施例4〕実施例4の電気光学装置の構
造を図9を用いて説明する。実施例2にて説明した電気
光学装置を表示セルとし光学的なスイッチングを行うS
セルとた。本実施例では光学的異方体として該Sセル
と同じ複屈折性(セルギャップ:dと液晶もしくは光
学的異方体の屈折率異方性:△nとの積△n×d=0.
9,△n=0.129)を持ち、Sセルを光学的に補償
出来る様に液晶セルを偏光体14,15の間に設置し
た。本実施例では液晶セルは△n×d=0.9として
d=8μm,△n=0.113とした。ここで、Sセル
と液晶セルの相接する面の配向方向のなす角は70
゜〜110゜の範囲が望ましく、更に望ましくは90゜
である。本実施例では90゜とした。又、各々の偏光体
の偏光軸とSセル、液晶セル各々の合い接する面側
の配向方向のなす角を20〜50゜で振り本実施例で用
いている複屈折性と屈折率分散の値では非点灯時に黒く
全点灯時に白となる条件は45゜である。但し配向方向
に対して変更軸が電気光学装置の上からみて右か左かは
ポジかネガかの相違であり本実施例ではネガとなるよう
にした。しかし、上述した様に光学的異方体としてはS
セルと同じ複屈折性を有しておれば同様の効果が有り、
例えばたポリビニルアルコールやポリカーボネート等の
延伸した高分子フィルムを用いても良く、制約はされな
い。この様にして作成した電気光学装置を表示させ画質
を評価した所、白黒の発色性の良い高画質のカラー表示
を得る事が出来た。
Example 4 The structure of the electro-optical device of Example 4 will be described with reference to FIG. The electro-optical device described in the second embodiment is used as a display cell to perform optical switching S
It was a cell. In this embodiment, as the optically anisotropic substance, the same birefringence as that of the S cell (cell gap: d and product of refractive index anisotropy of liquid crystal or optically anisotropic substance: Δn: Δn × d = 0.
9, Δn = 0.129), and a liquid crystal cell was installed between the polarizers 14 and 15 so that the S cell could be optically compensated. In this embodiment, the liquid crystal cell has Δn × d = 0.9, d = 8 μm, and Δn = 0.113. Here, the angle formed by the orientation directions of the surfaces of the S cells and the liquid crystal cells that contact each other is 70
The range is preferably in the range of 90 ° to 110 °, more preferably 90 °. In this embodiment, the angle is 90 °. Further, the angle between the polarization axis of each polarizer and the orientation direction of the S-cell and liquid-crystal cell facing each other is set to 20 to 50 °, and the values of birefringence and refractive index dispersion used in this example are set. The condition for turning black when not lit and white when all lit is 45 °. However, whether the change axis with respect to the orientation direction is right or left as viewed from above the electro-optical device is positive or negative, and in the present embodiment, it is made negative. However, as described above, S is an optically anisotropic substance.
If it has the same birefringence as the cell, there is a similar effect,
For example, a stretched polymer film such as polyvinyl alcohol or polycarbonate may be used without any limitation. When the electro-optical device produced in this manner was displayed and the image quality was evaluated, it was possible to obtain a high-quality color display with good black-and-white color development.

【0014】〔実施例5〕実施例1,2,3にて説明し
てきた構造に対して、今後より表示容量が大きくなる事
に対応して、信号入力方法もより細密化が進む事が予想
され、例えば異方性導電接着剤を介して駆動ドライバー
をフレキシブルテープ上に実装したテープをガラス基板
に接続する方法の細密化と、一方ガラス基板側の信号入
力端子部に金属層(例えばアルミニウム、金等)を形成
し、ドライバー実装基板とワイヤーボンディング技術を
用いて接続する方法、又はガラス基板上に直接駆動ドラ
イバーを実装する方法(一般的にCOGと言われる方
法)に対して対応する為に、実施例2で示した遮光層4
を図10に示す様に表示部以外まで延長しカラーフィル
ターの無い部分で通常の信号入力端子部と表示部の間の
引き回し部で表示用透明電極3と接続させ、そのまま遮
光層4を用いて引き回し部及び信号入力端子部15を形
成した。該信号入力端子部15に金ワイヤーを用いてワ
イヤーボンディングを行った所良好な共晶結合状態を確
認する事が出来た。またCOG実装をおこなってみた
が、通常電気光学装置にする場合モールド処理もしくは
液晶セル内になる部分には簡易的にモールド処理を施し
て駆動ドラーバーの入力と基板側の出力を観察する方法
で該基板を60℃−90RH%恒温恒湿下放置試験にて
250時間問題が無く良好な結果を得る事が出来た。以
上説明した構造は実装方法に応じてその金属系を選択で
きる。
[Embodiment 5] With respect to the structure described in Embodiments 1, 2 and 3, it is expected that the signal input method will be further miniaturized in response to future increase in display capacity. For example, a method of connecting a tape in which a driving driver is mounted on a flexible tape to a glass substrate via an anisotropic conductive adhesive is made minute, and a metal layer (for example, aluminum, on the signal input terminal portion on the glass substrate side is used. In order to deal with the method of forming a gold (for example) and connecting it to the driver mounting substrate using the wire bonding technique, or the method of mounting the driving driver directly on the glass substrate (a method generally called COG). The light shielding layer 4 shown in Example 2
As shown in FIG. 10, the portion other than the display portion is extended and connected to the display transparent electrode 3 at the lead portion between the normal signal input terminal portion and the display portion in the portion without the color filter, and the light shielding layer 4 is used as it is. The routing portion and the signal input terminal portion 15 were formed. When a gold wire was used for the signal input terminal portion 15 to perform wire bonding, a good eutectic bonding state could be confirmed. Also, COG mounting was performed, but in the case of a normal electro-optical device, a method of observing the input of the drive driver and the output of the substrate side by performing a mold treatment or simply a mold treatment on a portion inside the liquid crystal cell is performed. It was possible to obtain good results for 250 hours in the test in which the substrate was left in a constant temperature and constant humidity test at 60 ° C.-90 RH% for 250 hours without any problems. For the structure described above, the metal system can be selected according to the mounting method.

【0015】[0015]

【発明の効果】以上、述べてきたように本発明の遮光層
と電気的導体を金属層を用いて形成し表示用透明電極と
電気的接続をとる方法で配線抵抗の大幅な低減を図る事
が出来印加駆動波形のなまりがなく、クロストーク、コ
ントラストの低下のない高品位の電気光学装置を提供で
きるという効果を生じる。また、より高デューティー化
する電気光学装置に対して容易なプロセスで対応でき高
歩留りで安価な電気光学装置を提供できるという効果も
生じる。その上、信号入力端子部まで該遮光層を延長し
て形成する事により、COGやワイヤーボンディング等
のさまざま実装方法に対して対応出来るという効果も生
じる。また、カラーフィルター及び必要に応じて形成さ
れる平坦化膜形成後該金属層及び表示用透明電極を形成
する為、工程的にも安定した、高信頼性の電気光学装置
及び製造方法を提供できるという効果も生じる。
As described above, the wiring resistance is greatly reduced by the method of forming the light shielding layer and the electric conductor of the present invention by using the metal layer and electrically connecting with the transparent electrode for display. It is possible to provide a high-quality electro-optical device in which the applied drive waveform is not blunted and crosstalk and contrast are not deteriorated. Further, there is an effect that it is possible to provide an electro-optical device having a high yield and capable of dealing with an electro-optical device having a higher duty by an easy process. Moreover, by forming the light-shielding layer extending to the signal input terminal portion, it is possible to cope with various mounting methods such as COG and wire bonding. Further, since the metal layer and the transparent electrode for display are formed after forming the color filter and the flattening film which is formed if necessary, it is possible to provide a highly reliable electro-optical device and a manufacturing method which are stable in the process. The effect also occurs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で示したカラーフィルター付
き基板の構造図。
FIG. 1 is a structural diagram of a substrate with a color filter shown in a first embodiment of the present invention.

【図2】本発明の実施例1で示したカラーフィルター付
き基板のA−A’断面より見た構造図。
FIG. 2 is a structural diagram of the substrate with a color filter shown in Example 1 of the present invention as seen from the AA ′ cross section.

【図3】本発明の実施例1で示したカラーフィルター付
き基板のB−B’断面より見た構造図。
FIG. 3 is a structural view of the color filter-attached substrate shown in Example 1 of the present invention as seen from a BB ′ cross section.

【図4】本発明の実施例2で示した電気光学装置の構造
図。
FIG. 4 is a structural diagram of an electro-optical device shown in a second embodiment of the present invention.

【図5】本発明の実施例2で示したカラーフィルター付
き基板の構造図。
FIG. 5 is a structural diagram of a substrate with a color filter shown in Example 2 of the present invention.

【図6】本発明の実施例2で示したカラーフィルター付
き基板のA−A’断面より見た構造図。
FIG. 6 is a structural diagram of a substrate with a color filter shown in Example 2 of the present invention as seen from a section AA ′.

【図7】本発明の実施例2で示したカラーフィルター付
き基板のB−B’断面より見た構造図。
FIG. 7 is a structural diagram of a substrate with a color filter shown in Example 2 of the present invention as seen from a BB ′ cross section.

【図8】本発明の実施例2で示した電気光学装置の構造
図。
FIG. 8 is a structural diagram of the electro-optical device shown in Example 2 of the present invention.

【図9】本発明の実施例4で示した電気光学装置の構成
図。
FIG. 9 is a configuration diagram of the electro-optical device shown in Example 4 of the present invention.

【図10】本発明の実施例5で示したカラーフィルター
付き基板の構造図。
FIG. 10 is a structural diagram of a substrate with a color filter shown in Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

1.ガラス基板 2.カラーフィルター 3.表示用透明電極 4.遮光層 5.電気的接続部 6.ガラス基板 7.対向電極 8.配向膜 9.シール 10.ギャップ材 11.液晶 12.平坦化層 13.偏光体 14.偏光体 15.信号入力端子部 1. Glass substrate 2. Color filter 3. Transparent electrode for display 4. Light-shielding layer 5. Electrical connection 6. Glass substrate 7. Counter electrode 8. Alignment film 9. Seal 10. Gap material 11. Liquid crystal 12. Planarization layer 13. Polarizer 14. Polarizer 15. Signal input terminal

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】シール部を介して液晶層を挟持する二枚の
透明基板の、少なくとも一方の透明基板上にカラーフィ
ルターを有し、該カラーフィルター上に表示用透明電極
を有してなる電気光学装置において、前記カラーフィル
ター上に遮光層を金属層で形成し、該金属層が電気的導
体を兼ね表示用透明電極と電気的に接続されてなる事を
特徴とする電気光学装置。
1. An electric device having a color filter on at least one transparent substrate of two transparent substrates sandwiching a liquid crystal layer via a seal portion, and a display transparent electrode on the color filter. In the optical device, the light-shielding layer is formed of a metal layer on the color filter, and the metal layer also serves as an electric conductor and is electrically connected to the display transparent electrode.
【請求項2】前記金属層がカラーフィルターに沿ってス
トライプ状に形成され、該カラーフィルター及び該金属
層上に同じくストライプ状に表示用透明電極を形成し、
対向する電極との行、列マトリクス交点以外の部分で前
記金属層に凸部を形成し、該凸部により前記表示用透明
電極と電気的に接続されてなる事を特徴とする請求項1
記載の電気光学装置。
2. The metal layer is formed in a stripe shape along a color filter, and a transparent electrode for display is also formed in a stripe shape on the color filter and the metal layer,
2. A convex portion is formed on the metal layer at a portion other than a row and column matrix intersection with the opposing electrode, and the convex portion is electrically connected to the display transparent electrode.
The electro-optical device described.
【請求項3】前記金属層が前記表示用透明電極上に形成
された事を特徴とする請求項1または2記載の電気光学
装置。
3. The electro-optical device according to claim 1, wherein the metal layer is formed on the display transparent electrode.
【請求項4】前記金属層を隣合うカラーフィルター境界
部に該隣合うカラーフィルター各々にかかって形成し、
且つ前記表示用透明電極はストライプ状に形成された前
記カラーフィルターの片側に寄せて形成された事を特徴
とする請求項1または2または3記載の電気光学装置。
4. The metal layer is formed on the boundary between adjacent color filters so as to cover each of the adjacent color filters,
4. The electro-optical device according to claim 1, wherein the display transparent electrode is formed close to one side of the color filter formed in a stripe shape.
【請求項5】前記カラーフィルター上に少なくとも一層
以上の無機層もしくは有機樹脂層または、有機樹脂層と
無機層の積層よりなる平坦化層を介して表示用透明電極
が形成された事を特徴とする請求項1または2または3
または4記載の電気光学装置。
5. A transparent electrode for display is formed on the color filter through at least one inorganic layer or organic resin layer or a planarizing layer formed by laminating an organic resin layer and an inorganic layer. Claim 1 or 2 or 3
Alternatively, the electro-optical device according to item 4.
【請求項6】前記平坦化層が前記カラーフィルター上を
中心として選択的に形成された事を特徴とする請求項5
記載の電気光学装置。
6. The flattening layer is selectively formed centering on the color filter.
The electro-optical device described.
【請求項7】捻れ角が90゜以上360゜以下のネマチ
ック液晶を用いた事を特徴とする請求項1または2また
は3または4または5または6記載の電気光学装置。
7. The electro-optical device according to claim 1, wherein a nematic liquid crystal having a twist angle of 90 ° or more and 360 ° or less is used.
【請求項8】一対の偏光体間にカラーフィルターを有し
た表示体部以外に、少なくとも一層以上の光学的異方体
を有した事を特徴とする請求項7記載の電気光学装置。
8. The electro-optical device according to claim 7, further comprising at least one or more optically anisotropic bodies other than the display portion having a color filter between a pair of polarizers.
【請求項9】前記液晶層が強誘電性を有する事を特徴と
する請求項1または2または3または4または5または
6または7記載の電気光学装置。
9. The electro-optical device according to claim 1, wherein the liquid crystal layer has ferroelectricity.
【請求項10】前記金属層が少なくともアルミニュウ
ム、クロム−金の積層、ニッケル−金の積層、ニッケ
ル、タンタル、銅のいずれかで形成された事を特徴とす
る請求項1,2,3,4,5,6,7,8,9の内少な
くとも1項記載の電気光学装置。
10. The metal layer is formed of at least aluminum, chromium-gold stack, nickel-gold stack, nickel, tantalum, or copper. The electro-optical device according to at least one of 5, 5, 6, 7, 8, and 9.
【請求項11】前記金属層及び前記表示用透明電極が前
記カラーフィルターと直行する方向に形成され、対向す
る基板に該カラーフィルターと平行する方向に対向する
電極が形成された事を特徴とする請求項3,5,6,
7,8,9,10の内少なくとも1項記載の電気光学装
置。
11. The metal layer and the transparent electrode for display are formed in a direction orthogonal to the color filter, and electrodes facing each other in a direction parallel to the color filter are formed on a facing substrate. Claims 3, 5, 6,
An electro-optical device according to at least one of 7, 8, 9, and 10.
【請求項12】シール部を介して液晶層を挟持する二枚
の透明基板の、少なくとも一方の透明基板上にカラーフ
ィルターを有し、該カラーフィルター上に表示用透明電
極を有し、電気的導体を兼ねた金属層を有してなる電気
光学装置を製造するにあたり、前記カラーフィルターを
印刷法、顔料を分散させた光感光性樹脂を用いフォトリ
ソグラフ法により形成する方法、顔料を分散させた樹脂
を他の光感光性樹脂をレジストとして用いパターニング
する方法、電着法の何れかで形成し、前記金属層を湿式
成膜法もしくは真空成膜法を用いて成膜後、フォトリソ
グラフ法でパターニングする事を特徴とする電気光学装
置の製造方法。
12. A color filter is provided on at least one of the two transparent substrates sandwiching a liquid crystal layer with a seal portion interposed therebetween, and a transparent electrode for display is provided on the color filter. In manufacturing an electro-optical device having a metal layer also serving as a conductor, the color filter was formed by a printing method, a photolithographic method using a photosensitive resin in which a pigment was dispersed, and a pigment was dispersed. The resin is formed by patterning using another photosensitive resin as a resist or by an electrodeposition method, and the metal layer is formed by a wet film forming method or a vacuum film forming method, and then a photolithographic method is used. A method for manufacturing an electro-optical device, which comprises patterning.
JP20133492A 1992-07-28 1992-07-28 Electro-optical device Expired - Fee Related JP3147512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20133492A JP3147512B2 (en) 1992-07-28 1992-07-28 Electro-optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20133492A JP3147512B2 (en) 1992-07-28 1992-07-28 Electro-optical device

Publications (2)

Publication Number Publication Date
JPH0651325A true JPH0651325A (en) 1994-02-25
JP3147512B2 JP3147512B2 (en) 2001-03-19

Family

ID=16439299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20133492A Expired - Fee Related JP3147512B2 (en) 1992-07-28 1992-07-28 Electro-optical device

Country Status (1)

Country Link
JP (1) JP3147512B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369196B2 (en) * 2004-09-28 2008-05-06 Dai Nippon Printing Co., Ltd. Color filter
JPWO2006025210A1 (en) * 2004-08-31 2008-05-08 松下電器産業株式会社 Micromachine device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006025210A1 (en) * 2004-08-31 2008-05-08 松下電器産業株式会社 Micromachine device
US7369196B2 (en) * 2004-09-28 2008-05-06 Dai Nippon Printing Co., Ltd. Color filter

Also Published As

Publication number Publication date
JP3147512B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP3350991B2 (en) Electro-optical device substrate and electro-optical device
US7821607B2 (en) Liquid crystal display device
JP3474975B2 (en) Liquid crystal display device and method of manufacturing the same
JP4394479B2 (en) Liquid crystal display device and manufacturing method thereof
JP3632934B2 (en) Active matrix liquid crystal display device
US5282070A (en) Liquid crystal device with separate aperature masks and conductor blocking separations
JPH09105908A (en) Active matrix type liquid crystal display device
JP3819651B2 (en) Active matrix type liquid crystal display device
JP2708098B2 (en) Liquid crystal display
JP3691854B2 (en) Horizontal electric field type liquid crystal display device suitable for improving aperture ratio
JP2005284304A (en) Active matrix liquid crystal display
JPH0651325A (en) Electrooptical device and its production
JPH11143383A (en) Liquid crystal display device
KR20080055192A (en) In-plane switching liquid crystal display device
JP3423909B2 (en) Active matrix type liquid crystal display
JP4008513B2 (en) Liquid crystal display
JPS61143725A (en) Colored liquid crystal panel
JPH1039322A (en) Liquid crystal display element
JP2876045B2 (en) Color liquid crystal display element, method of manufacturing the same, and color liquid crystal display device
JP3643588B2 (en) Liquid crystal display
JPH08179305A (en) Liquid crystal display element
JP2005157404A (en) Lateral electrolytic type liquid crystal display device suitable for improvement in numerical aperture
JPH11142872A (en) Liquid crystal display device
JP2757942B2 (en) Manufacturing method of color filter substrate for liquid crystal display
JP2005172999A (en) Electrooptical device, method for manufacturing electrooptical device, and electronic appliance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees