JPH06510801A - Catalyst system for the production of amide transition metal compounds and isotactic polypropylene - Google Patents

Catalyst system for the production of amide transition metal compounds and isotactic polypropylene

Info

Publication number
JPH06510801A
JPH06510801A JP4502878A JP50287892A JPH06510801A JP H06510801 A JPH06510801 A JP H06510801A JP 4502878 A JP4502878 A JP 4502878A JP 50287892 A JP50287892 A JP 50287892A JP H06510801 A JPH06510801 A JP H06510801A
Authority
JP
Japan
Prior art keywords
group
compound
substituted
groups
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4502878A
Other languages
Japanese (ja)
Other versions
JP3255173B2 (en
Inventor
キャニック、ジョー・アン・マリー
ターナー、ハワード・ウイリアム
Original Assignee
エクソンモービル・ケミカル・パテンツ・インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクソンモービル・ケミカル・パテンツ・インク filed Critical エクソンモービル・ケミカル・パテンツ・インク
Publication of JPH06510801A publication Critical patent/JPH06510801A/en
Application granted granted Critical
Publication of JP3255173B2 publication Critical patent/JP3255173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Abstract

Certain bridged and unbridged amido transition metal compounds of the Group IV-B metals are disclosed. These compounds may be used in a catalyst system comprising the amido transition metal compound and an alumoxane. Also disclosed is a process using the catalyst system for the production of high molecular weight polyolefins and, particularly, high molecular weight isotactic polypropylene.

Description

【発明の詳細な説明】 アミド遷移金属化合物及びアイソタクチックポリプロピレン製造用触媒系 本発明は、第1VB族金属のある種の架橋アミド遷移金属化合物及び未架橋アミ ド遷移金属化合物、アミド遷移金属化合物とアルモキサンを含んでなる触媒系、 並びにこの触媒系を用いて高分子量ポリオレフィン、特に高分子量アイソタクチ ックポリプロピレンを製造する方法にα−オレフィンの重合で得られる各種化合 物はその化学的・物理的性質に移しい差異を示す。これらの差異は分子構造の差 を反映したものであるが、それはある特定のモノマー又はモノマーの組合せを使 用したことに本質的に起因することもあり、モノマーの結合様式又はその欠如に 起因することもある。炭素原子数3以上のα−オレフィンの重合体はその生来の 属性として重合体主鎖に側鎖炭化水素基が結合している。ただし、これらの炭化 水素基の立体化学的な配置は重合の際のモノマーと触媒と配位重合体の相互作用 の所産である。いかなる側鎖炭化水素基も、理想化して引き伸ばした立体配置に おいては、重合体主鎖の炭素原子によって定まる平面のいずれか一方の側に位置 すると考えられる。[Detailed description of the invention] Catalyst system for the production of amide transition metal compounds and isotactic polypropylene The present invention provides certain bridged amide transition metal compounds and uncrosslinked amide transition metal compounds of Group 1 VB metals. a catalyst system comprising a de-transition metal compound, an amide-transition metal compound and an alumoxane; This catalyst system can also be used to develop high molecular weight polyolefins, especially high molecular weight isotactic compounds. Various compounds obtained through the polymerization of α-olefins are used to produce polypropylene. Objects exhibit significant differences in their chemical and physical properties. These differences are due to differences in molecular structure. However, it reflects the use of certain monomers or combinations of monomers. It may be due essentially to the use of It may also be caused by Polymers of α-olefins having 3 or more carbon atoms are As an attribute, side chain hydrocarbon groups are bonded to the polymer main chain. However, these carbonization The stereochemical arrangement of hydrogen groups is determined by the interaction of monomers, catalysts, and coordination polymers during polymerization. It is a product of Any side chain hydrocarbon group can be idealized into an extended configuration. located on either side of the plane defined by the carbon atoms of the polymer backbone. It is thought that then.

以前から指摘されている通り、ある所定の分子量のある所定のオレフィン重合体 の示す物理的性質は、重合体主鎖に沿って並んだこれらの側鎖炭化水素基の配置 によって大きく左右される。丈夫なポリマーは立体化学的な規則性を有する傾向 があり、隣合わせた炭化水素基が重合体主鎖の同じ側に存在しているか、或いは 極めて規則的な間隔で逆転していることを意味している。これらの配置はいずれ も結晶化を促進し、その結果、結晶化ポリマーに剛性と強度が加わる。As previously pointed out, a given olefin polymer of a given molecular weight The physical properties of are due to the arrangement of these side chain hydrocarbon groups along the polymer backbone. greatly influenced by. Sturdy polymers tend to have stereochemical regularity and adjacent hydrocarbon groups are on the same side of the polymer backbone, or This means that they are reversed at very regular intervals. These arrangements also promotes crystallization, thereby adding stiffness and strength to the crystallized polymer.

重合体の示す性質を左右するその他の決定的な要因は、モノマー及びコモノマー の種類と相対濃度、樹脂全体からみた重合体分子の重量平均分子量(My)、分 子量分布(MID)及び樹脂の組成分布である。高い強度と低いクリープ性を必 要とする最終用途に対しては、樹脂のMwは一般に100000以上でなければ ならない。Other critical factors that influence the properties of polymers are the monomers and comonomers. Type and relative concentration of polymer, weight average molecular weight (My) of polymer molecules from the whole resin, These are the molecular weight distribution (MID) and the composition distribution of the resin. Requires high strength and low creep For the desired end use, the Mw of the resin must generally be 100,000 or higher. No.

アタクチック、ノーマルアイソタクチック、アイソタクチックステレオブロック 、シンジオタクチック及びヘミアイソタクチックという5種類の立体規則性(タ クチシ。Atactic, normal isotactic, isotactic stereo blocks There are five types of stereoregularity: syndiotactic and hemiisotactic. Kuchishi.

チーともいう)が明らかにされている。これらの立体規則的配置が最初に実証さ れたのはいずれもポリプロピレンについてであるが、理論的には、炭素原子数が 3以上のオレフィン、環式オレフィン又は内部オレフィンからなる重合体につい ても同様に各立体規則性配置を取る可能性がある。(also called Qi) has been revealed. These stereoregular arrangements were first demonstrated All of the above are for polypropylene, but theoretically, the number of carbon atoms is Regarding polymers consisting of 3 or more olefins, cyclic olefins or internal olefins Similarly, each stereoregular configuration may be adopted.

アタクチックポリオレフィンは、重合体分子主鎖に結合した側鎖炭化水素基が主 鎖に対して何の空間的規則性ももっていないと考えられるポリオレフィンである 。このようなランダムな構造は、メチレン炭素とメチン炭素が交互に並んだ重合 体主鎖にメチン炭素の側鎖置換基がランダムに配向したものとして表される。メ チン炭素はRとSの立体配置をランダムに有していて、同じ立体配置の隣接対( 「メソ」即ち「m」ダイアト)又は異なる立体配置の隣接対(「ラセミ」即ちr rJダイアト)のいずれかを生ずる。アタクチック型ポリマーはメソ型ダイアト とラセミ型ダイアトをほぼ等しい分率で含む。アタクチックポリオレフィンは、 何の規則性も示さず、重合体鎖における繰返し単位の立体配置にも規則性は全く みられないので、これらは無定形の物質である。アタクチックポリオレフィンは 、たとえあったとしてもわずかな結晶化度しか示さないから、その樹脂の重量平 均分子量に関係なく高い強度を必要とする用途には全般的に適していない。Atactic polyolefins are mainly composed of side chain hydrocarbon groups bonded to the main chain of the polymer molecule. It is a polyolefin that is thought to have no spatial regularity in its chains. . This random structure is caused by polymerization in which methylene carbons and methine carbons are arranged alternately. It is represented as having methine carbon side chain substituents randomly oriented on the body main chain. Mail The chin carbon has a random configuration of R and S, and adjacent pairs of the same configuration ( ``meso'' or ``m'' diat) or adjacent pairs of different configurations (``racemic'' or r rJ diat). Atactic type polymer is meso type diat and racemic diatoids in approximately equal proportions. Atactic polyolefin is It shows no regularity, and there is no regularity in the configuration of the repeating units in the polymer chain. Since they cannot be seen, they are amorphous substances. Atactic polyolefin is , because the resin exhibits little, if any, degree of crystallinity, Regardless of average molecular weight, it is generally unsuitable for applications that require high strength.

アイソタクチックポリオレフィンは、側鎖炭化水素基が重合体主鎖のなす平面に 対して同じ側の空間に整列しているようなポリオレフィンである。アイソタクチ ックポリプロピレンを例にとると、アイソタクチック構造とは、典型的には、連 続した単量体単位の3位炭素原子に結合した側鎖メチル基が、重合体の炭素骨格 鎖を通る仮想平面の同じ側にあるものとして説明できる。例えば、下記のように 、メチル基はすべて平面の上下いずれかの側にある。Isotactic polyolefins have side chain hydrocarbon groups that lie in the plane of the polymer main chain. In contrast, these polyolefins are arranged in spaces on the same side. Isotakuchi For example, in block polypropylene, an isotactic structure typically refers to The side chain methyl group bonded to the 3-position carbon atom of the subsequent monomer unit forms the carbon skeleton of the polymer. It can be described as being on the same side of an imaginary plane passing through the chain. For example, as below , the methyl groups are all on either side of the plane, above or below.

る。アイソタクチックペンタドに対するBoveyのNMR表示法は[、、、m mm、、、]である。ここで、各々の「田」は「メソ」ダイアト、換言すれば平 面の同じ側に並んだ一連のメチル基を表している。Ru. Bovey's NMR notation for isotactic pentads is [,,,m mm, , ]. Here, each ``field'' is a ``meso'' diato, in other words, Represents a series of methyl groups on the same side of the plane.

ポリオレフィンのノーマルアイソタクチック構造においては、ポリマー中に現れ るランダムな誤りを除き、単量体単位はすべて同一の立体化学的配置をもつ。か かるランダムな誤りは殆ど常に孤立した立体配置の反転として現れ、直ぐ次のα −オレフィン単量体が挿入される際に矯正されて生長ポリマー鎖にRかSの元の 立体配置が復活する。In the normal isotactic structure of polyolefin, Except for random errors, all monomeric units have the same stereochemical configuration. mosquito Such random errors almost always appear as isolated configuration inversions, and the immediately next α - When the olefin monomer is inserted, the original R or S is corrected in the growing polymer chain. Three-dimensional arrangement is restored.

ステレオブロックアイソタクチックポリマーの生成反応は、生長部位が連鎖中の 立体化学的な誤りと反応する仕方において、ノーマルアイソタクチック構造の生 成反応と異なる。上述の通り、ノーマルアイソタクチック連鎖は、立体化学的調 節剤、即ち触媒活性金属種とその周囲の配位子がモノマー挿入の間ずっと同じ立 体化学的選択を指示し続′けるので、誤りの後は元の立体配置に戻る。The formation reaction of stereoblock isotactic polymers involves the growth site being in a chain. The formation of a normal isotactic structure in the way it reacts with stereochemical errors. It is different from the formation reaction. As mentioned above, normal isotactic chains are Moderators, i.e., ensure that the catalytically active metal species and its surrounding ligands remain in the same position throughout monomer insertion. It continues to direct body chemical selection, so it reverts to its original configuration after a mistake.

ステレオブロックの生長においては、触媒活性金属部位それ自体がRの立体配置 のモノマー挿入を指示するものから、Sの立体配置のモノマーの挿入を指示する ものへと変化する。アイソタクチックステレオブロックの形は以下に示す通りで ある。In stereoblock growth, the catalytically active metal site itself has an R configuration. From one that instructs the insertion of a monomer of the S configuration to one that instructs the insertion of a monomer with the S configuration Change into something. The shape of the isotactic stereo block is as shown below. be.

アイソタクチックステレオブロック型ポリオレフィンを生成する触媒系が発見さ れるずっと前から、かがるミクロ構造が存在する可能性が指摘されており、その 生成機構は、従来のチーグラーナツタ機構に基づいて、Langer、 A、  W、により、Lect、 Bienn、 Polym、 Symp、 7th( 1974); Ann、 N、Y、 Acad、 Sci、 295. 110 〜126(1977)において提唱されていた。この種のポリプロピレン及びそ れを純粋な形で製造する触媒についての最初の報告例は、米国特許第4.522 .982号においてである。A catalyst system has been discovered that produces isotactic stereoblock polyolefins. It has been pointed out that a bending microstructure may exist long before the The generation mechanism is based on the conventional Ziegler-Natsuta mechanism, as described by Langer, A. W, Lect, Bienn, Polym, Symp, 7th ( 1974); Ann, N.Y., Acad, Sci., 295. 110 ~126 (1977). This kind of polypropylene and its The first reported example of a catalyst for producing it in pure form was U.S. Pat. No. 4.522. .. In No. 982.

ステレオブロック構造中で同じ立体配置をとる個々のブロックの長さは、反応条 件を変えることによって大幅に変化する。連鎖中の誤りの部分だけが樹脂生成物 の結晶化度に影響を与えるので、一般に、ノーマルアイソタクチックポリマーと 、ブロック長の長い(50を超えるアイソタクチック配置)アイソタクチックス テレオブロックポリマーは゛類似した性質を有する。The length of each block with the same configuration in the stereoblock structure depends on the reaction conditions. It changes significantly by changing the conditions. Only the error part in the chain is the resin product In general, normal isotactic polymers and , isotactics with long block length (more than 50 isotactic configurations) Teleoblock polymers have similar properties.

アイソタクチック性の高いポリオレフィンは高い結晶化度を示す。従って、アイ ソタクチックポリオレフィンは、重量平均分子量が約100000を超えれば、 高い強度を必要とする最終用途にも十分に適する。Polyolefins with high isotacticity exhibit a high degree of crystallinity. Therefore, eye If the weight average molecular weight of the sotactic polyolefin exceeds about 100,000, Also well suited for end uses requiring high strength.

シンジオタクチックポリオレフィンは、以下に示す通り、重合体分子の主鎖に結 合した側鎖炭化水素基が、重合体主鎖の平面の一方の側から反対側へと次々に交 替するポリオレフィンである。Syndiotactic polyolefins are bonded to the main chain of the polymer molecule, as shown below. The combined side chain hydrocarbon groups intersect one after another from one side of the plane of the polymer main chain to the other. It is a polyolefin that replaces

NMR表示法では、このセグメント(即ちペンタド)は、[、、、rrr、、、 ]として表される。ここで、各々のrrJは「ラセミ」ダイアト、換言すれば、 平面に対して交互に反対方向に並んだ一連のメチル基を表している。連鎖中のr ダイアトの割合が、そのポリマーのシンジオタクチック度を決定する。シンジオ タクチック性の高いポリマーは一般に結晶性が高く、往々にしてそのアイソタク チック多形体と類似した高い融点を示す。アイソタクチックポリオレフィンと同 様に、シンジオタクチックポリオレフィンは高い結晶化度を示す可能性がある。In NMR notation, this segment (i.e., pentad) is [,,,rrr, , ]. where each rrJ is a "racemic" diatotype, in other words: It represents a series of methyl groups arranged in alternating directions in opposite directions to the plane. r in chain The proportion of diatoms determines the syndiotactic degree of the polymer. Shinjio Highly tactical polymers are generally highly crystalline and often have a high isotactic property. It exhibits a high melting point similar to the tick polymorph. Same as isotactic polyolefin Similarly, syndiotactic polyolefins can exhibit high crystallinity.

従って、MWが約100000を超えれば、高い強度を必要とする用途にも適す る。Therefore, if the MW exceeds about 100,000, it is suitable for applications that require high strength. Ru.

前述のいず゛れの物質についても、最終的な樹脂の性質及び特定用途に対する適 性は、その物質のタクチシチーの種類、融点、平均分子量、分子量分布、モノマ ーとコモノマーの種類と含有率、序列分布、並びに先端又は末端基の官能性の有 無によって左右される。従って、このような立体規則性ポリオレフィンを製造す るための触媒系は、望ましくは、Mw、 MID、タクチシチーの種類と並びに コモノマーの選択に関して、融通の利くもので無ければならない。さらに、触媒 系はこのようなポリマーをオレフィン性不飽和等の先端官能基及び/又は末端官 能基の有無を問わずに製造できるものでなければならない。For any of the aforementioned materials, the properties of the final resin and suitability for the particular application will vary. The properties are determined by the type of tacticity, melting point, average molecular weight, molecular weight distribution, and monomer of the substance. The type and content of comonomers and comonomers, their order distribution, and the functionality of the tip or terminal group. Depends on nothing. Therefore, in order to produce such stereoregular polyolefins, The catalyst system for One must be flexible regarding the choice of comonomers. Furthermore, the catalyst The system combines such polymers with top functional groups such as olefinic unsaturation and/or terminal functional groups. It must be possible to produce it with or without functional groups.

そのうえ、このような触媒は、商業的実施のための制約として、十分な生産速度 で、かかる樹脂を製造できるものでなければならない。最も好ましくは、触媒系 は、残留触媒を所望の最終用途において容認できる程度にまで除去するための後 処理を必要としない樹脂生成物がその生産性速度において得られるようなもので ある。最後に、工業用の触媒系として重要な側面は、様々なプロセスや条件に対 する適応性である。Moreover, such catalysts require sufficient production rates as a constraint for commercial implementation. It must be possible to produce such a resin. Most preferably the catalyst system Post-processing to remove residual catalyst to an extent acceptable for the desired end use. Such that a resin product requiring no processing is obtained at that productivity rate. be. Finally, an important aspect of industrial catalyst systems is their ability to withstand various processes and conditions. It is adaptability.

アイソタクチックポリマー製造用の従来のチタン系チーグラー−ナツタ触媒は当 業者には周知である。これらの工業触媒は結晶性の高い高分子量材料の製造には 十分に適している。ただし、これらの触媒系は、分子量、分子量分布及びタクチ シチーの制御に関しての限界がある。Conventional titanium-based Ziegler-Natsuta catalysts for the production of isotactic polymers are It is well known to business operators. These industrial catalysts are suitable for producing highly crystalline, high molecular weight materials. Suitable enough. However, these catalyst systems have limited molecular weight, molecular weight distribution, and There are limits to the control of Shichi.

これらの従来触媒は、数種類の活性部位を含んでいるので、共重合に際して組成 分布を制御するためのその能力は一段と制限される。These conventional catalysts contain several types of active sites, so the composition can be changed during copolymerization. Its ability to control distribution becomes more limited.

(1984)並びにKaminsky、 ?、他、^ngew、 Chew、  Int、 Ed。(1984) and Kaminsky, ? , others, ^ngew, Chew, Int, Ed.

Eng、 24.507−508 (1985)に、アルモキサンを助触媒もし くは活性化剤とするメタロセンでアイソタクチックポリマーを製造する新方法が 報告されたが、このメタロセンは常態においてそのメタロセンの遷移金属にキラ ル中心をもつ。Eng., 24.507-508 (1985), using alumoxane as a cocatalyst. A new method for producing isotactic polymers using metallocenes as activators It was reported that this metallocene normally exhibits chirality in the transition metal of the metallocene. center.

アイソタクチックポリオレフィンを生ずる触媒は米国特許第4.794.096 号にも開示されている。この特許には、アルモキサン助触媒で活性化されたキラ ルな立体剛性(stereorigid)メタロセンが開示されており、この触 媒はオレフィンをアイソタクチックなポリオレフィンとして重合すると報告され ている。立体規則重合を行うと報告されているアルモキサンを助触媒とするメタ ロセンの構造は、エチレンで橋架けされたビス−インデニル−及びビス−テトラ ヒドロインデニル−チタン及びジルコニウムOV)触媒である。このような触媒 系は、まずfi ld他。Catalysts that produce isotactic polyolefins are disclosed in U.S. Patent No. 4.794.096. It is also disclosed in the issue. This patent includes a chimney activated with an alumoxane cocatalyst. A typical stereorigid metallocene is disclosed, and this The medium has been reported to polymerize olefins as isotactic polyolefins. ing. Alumoxane-coated methane, which has been reported to undergo stereoregular polymerization, The structure of locene is ethylene-bridged bis-indenyl- and bis-tetra hydroindenyl-titanium and zirconium OV) catalyst. Such a catalyst First, the system is fi ld et al.

J、 Organomet、 Chem、 232.233−247 (198 2)において合成・研究され、その後、上掲のEven並びにKaminsky 他の報文でα−オレフィンを立体規則的に重合させると報告された。さらに、西 独特許出願公開第3443087号(1986)には、かかる立体剛性メタロセ ンの架橋の長さは01〜C4炭化水素とすることができ、メタロセンの環は単環 でも二環式でもよいが不斉でなければならないと報告されているが、その実験的 証明はなされていない。上述の米国特許第4.794.096号及び西独特許出 願公開第3443087号に開示されたメタロセン触媒とは対照的に、本発明の ある種のものはアキラルな触媒を用いて高度にアイソタクチックなポリマーを製 造することができる。J, Organomet, Chem, 232.233-247 (198 2), and was subsequently synthesized and studied by Even and Kaminsky mentioned above. Other papers have reported stereoregular polymerization of α-olefins. Furthermore, the west German Patent Application No. 3443087 (1986) describes such a stereorigid metallothesis. The bridge length of the metallocene can be from 01 to C4 hydrocarbon, and the metallocene ring can be monocyclic. However, it has been reported that it may be bicyclic, but it must be asymmetric; No proof has been made. U.S. Patent No. 4.794.096 and West German Patent No. 4.794.096 mentioned above. In contrast to the metallocene catalyst disclosed in Application Publication No. 3,443,087, the present invention Some use achiral catalysts to produce highly isotactic polymers. can be built.

遷移金属にアミド基が結合しているような遷移金属系触媒の利用がポリマーの研 究分野においである程度の注目を集めている。トリス−アミドジルコニウム触媒 を用いてシンジオタクチックポリスチレンを製造する方法が米国特許第4.77 4.301号に開示されている。この明細書には、ジルコニウム化合物をアルモ キサンと組み合わせて重合触媒とすることが教示されている。シンジオタクチッ クポリマーは、シンジオタクチックポリマーを生ずると一般に知られているビニ ル芳香族系モノマーを、トリス−アミドジルコニウム/アルモキサン触媒で重合 したときに得られている。The use of transition metal-based catalysts, in which an amide group is bonded to the transition metal, is an effective method for polymer polishing. It has attracted a certain amount of attention in the research field. Tris-amide zirconium catalyst U.S. Patent No. 4.77 discloses a method for producing syndiotactic polystyrene using No. 4.301. In this specification, zirconium compounds are Its combination with xane as a polymerization catalyst is taught. Shinjiotakutchi Polymers are vinylaceous polymers commonly known to produce syndiotactic polymers. Polymerization of aromatic monomers using tris-amide zirconium/alumoxane catalyst You get it when you do.

欧州特許第349.886号には、飽和アルキル置換アミド基を結合したチタン がアルモキサン存在下で活性な触媒を与えると報告されている。この触媒系は、 構造が高度にランダムで分子量分布の狭いポリエチレン共重合体を生じさせる。European Patent No. 349.886 describes titanium bonded with saturated alkyl-substituted amide groups. is reported to provide an active catalyst in the presence of alumoxane. This catalyst system is It produces a polyethylene copolymer with a highly random structure and narrow molecular weight distribution.

欧州特許第349.886号では、先行技術のエチレン単独重合用の含アミド第 rVB族金属触媒についても言及されており、この触媒を共重合に応用すると、 低分子量生成物、広い分子量分布、低触媒活性というような様々な不利益を受け ると報告されている。European Patent No. 349.886 discloses the prior art amide containing No. The rVB group metal catalyst is also mentioned, and when this catalyst is applied to copolymerization, suffer from various disadvantages such as low molecular weight products, wide molecular weight distribution, and low catalytic activity. It is reported that.

その他の成形用プラスチックでは適さない用途で立体規則性ポリマーに対して望 まれる高強度その他の物理的特性の点、並びに、立体規則性ポリマーの製造に利 用できる方法が現時点では僅かしかないという点で、本明細書中で開示するよう な、高分子量・高アイソタクチツク性ポリマーを製造するための触媒に対する必 要性が存在する。さらに望まれることは、その最終用途に合わせて容易に成形及 び/又は機械加工することのできるポリマーが混入物(残留触媒)除去のための 処理を行わずに製造できるように、かかる触媒が高い活性を有していることであ る。エチレン系ポリマーの製造に有用な触媒を製造することも望まれる。It is desirable for stereoregular polymers in applications where other moldable plastics are not suitable. in terms of their high strength and other physical properties, as well as their usefulness in the production of stereoregular polymers. As disclosed herein, there are currently only a few methods available. The requirements for catalysts for producing high molecular weight, high isotactic polymers are There is a necessity. What is also desirable is that it can be easily molded and molded to suit its end use. and/or machinable polymers for contaminant (residual catalyst) removal. Such catalysts must have high activity so that they can be produced without treatment. Ru. It would also be desirable to produce catalysts useful in the production of ethylene-based polymers.

発明の概要 本発明は、アルモキサンを助触媒とする高度結晶性ポリオレフィン製造用触媒系 にして、その遷移金属成分が下記一般式で表される橋架はアミド遷移金属化合物 である触媒系を開示する。Summary of the invention The present invention provides a catalyst system for producing highly crystalline polyolefins using alumoxane as a promoter. The bridge whose transition metal component is represented by the general formula below is an amide transition metal compound. A catalyst system is disclosed.

上記式中、証はジルコニウム、ハフニウム又はチタンであり、Nは3つの置換基 を有する窒素原子であり、yは1又は0であってそれぞれ窒素原子間の橋架は基 の存在の有無を表すもの゛であり、2は2−Vであり、X及びX′は一価陰イオ ン性配位子で、例えばハライド、ヒドリド、置換又は未置換C1〜C3゜炭化水 素、アルコキシド、アリールオキシド、アミド、アリールアミド、ホスフィト、 アリールホスフィト等、或いはXとX′は一体として二価残基で、例えばアルキ リデン、シクロメタル化 (cyclometal 1ated)炭化水素又はその他の二価陰イオン性キ レート配位子等であり、Tは第1VA族又は第VIA族元素を含有する未置換炭 化水素及び炭化水素からなる群から選択される共有結合橋架は基であり、R及び R′はそれぞれ独立に一つの枝分れを有する炭素原子数1〜30の炭化水素、複 数の枝分れを有する炭素原子数1〜30の炭化水素、ハロゲン基、アミド基、ホ スフィト基、シリル基、アルコキシ基、アルキルポライド基、01〜C30炭化 水素で置換された第1VA族メタロイド基、並びに置換01〜C1゜炭化水素基 であって1又はそれ以上の水素原子がハロゲン基、アミド基、ホスフィト基、ア ルコキシ基又はその他ルイス酸もしくはルイス塩基性官能基を含む基によって置 換されているC5〜C30炭化水素基からなる群から選択される基である。In the above formula, the symbol is zirconium, hafnium or titanium, and N is three substituents. , y is 1 or 0, and the bridge between the nitrogen atoms is a group 2 is 2-V, and X and X' are monovalent anions. ionizable ligands, such as halides, hydrides, substituted or unsubstituted C1-C3 hydrocarbons. element, alkoxide, aryloxide, amide, arylamide, phosphite, aryl phosphite, etc., or X and X' together are divalent residues, e.g. Reden, cyclometalization (cyclometal 1ated) Hydrocarbon or other divalent anionic compound is a rate ligand, etc., and T is an unsubstituted carbon containing a Group 1 VA or Group VIA element. The covalent bridge selected from the group consisting of hydrocarbons and hydrocarbons is a group in which R and R' is a hydrocarbon having 1 to 30 carbon atoms each independently having one branch; Hydrocarbons having 1 to 30 carbon atoms with several branches, halogen groups, amide groups, Suphyto group, silyl group, alkoxy group, alkylpolide group, 01-C30 carbonization Group 1 VA metalloid group substituted with hydrogen and substituted 01-C1° hydrocarbon group and one or more hydrogen atoms are halogen group, amide group, phosphite group, atom substituted by a leukoxy group or other group containing a Lewis acid or Lewis basic functional group. is a group selected from the group consisting of C5-C30 hydrocarbon groups.

さらに、上記触媒系を用いる重合方法も開示する。この触媒系は、アミド遷移金 属化合物とアルモキサンを組み合わせることによって製造されるが、溶液重合法 、スラリー重合法、気相重合法又は高圧重合法のいずれにも使用し得る。上記触 媒は担持形としても製造し得る。本発明の触媒系は、エチレンの単独重合及びエ チレンもしくはプロピレンとα−オレフィンもしくは環式オレフィンもしくはジ エンその他の不飽和モノマーとの共重合の他にも、プロピレンを高分子量・高ア イソタクチツク性ポリプロピレンへと重合する。Additionally, polymerization methods using the above catalyst systems are also disclosed. This catalyst system is an amide transition gold It is produced by combining alumoxane and alumoxane, but it is produced by solution polymerization method. , slurry polymerization, gas phase polymerization, or high pressure polymerization. The above mentioned The medium can also be produced in supported form. The catalyst system of the present invention is suitable for homopolymerization of ethylene and Tylene or propylene and α-olefin or cyclic olefin or di In addition to copolymerization with ene and other unsaturated monomers, propylene can be Polymerizes to isotactic polypropylene.

好ましい具体的態様の説明 ^、 遷移金属成分 この触媒系の第1VB族遷移金属成分は下記一般式で表上記式中において、符号 は下記の意味を有する。Description of preferred specific embodiments ^, Transition metal components The Group 1 VB transition metal component of this catalyst system is represented by the general formula below. has the following meaning.

菫はジルコニウム、チタン又はハフニウムである。Violet is zirconium, titanium or hafnium.

Nは3つの置換基をもつ窒素原子である。N is a nitrogen atom with three substituents.

yは1又は0であってそれぞれ窒素原子間の橋架は基の存在の有無を表すもので あり、2は2−yである。y is 1 or 0, and each bridge between nitrogen atoms represents the presence or absence of a group. Yes, 2 is 2-y.

各Rはそれぞれ独立に一つの枝分れを有する炭素原子数1〜30(好ましくは3 〜30)の炭化水素、複数の枝分れを有する炭素原子数1〜30(好ましくは3 〜30)の炭化水素、ハロゲン基、アミド基、ホスフィト基、シリル基、アルコ キシ基、アルキルポライド基、置換c1〜C1゜炭化水素基であって1又はそれ 以上の水素原子がハロゲン基、アミド基、ホスフィト基、アルコキシ基又はその 他ルイス酸もしくはル゛イス塩基性官能基を含む基によって置換されているC2 〜C1゜炭化水素基、C1〜C9゜炭化水素で置換された第rVA族メタロイド 基であって当該メタロイド元素周期表の第rVA族から選択されるC0〜C5゜ の炭化水素置換メタロイド基、からなる群から選択される基である。Each R independently has one branch and has 1 to 30 carbon atoms (preferably 3 ~30) hydrocarbons having multiple branches and having 1 to 30 (preferably 3) carbon atoms ~30) Hydrocarbons, halogen groups, amide groups, phosphite groups, silyl groups, alkyl xy group, alkylpolide group, substituted C1-C1° hydrocarbon group, and one or more The above hydrogen atoms are halogen group, amide group, phosphite group, alkoxy group or their C2 substituted by a group containing another Lewis acid or Lewis basic functional group ~C1° hydrocarbon group, group rVA metalloid substituted with C1-C9° hydrocarbon C0 to C5° selected from group rVA of the periodic table of metalloid elements A group selected from the group consisting of hydrocarbon-substituted metalloid groups.

各Xは独立に一価陰イオン性配位子であって、例えばハライド、ヒドリド、置換 もしくは未置換C7〜C20炭化水素、アルコキシド、アリールオキシド、アミ ド、アリールアミド、ホスフィト、アリールホスフィト等、或いはXとX′の両 者一体としてアルキリデン、シクロメタル化炭化水素又はその他の二価陰イオン 性キレート配位子てあり、より詳細には、Xは一般弐N(R)2の配位子であり (ただし、Rは前記で説明したものと同一の意味を有する)、最も詳細には、一 般式N[5i(R)]2のシリルアミド基である。Each X is independently a monovalent anionic ligand, such as a halide, hydride, substituted or unsubstituted C7-C20 hydrocarbons, alkoxides, aryloxides, amide do, arylamide, phosphite, arylphosphite, etc., or both X and X' Alkylidene, cyclometalated hydrocarbon or other divalent anion as a whole more specifically, X is a general 2N(R)2 ligand; (where R has the same meaning as explained above), most specifically It is a silylamide group of the general formula N[5i(R)]2.

Tは第1VA族又は第■^族元素を含有する共有結合橋架は基であり、例えば、 これに限定されるものではないが、ジアルキルケイ素基、アルキルアリールケイ 素基、ジアリールケイ素基、ジアルキルゲルマニウム基、アルキルアリールゲル マニウム基、ジアリールゲルマニウム基、アルキルホスフィン、アリールホスフ ィン、アルキルアミン基、アリールアミン基、酸素基又は硫黄基等、或いは炭素 原子数1以上の炭化水素基、例えば、メチレン、エチレン等である。T is a covalent bridge group containing a Group 1 VA or Group II element, for example, Examples include, but are not limited to, dialkyl silicon groups, alkylaryl silicon groups, Base group, diaryl silicon group, dialkyl germanium group, alkylaryl gel manium group, diaryl germanium group, alkyl phosphine, arylphosphine amine, alkylamine group, arylamine group, oxygen group or sulfur group, or carbon Hydrocarbon groups having one or more atoms, such as methylene and ethylene.

この触媒系の第1VB族遷移金属成分の構成残基として好適?CT基の非限定的 な具体例は、ジメチルシリル、ジエチルシリル、ジ−n−プロピルシリル、ジイ ソプロピルシリル、ジ−n−ブチルシリル、ジ−t−ブチルシリル、ジーn−へ キシルシリル、メチルフェニルシリル、エチルメチルシリル、ジフェニルシリル 、ジ(p−t−ブチルフェネチルシリル)、n−ヘキシルメチルシリル、シクロ ペンタメチレンシリル、シクロテトラメチレンシリル、シクロトリメチレンシリ ル、ジメチルゲルマニル、ジエチルゲルマニル、メチレン、ジメチルメチレン、 ジエチルメチレン、エチレン、ジメチルエチレン、ジエチルエチレン、ジプロピ ルエチレン、プロピレン、ジメチルプロピレン、ジエチルプロピレン、1,1− ジメチル3−3−ジメチルプロピレン、テトラメチルジシロキサン、1,1.4 .4−テトラメチルジシリルエチレン、酸素並びに硫黄である。Is it suitable as a constituent residue of the Group 1 VB transition metal component in this catalyst system? Non-limiting CT group Specific examples include dimethylsilyl, diethylsilyl, di-n-propylsilyl, di- Sopropylsilyl, di-n-butylsilyl, di-t-butylsilyl, di-n- xylsilyl, methylphenylsilyl, ethylmethylsilyl, diphenylsilyl , di(p-t-butylphenethylsilyl), n-hexylmethylsilyl, cyclo Pentamethylenesilyl, cyclotetramethylenesilyl, cyclotrimethylenesilyl dimethylgermanyl, diethylgermanyl, methylene, dimethylmethylene, Diethylmethylene, ethylene, dimethylethylene, diethylethylene, dipropylene ethylene, propylene, dimethylpropylene, diethylpropylene, 1,1- Dimethyl 3-3-dimethylpropylene, tetramethyldisiloxane, 1,1.4 .. 4-tetramethyldisilylethylene, oxygen and sulfur.

Xの炭化水素基の代表例は、メチル、エチル、プロピル、イソプロピル、ブチル 、アミル、イソアミル、ヘキシル、イソブチル、ヘプチル、オクチル、ノニル、 デシル、セチル、2−エチルヘキシル、フェニル等であるが、メチルが好ましい 。Xのハロゲン原子の代表例としては、塩素、臭素、フッ素及びヨウ素が含まれ るが、塩素が好ましい。Xのアルコキシド及びアリールオキシドの代表例は、メ トキシド、エトキシド、プロポキシド、ブトキシド、フェノキシト、及び4−メ チルフェノキシトのような置換フェノキシトである。Xのアミドの代表例は、ジ メチルアミド、ジエチルアミド、メチルエチルアミド、ジ−t−ブチルアミド、 ジイソプロピルアミド等である。Representative examples of the hydrocarbon group of X are methyl, ethyl, propyl, isopropyl, butyl , amyl, isoamyl, hexyl, isobutyl, heptyl, octyl, nonyl, Decyl, cetyl, 2-ethylhexyl, phenyl, etc., but methyl is preferred . Typical examples of halogen atoms in X include chlorine, bromine, fluorine and iodine. However, chlorine is preferred. Representative examples of alkoxides and aryloxides of X are Toxide, ethoxide, propoxide, butoxide, phenoxide, and 4-methoxide Substituted phenoxytes such as tylphenoxyto. A typical example of the amide of Methylamide, diethylamide, methylethylamide, di-t-butylamide, diisopropylamide, etc.

アリールアミドの代表例は、ジフェニルアミドその他の置換フェニルアミドであ る。シリルアミドの代表例は、ジ−トリメチルシリルアミド、ジ−トリエチルシ リルアミド及びトリエチル−トリメチルシリルアミドであるが、ジトリメチルシ リルアミドが好ましい。Xのホスフィトの代表例は、ジフェニルホスフィト、ジ シクロへキシルホスフィト、ジエチルホスフィト、ジメチルホスフィト等である 。2つのXが一体となったアルキリデン基の代表例は、メチリデン、エチリデン 、プロピリデン、又はエチレングリコールのジアニオン等である。Typical examples of arylamides are diphenylamide and other substituted phenylamides. Ru. Typical examples of silylamides are di-trimethylsilylamide and di-triethylsilylamide. Lylamide and triethyl-trimethylsilylamide, but ditrimethylsilylamide Rylamide is preferred. Typical examples of phosphites of X are diphenyl phosphite, di Cyclohexyl phosphite, diethyl phosphite, dimethyl phosphite, etc. . Typical examples of alkylidene groups in which two Xs are combined are methylidene and ethylidene. , propylidene, or ethylene glycol dianion.

R基として好適な炭化水素及び置換炭化水素基は炭素原子1〜約30のもので、 −又は複数の枝分れを有するアルキル基、環式炭化水素基、アルキル置換環式炭 化水素基、芳香族基とアルキル置換芳香族基、アミド置換炭化水素基、ホスフィ ト置換炭化水素基、アルコキシ置換炭化水素基、並びにハロ置換炭化水素基又は ルイス塩基もしくはルイス酸性官能基で置換された炭化水素基が含まれる。R基 として好適な有機金属基には、トリメチルシリル、トリフェニルシリル、トリフ ェニルゲルミル、トリメチルゲルミル等が含まれる。R基として好適なその他の 基には、アミド基、ホスフィト基、アルコキシ基、アルキルポライド基等が含ま れる。好適なR基の中では、トリメチルシリル、トリエチルシリル、エチルジメ チルシリル及びメチルジエチルシリルのようなケイ素の有機金属基が好ましく、 最も好ましいものはトリメチルシリルである。Suitable hydrocarbon and substituted hydrocarbon groups for the R group are from 1 to about 30 carbon atoms; - or an alkyl group having multiple branches, a cyclic hydrocarbon group, an alkyl-substituted cyclic carbon Hydrocarbon groups, aromatic groups and alkyl-substituted aromatic groups, amide-substituted hydrocarbon groups, phosphides t-substituted hydrocarbon group, alkoxy-substituted hydrocarbon group, and halo-substituted hydrocarbon group or Included are hydrocarbon groups substituted with Lewis base or Lewis acidic functional groups. R group Suitable organometallic groups include trimethylsilyl, triphenylsilyl, and triphenylsilyl. Contains phenylgermyl, trimethylgermyl, etc. Other suitable R groups Groups include amide groups, phosphite groups, alkoxy groups, alkylpolide groups, etc. It will be done. Among the preferred R groups, trimethylsilyl, triethylsilyl, ethyldimethy Organometallic groups of silicon such as tylsilyl and methyldiethylsilyl are preferred; Most preferred is trimethylsilyl.

構成部分の可能なすべての組合せを相互に変換することによって、幾多の最終成 分が生ずる。例示的な遷移金属化合物は、ビス(ジ−トリメチルシリルアミド) ジルコニウムジクロライド、ビス(ジ−イソブチルアミド)ハフニウムジメチル 、ビス(ジーtertブチルアミド)ジルコニウムジクロライド、(ジルシクロ へキシルアミド)(ジ−トリメチルシリルアミド)チタンジヒドリド、トリス( ジ−トリメチルシリルアミド)ジルコニウムクロライド、トリス(ジ−トリフェ ニルゲルミルアミド)ハフニウムクロライド及びテトラキス(ジ−トリメチルシ リルアミド)ジルコニウムである。By converting all possible combinations of component parts into each other, many final products can be created. minutes arise. An exemplary transition metal compound is bis(di-trimethylsilylamide) Zirconium dichloride, bis(di-isobutyramide) hafnium dimethyl , bis(di-tertbutyramide)zirconium dichloride, (zylcyclo hexylamide) (di-trimethylsilylamide) titanium dihydride, tris( di-trimethylsilylamide) zirconium chloride, tris(di-triphene) hafnium chloride and tetrakis(di-trimethylsilane) lylamido) zirconium.

第rVB族金属化合物は、立体規則性の高いアイソタクチックポリプロピレンの 製造に用いられてきた。実施例9で実証した通り、アキラルな化合物であるビス (ジ−トリメチルシリルアミド)ジルコニウムジクロライドをアルモキサンと組 み合わせて触媒系を作ると、この系は1000モノマー単位当り50未満の連鎖 欠陥しかもたないアイソタクチックポリプロピレンを製造できる。このタイプの 化合物の製造法は文献から周知であり、R,A。The group rVB metal compound is made of isotactic polypropylene with high stereoregularity. It has been used in manufacturing. As demonstrated in Example 9, the achiral compound bis Combining (di-trimethylsilylamide) zirconium dichloride with alumoxane When combined to form a catalyst system, this system contains less than 50 chains per 1000 monomer units. It is possible to produce isotactic polypropylene that has only defects. of this type Methods for preparing the compounds are well known from the literature, including R.A.

Anderson、 Inorganic Chemistry、 18.29 28 (1979)等の参考文献を挙げることができる。Anderson, Inorganic Chemistry, 18.29 28 (1979).

B、 アルモキサン成分 触媒系のアルモキサン成分は、一般式(R3−^1−0)、(環状化合物)又は R4(R5−^1−0−)、、−AIR6□(線状化合物)で表されるオリゴマ ー化合物である。アルモキサンは一般に線状化合物と環状化合物の混合物である 。上記アルモキサンの一般式において、R3、R4、R5及びR6は独立に自〜 C5アルキル基、具体的には、メチル、エチル、プロピル、ブチル又はペンチル であり、mは1〜約50の整数である。最も好ましくは、R3、R4、R5及び R6はそれぞれメチルであり、mは4以上である。アルモキサンの製造にアルキ ルアルミニウムハライドを用いるとき R3−R6基の一つ以上がハライドであ ってもよい。B. Alumoxane component The alumoxane component of the catalyst system has the general formula (R3-^1-0), (cyclic compound) or Oligomer represented by R4 (R5-^1-0-), -AIR6□ (linear compound) -It is a compound. Alumoxane is generally a mixture of linear and cyclic compounds . In the above general formula of alumoxane, R3, R4, R5 and R6 are independently C5 alkyl group, specifically methyl, ethyl, propyl, butyl or pentyl and m is an integer from 1 to about 50. Most preferably R3, R4, R5 and Each R6 is methyl, and m is 4 or more. Alkium for the production of alumoxane When using aluminum halide, one or more of the R3-R6 groups is a halide. You can.

今日ではよく知られているように、アルモキサンは様々な方法で製造することが できる。例えば、アルモキサンを得るには、トリアルキルアルミニウムを湿った 不活性有機溶媒中の水と反応させてもよいし、或いはトリアルキルアルミニウム を水和塩(不活性溶媒に懸濁した水和硫酸塩等)と反応させてもよい。一般に、 どのような方法で製造しても、トリアルキルアルミニウムと限定量の水との反応 は、アルモキサンの線状種と環状種両方の混合物が得られる。As is well known today, alumoxanes can be produced in different ways. can. For example, to obtain alumoxane, trialkylaluminum is wetted with May be reacted with water in an inert organic solvent or trialkylaluminium may be reacted with a hydrated salt (such as a hydrated sulfate suspended in an inert solvent). in general, The reaction of trialkylaluminum with a limited amount of water, no matter how it is produced, gives a mixture of both linear and cyclic species of alumoxane.

本発明の触媒系で利用することのできる好適なアルモキサンは、トリメチルアル ミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチ ルアルミニウム、ジメチルアルミニウムクロライド、ジイソブチルアルミニウム クロライド、ジエチルアルミニウムクロライド等の、トリアルキルアルミニウム 又はハロアルキルアルミニウムの加水分解によって製造されたものである。使用 できる最も好ましいアルモキサンは、メチルアルモキサン(MAO)である。平 均オリゴマー化度が約4〜約25(即ち、口・4〜25)のメチルアルモキサン が好ましいが、13〜25の範囲のものが最も好ましい。Preferred alumoxanes that can be utilized in the catalyst system of the present invention include trimethylalcohol aluminum, triethylaluminum, tripropylaluminum, triisobutylene aluminum, dimethylaluminum chloride, diisobutylaluminum Trialkylaluminium, such as chloride, diethylaluminum chloride, etc. or produced by hydrolysis of haloalkylaluminum. use The most preferred alumoxane available is methylalumoxane (MAO). flat Methylalumoxane having a uniform degree of oligomerization of from about 4 to about 25 (i.e., from 4 to 25) are preferred, and those in the range of 13 to 25 are most preferred.

C1触媒系 本発明で用いる触媒系は、アミド第1VB族遷移金属化合物とアルモキサン成分 の混合で形成される錯体を含んでなる。必要なビス−アミド第1VB族遷移金属 成分とアルモキサン成分を、溶液重合法又はスラリー重合法又は塊状重合法によ るオレフィン重合を行うことのできるような不活性溶媒中に加えることによって 触媒系を製造してもよい。C1 catalyst system The catalyst system used in the present invention comprises an amide Group I VB transition metal compound and an alumoxane component. It comprises a complex formed by mixing. Required bis-amide Group 1 VB transition metals component and alumoxane component by solution polymerization method, slurry polymerization method, or bulk polymerization method. by adding it to an inert solvent in which the olefin polymerization can be carried out. A catalyst system may also be produced.

触媒系は、選択したアミド第1VB族遷移金属成分と選択したアルモキサン成分 とを、所望の順序で、アルカン又は芳香族炭化水素溶媒(好ましくは重合希釈剤 としても好適なもの)中に添加することによっても都合よ(製造し得る。用いた 炭化水素溶媒が重合用希釈剤としての用途にも適している場合、重合反応器中の その場(insitu)で触媒系を製造してもよい。或いは、触媒系を濃縮状態 で別途製造して、反応器中の重合希釈剤に加えてもよい。また、所望によっては 、触媒系の各成分を別々の溶液として製造して、適当な(例えば連続式液相重合 反応法に適しているような)比率で反応器中の希釈剤に加えてもよい。触媒系合 成用溶媒としても重合希釈剤としても好適なアルカン及び芳香族炭化水素として は、イソブタン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の直鎖も しくは枝分れ炭化水素、シクロヘキサン、シクロへブタン、メチルシクロヘキサ ン、メチルシクロへブタン等の環式もしくは脂環式炭化水素、並びにベンゼン、 トルエン、キシレン等の芳香族及びアルキル置換芳香族化合物を例示することが できるが、これらに限定されるものではない。適当な溶媒としては、エチレン、 プロピレン、1−ブテン、1−ヘキセン等の、モノマー又はコモノマーとして作 用し得る液体オレフィンも挙げることができる。The catalyst system comprises a selected amide Group I VB transition metal component and a selected alumoxane component. and, in the desired order, an alkane or aromatic hydrocarbon solvent (preferably a polymerization diluent). It can also be conveniently prepared (preferably used as If the hydrocarbon solvent is also suitable for use as a polymerization diluent, Catalyst systems may also be prepared in situ. Alternatively, the catalyst system can be kept in a concentrated state. It may be prepared separately and added to the polymerization diluent in the reactor. Also, depending on your wishes , each component of the catalyst system is prepared as a separate solution, and suitable (e.g. continuous liquid phase polymerization) The diluent may be added to the diluent in the reactor in proportions (as appropriate for the reaction process). Catalyst system combination Alkanes and aromatic hydrocarbons suitable as polymerization solvents and polymerization diluents. Also includes straight chain substances such as isobutane, butane, pentane, hexane, heptane, octane, etc. or branched hydrocarbons, cyclohexane, cyclohebutane, methylcyclohexane cyclic or alicyclic hydrocarbons such as methylcyclohebutane, benzene, Examples include aromatic and alkyl-substituted aromatic compounds such as toluene and xylene. Yes, but not limited to these. Suitable solvents include ethylene, Produced as a monomer or comonomer, such as propylene, 1-butene, 1-hexene, etc. Mention may also be made of the liquid olefins that can be used.

本発明において、最適の結果は、一般に、アミド第■B族遷移金属化合物が重合 希釈剤中に約0.0001〜約1.0ミリモル/リットル希釈剤の濃度で存在し 、かつアルモキサン成分が約11〜約20000 : 1のアルミニウム/遷移 金属モル比となるような量で存在する場合に得られる。反応時に触媒成分から適 当に熱を移動し、よく混合できるように、十分な溶媒を使用しなければならない 。In the present invention, optimal results are generally obtained when the amide Group IB transition metal compound is polymerized. present in the diluent at a concentration of about 0.0001 to about 1.0 mmol/liter diluent; , and the alumoxane component is about 11 to about 20,000:1 aluminum/transition It is obtained when present in an amount such that the metal molar ratio. suitable from the catalyst components during the reaction. Enough solvent must be used to properly transfer heat and mix well. .

触媒系の成分(即ち、アミド第TVB族遷移金属、アルモキサン及び重合希釈剤 )は反応容器に急速に加えても良いし、徐々に加えてもよい。触媒成分の接触時 に維持する温度は広く変化させることができ、例えば、−10℃から300℃ま で変化させることができる。これよりも高い温度又は低い温度も用いることもで きる。好ましくは1、 触媒系作成の際、反応は約25℃〜100℃の温度に維 持するが、最も好ましくは約25℃に維持する。Components of the catalyst system (i.e., amide Group TVB transition metal, alumoxane, and polymerization diluent) ) may be added to the reaction vessel rapidly or gradually. When catalyst components come into contact The temperature maintained can vary widely, for example from -10°C to 300°C. It can be changed with . Higher or lower temperatures may also be used. Wear. Preferably 1. During preparation of the catalyst system, the reaction is maintained at a temperature of about 25°C to 100°C. most preferably at about 25°C.

いかなる時も、個々の触媒系成分並びにいったん生成した触媒系は、酸素及び水 分から防護する。従って、触媒系を製造するための反応は無酸素及び無水雰囲気 下で行い、また、触媒系を別途回収する場合には、触媒は無酸素及び無水分雰囲 気下で回収する。従って、好ましくは、反応は例えばヘリウムや窒素のような不 活性乾燥気体の存在下で実施する。At any time, the individual catalyst system components, as well as the catalyst system once formed, are exposed to oxygen and water. protect from Therefore, the reaction to produce the catalyst system is carried out in an oxygen-free and anhydrous atmosphere. If the catalyst system is recovered separately, the catalyst is kept in an oxygen-free and moisture-free atmosphere. Collect it below. Therefore, preferably the reaction is carried out using an impurity such as helium or nitrogen. Performed in the presence of active drying gas.

D、 重合方法 本発明の方法の好ましい具体的態様において、触媒系は、オレフィンモノマーの 、液相(スラリー、溶液、懸濁又はバルク相又はそれらの組合せ)、高圧流体相 又は気相重合に使用される。これらのプロセスは単独又は連続で用いられる。液 相法は、オレフィンモノマーを触媒系と適当な重合希釈剤中で接触させる段階、 及び当該モノマーを、触媒系存在下、高分子量ポリオレフィンを生成するのに十 分な時間及び温度で反応させる段階を含んでなる。D. Polymerization method In a preferred embodiment of the process of the invention, the catalyst system comprises an olefinic monomer. , liquid phase (slurry, solution, suspension or bulk phase or a combination thereof), high pressure fluid phase or used in gas phase polymerization. These processes may be used singly or sequentially. liquid The phase process involves the steps of contacting the olefin monomer with a catalyst system in a suitable polymerization diluent; and the monomer in the presence of a catalyst system sufficient to produce a high molecular weight polyolefin. the step of reacting at a time and temperature of minutes.

かかるプロセスに用いるモノマーは、アイソタクチックポリプロピレンを製造す る場合には、プロピレンのみからなる。アイソタクチックポリプロピレンの製造 に最も好ましい条件は、プロピレンを反応域に約0.019psi〜約5000 0psiの圧力で供給し、反応温度を約−100℃〜約300℃に維持するとい うものである。アルミニウムの遷移金属に対するモル比は好ましくは約1:1〜 20000 : 1である。より好ましい範囲は1:1〜2000 : 1であ る。反し時間は好ましくは約1時間〜約6時間である。The monomers used in such processes are those used to produce isotactic polypropylene. In the case of using propylene, it consists only of propylene. Production of isotactic polypropylene The most preferred conditions are to introduce propylene into the reaction zone from about 0.019 psi to about 5000 psi The reaction temperature is maintained at about -100°C to about 300°C. Is Umono. The molar ratio of aluminum to transition metal is preferably from about 1:1 to 20000:1. A more preferable range is 1:1 to 2000:1. Ru. The incubation time is preferably about 1 hour to about 6 hours.

また、モノマーは、ポリエチレンホモポリマーを製造する場合にはエチレンのみ からなり、エチレン/α−オレフィン共重合体を製造する場合にはエチレンと炭 素原子数3〜20のα−オレフィンとからなる。ブテンのような高級α−オレフ ィンのホモポリマー、並びにそれらとエチレン及び/又はC4以上の高級α−オ レフィン及びジオレフィンとの共重合体も製造することができる。エチレンの単 独重合又は共重合に最も好ましい条件は、エチレンを反応域に約0.019ps i〜約50000psiの圧力で供給し、かつ反応温度を約−100℃〜約30 0℃に維持するというものである。アルミニウムの遷移金属に対するモル比は好 ましくは約1:1〜20000 : 1である。より好ましい範囲は1:1〜2 000 + 1である。反応時間は好ましくは約10秒間〜約1時間である。In addition, when manufacturing polyethylene homopolymer, only ethylene is used as the monomer. When producing an ethylene/α-olefin copolymer, ethylene and carbon are It consists of an α-olefin having 3 to 20 elementary atoms. High-grade α-oleph such as butene homopolymers of ethylene and/or higher alpha-ols of C4 or higher. Copolymers with olefins and diolefins can also be produced. ethylene monomer The most preferred conditions for homopolymerization or copolymerization are approximately 0.019 ps of ethylene in the reaction zone. i to about 50,000 psi, and the reaction temperature was about -100°C to about 30°C. The temperature is maintained at 0°C. The molar ratio of aluminum to transition metal is favorable. Preferably, the ratio is about 1:1 to 20,000:1. A more preferable range is 1:1 to 2. 000+1. The reaction time is preferably about 10 seconds to about 1 hour.

本発明の技術的範囲を決して限定するものではないが、共重合体の製造について 、本発明の方法を実施する一つの手段は次の通りである。撹拌タンク式反応器に 1−ブテンのような液体α−オレフィンモノマーを送入する。触媒系を気相又は 液体相としてノズルから送入する。供給エチレンガスを、当業者に周知の方法で 反応器の気相中に送入するか或いは液相中に散布する。反応器は、溶解エチレン ガスと液体α−オレフィンコモノマーから実質的になる液相と、すべてのモノマ ーの蒸気を含んだ気相を含む。反応器の温度と圧力は、気化したα−オレフィン モノマーの還流(自己冷却)、並びに冷却コイルや冷却ジャケット等によって制 御する。重合速度は、触媒の濃度によって制御する。ポリマー生成物のエチレン 含有率は反応器中のエチレン/α−オレフィンコモノマー比によって決定される が、この比はこれらの成分の反応器への相対供給速度を操作することによって制 御される。Although not intended to limit the technical scope of the present invention, regarding the production of copolymers , one means of implementing the method of the invention is as follows. For stirred tank reactor A liquid alpha-olefin monomer such as 1-butene is introduced. Catalyst system in gas phase or It is delivered through a nozzle as a liquid phase. The feed ethylene gas is supplied in a manner well known to those skilled in the art. It is fed into the gas phase of the reactor or dispersed into the liquid phase. The reactor contains dissolved ethylene A liquid phase consisting essentially of gas and liquid alpha-olefin comonomers and all monomers - Contains a gas phase containing steam. The temperature and pressure of the reactor are Controlled by monomer reflux (self-cooling) and cooling coils, cooling jackets, etc. control The rate of polymerization is controlled by the concentration of catalyst. polymer product ethylene The content is determined by the ethylene/α-olefin comonomer ratio in the reactor However, this ratio can be controlled by manipulating the relative feed rates of these components to the reactor. be controlled.

パドル撹拌機、温度調節用外部水ジャケット、乾燥した窒素、エチレン、プロピ レン、1−ブテン及びヘキサンの流量調節供給装置、並びにその他の溶媒もしく はコモノマー、遷移金属化合物及びアルモキサン溶液を送入するためのセプタム 投入口を備えた1リツトルオ一トクレーブ反応器中で重合操作を行った。使用に 先立って反応器を完全に乾燥・脱気した。典型的な運転は、400m1のトルエ ン、5mlの1.0M MAo、 0.27mgの[(Me3Si)zN]2z rC1z(トルエン10m1溶液中13.5Mgを0.2m1)を反応器に投入 することからなっていた。次いで、反応器を80℃に加熱し、エチレン(60p sf)を装置に送入した。重合反応は10分間に限定した。装置を急速に冷却し て排気することによって、反応を停止した。窒素流でポリマーから溶媒を蒸発除 去した。ポリエチレンを回収した(7.4g、 1W=315000゜MfD= 2.261)。Paddle stirrer, external water jacket for temperature control, dry nitrogen, ethylene, propylene Flow control supply devices for 1-butene, 1-butene and hexane, and other solvents or is a septum for delivering comonomer, transition metal compound and alumoxane solution The polymerization operation was carried out in a 1 liter autoclave reactor equipped with an inlet. for use First, the reactor was completely dried and degassed. A typical operation is a 400m1 5ml of 1.0M MAo, 0.27mg of [(Me3Si)zN]2z Inject rC1z (0.2 ml of 13.5 Mg in 10 ml of toluene solution) into the reactor. It consisted of doing. The reactor was then heated to 80°C and ethylene (60p sf) was introduced into the device. The polymerization reaction was limited to 10 minutes. Cools down equipment quickly The reaction was stopped by evacuation. Evaporate the solvent from the polymer with a stream of nitrogen I left. Polyethylene was recovered (7.4g, 1W=315000゜MfD= 2.261).

実施例2 実施例1と同じ設計の反応器及び一般的手順を用いて、400m1のトルエン、 5.0mlの1.0M MAo及び0.32mgの[(Me3Si)2NコJf C1:+ (10mlのトルエン溶液中1.60mgを0.2m1)を反応器に 添加した。反応器を80℃に加熱して、エチレンを送入しく60psi)、反応 を10分行った後、装置を急速に冷却・排気した。トルエンを蒸発させた後、2 .7gのポリエチレンを回収した(MW=267200゜MWD=2.122) 。Example 2 Using the same reactor design and general procedure as in Example 1, 400 ml of toluene, 5.0 ml of 1.0M MAo and 0.32 mg of [(Me3Si)2N CoJf C1:+ (0.2ml of 1.60mg in 10ml of toluene solution) into the reactor Added. Heat the reactor to 80°C and introduce ethylene (60psi) to start the reaction. After 10 minutes, the apparatus was rapidly cooled and evacuated. After evaporating toluene, 2 .. 7g of polyethylene was recovered (MW=267200°MWD=2.122) .

実施例3 実施例1と同じ設計の反応器及び一般的手順を用いて、300m1のトルエン、 100 m lのプロピレン、7.0mlの1.0MMAO及び1.35mgの [(Me、Si)2N12ZrC12(10mlのトルエン溶液中13.51を 1m1)を反応器に添加した。反応器を50℃に加熱して、エチレンを送入しく 65psi)、反応を30分間行った後、装置を急速に冷却・排気した。トルエ ンを蒸発させた後、9.3gのエチレン/プロピレン共重合体を回収した(MW =131000. MID・1.837. IR法による短鎖枝分れ数(SCB )=121.7/100OC)。Example 3 Using the same reactor design and general procedure as in Example 1, 300 ml of toluene, 100ml propylene, 7.0ml 1.0MMAO and 1.35mg [(Me,Si)2N12ZrC12 (13.51 in 10 ml toluene solution) 1 ml) was added to the reactor. Heat the reactor to 50°C and introduce ethylene. After the reaction was run for 30 minutes, the apparatus was rapidly cooled and evacuated. Toluet After evaporation of the ethylene/propylene copolymer, 9.3 g of ethylene/propylene copolymer was recovered (MW =131000. MID・1.837. Short chain branching number (SCB) by IR method )=121.7/100OC).

実施例4 実施例1と同じ設計の反応器及び一般的手順を用いて、300m1のトルエン、 100m1のプロピレン、7.0mlの1.0MMAO及び1.6mgの[(M e、5i)2N]2BfC1z (10mlのトルエン溶液中16mgを1m1 )を反応器に添加した。反応器を80℃に加熱して、エチレンを送入しく60p si)、反応を30分間行った後、装置を急速に冷却・排気した。トルエンを蒸 発させた後、8.2gのエチレン/プロピレン共重合体を回収した(MW=80 700. MWD=1.537. IRによる5CB=89.3/100OC) 。Example 4 Using the same reactor design and general procedure as in Example 1, 300 ml of toluene, 100 ml of propylene, 7.0 ml of 1.0 MMAO and 1.6 mg of [(M e, 5i) 2N] 2BfC1z (16 mg in 10 ml toluene solution 1 ml ) was added to the reactor. Heat the reactor to 80°C and introduce 60p of ethylene. si) After the reaction was carried out for 30 minutes, the apparatus was rapidly cooled and evacuated. Steaming toluene After evaporation, 8.2 g of ethylene/propylene copolymer was recovered (MW=80 700. MWD=1.537. 5CB by IR = 89.3/100OC) .

実施例1と同し設計の反応器及び一般的手順を用いて、300m1のトルエン、 100m1の1−ブテン、7.0mlの1. OMMAO及び1.35mgの[ (Me、5i)2N]2ZrC12(10mlのトルエン溶液中13.5mgを 1)1)を反応器に添加した。反応器を80℃に加熱して、エチレンを送入しく 60psi)、反応を30分間行った後、装置を急速に冷却・排気した。トルエ ンを蒸発させた後、4.3gのエチレン/ブテン共重合体を回収した(MW=9 1100. MWD=1.643. ”C−NMRl、:、 ヨルSCB・51 .4/100OC)。Using the same reactor design and general procedure as in Example 1, 300 ml of toluene, 100 ml of 1-butene, 7.0 ml of 1. OMMAO and 1.35 mg of [ (Me, 5i)2N]2ZrC12 (13.5 mg in 10 ml toluene solution) 1) 1) was added to the reactor. Heat the reactor to 80°C and introduce ethylene. 60 psi) for 30 minutes, then the apparatus was rapidly cooled and evacuated. Toluet After evaporation of the ethylene/butene copolymer, 4.3 g of ethylene/butene copolymer was recovered (MW=9 1100. MWD=1.643. "C-NMRl, :, Yoru SCB・51 .. 4/100OC).

実施例6 実施例1と同し設計の反応器及び一般的手順を用いて、300m1のトルエン、 100m1の1−ブテン、7.0mlの1.OMy^0及び1.6mgの[(M esSi)2N]JfCIz (10mlのトルエン溶液中16mgを1m1) を反応器に添加した。反応器を80℃に加熱して、エチレンを送入しく60ps i)、反応を30分間行った後、装置を急速に冷却・排気した。トルエンを蒸発 させた後、9.3gのエチレン/ブテン共重合体を回収した(MW=70800 . MWD=1.710. ”C−NMRi、−ヨル5CB=46.8/100 OC)。Example 6 Using the same reactor design and general procedure as in Example 1, 300 ml of toluene, 100 ml of 1-butene, 7.0 ml of 1. OMy^0 and 1.6 mg [(M esSi)2N]JfCIz (16mg in 1ml of 10ml toluene solution) was added to the reactor. Heat the reactor to 80°C and feed ethylene at 60 ps. i) After running the reaction for 30 minutes, the apparatus was rapidly cooled and evacuated. evaporate toluene After that, 9.3 g of ethylene/butene copolymer was recovered (MW=70800 .. MWD=1.710. "C-NMRi, -Yor5CB=46.8/100 OC).

実施例7 実施例1と同じ設計の反応器及び一般的手順を用いて、300m1のトルエン、 100m1の1−ヘキセン、7.0mlの1.OMMAO及び1.35mgの[ (Me3Si)2N]2ZrC12(10mlのトルエン溶液中13.5ωgを 1m1)を反応器に添加した。反応器を80℃に加熱して、エチレンを送太しく 60psi)、反応を30分間行った後、装置を急速に冷却・排気した。トール エンを蒸発させた後、13.9gのエチレン/ヘキセン共重合体を回収した(蓋 ’I=111200. l!1D=1.782. IRによる5CB=32.2 /100OC)。Example 7 Using the same reactor design and general procedure as in Example 1, 300 ml of toluene, 100 ml of 1-hexene, 7.0 ml of 1. OMMAO and 1.35 mg of [ (Me3Si)2N]2ZrC12 (13.5ωg in 10ml toluene solution) 1 ml) was added to the reactor. Heat the reactor to 80℃ and pump ethylene thickly. 60 psi) for 30 minutes, then the apparatus was rapidly cooled and evacuated. Thor After evaporating the ene, 13.9 g of ethylene/hexene copolymer was recovered (with lid). 'I=111200. l! 1D=1.782. 5CB by IR = 32.2 /100OC).

実施例8 実施例1と同じ設計の反応器及び一般的手順を用いて、300m1のトルエン、 100m1の1−ヘキセン、7.0mlの1.OMMAO及び1.6mgの[( 11e3.5l)2Nコ2tlfc12 (10mlのトルエン溶液中16mg を1m1)を反応器に添加した。反応器を50℃に加熱して、エチレンを送入し く65psi)、反応を30分間行った後、装置を急速に冷却・排気した。トル エンを蒸発させた後、8.7gのエチレン/ヘキセン共重合体を回収した(li l=2367(to、 11tD・1.780. IRによる5CB=20.1 /100OC)。Example 8 Using the same reactor design and general procedure as in Example 1, 300 ml of toluene, 100 ml of 1-hexene, 7.0 ml of 1. OMMAO and 1.6 mg [( 11e3.5l) 2N co2tlfc12 (16mg in 10ml toluene solution 1 ml) was added to the reactor. The reactor was heated to 50°C and ethylene was introduced. After 30 minutes of reaction (65 psi), the apparatus was rapidly cooled and evacuated. Tor After evaporating the ene, 8.7 g of ethylene/hexene copolymer was recovered (li l = 2367 (to, 11tD・1.780. 5CB by IR = 20.1 /100OC).

実施例9 実施例1と同じ設計の反応器及び一般的手順を用いて、100m1のトルエン、 200m1のプロピレン、10.0mlの1.OMMAO及び10m1トルエン 中の[(MesSi)2N]zZrc128.3mgを反応器に添加した。反応 器を30℃に加熱して、反応を3時間行った後、装置を急速に冷却・排気した。Example 9 Using the same reactor design and general procedure as in Example 1, 100 ml of toluene, 200 ml of propylene, 10.0 ml of 1. OMMAO and 10ml toluene 128.3 mg of [(MesSi)2N]zZrc was added to the reactor. reaction The vessel was heated to 30°C and the reaction was carried out for 3 hours, after which time the apparatus was rapidly cooled and evacuated.

トルエンを蒸発させた後、3.2gのアイソタクチックポリプロピレンを回収し た(Mf=95500. MWD=1.758. ”C−NMRで測定したとこ ろ1000単量体単位当り40個の鎖欠陥をもつと90%(m)アイソタクチッ ク、融点146℃)。After evaporating the toluene, 3.2 g of isotactic polypropylene was recovered. (Mf=95500.MWD=1.758.”As measured by C-NMR With 40 chain defects per 1000 monomer units, 90% (m) isotactic (melting point: 146°C).

実施例10 重合を最大300℃の温度及び最大2500barの圧力で重合が行えるように 設備された、100m1撹拌式ステンレス製オートクレーブ中で行った。反応器 を脱気し、窒素でパージし、エチレンでパージして202℃に加熱した。コモノ マーの1−ヘキセン(75ml)をエチレン加圧下で反応器に添加した。[(M e3Si)2N]2Zrc12の保存溶液を、トルエン25m1に当該遷移金属 化合物7.6mgを溶解して調製した。Example 10 Polymerization can be carried out at temperatures up to 300°C and pressures up to 2500 bar. The experiments were carried out in a 100 ml stirred stainless steel autoclave equipped with the following equipment. reactor was degassed, purged with nitrogen, purged with ethylene and heated to 202°C. Komono 1-hexene (75 ml) was added to the reactor under ethylene pressure. [(M e3Si)2N]2Zrc12 in 25 ml of toluene. It was prepared by dissolving 7.6 mg of the compound.

試験溶液は、上記保存溶液2.5mlを10.0mlの1.0M MAO溶液に 加えることによって調製した。上記試験溶液(0,43m1)を窒素圧で定容積 注入管に移した。オートラリーブをエチレンで1792barに加圧し、180 0rpmで撹拌した。The test solution was prepared by adding 2.5 ml of the above stock solution to 10.0 ml of 1.0M MAO solution. Prepared by adding. Constant volume of the above test solution (0.43ml) under nitrogen pressure. Transferred to injection tube. Autolave was pressurized with ethylene to 1792 bar and 180 bar Stirred at 0 rpm.

過圧で上記試験溶液(0,43m1)をオートクレーブに注入したが、その際9 ℃の温度上昇が観察された。温度及び圧力を120秒間にわたって連続的に記録 し、120秒後にオートクレーブの内容物を急速に排気して受け器に移した。The above test solution (0.43 ml) was injected into the autoclave under overpressure; A temperature increase of 10°C was observed. Continuously records temperature and pressure for 120 seconds After 120 seconds, the contents of the autoclave were rapidly evacuated and transferred to a receiver.

反応器をキシレンで洗浄して残留ポリマーをすべて回収した。この洗浄物を、反 応器の排気時に放出されたポリマーと混合した。アセトンを添加して混合物から ポリマーを析出させたところ、1.3gのエチレン/ヘキセン共重合体が得られ た(MW=42000. MID・2.07. IRによるSCB・8.9/1 00OC)。The reactor was flushed with xylene to recover any residual polymer. This washing product is It mixed with the polymer released when the reactor was evacuated. From the mixture by adding acetone When the polymer was precipitated, 1.3 g of ethylene/hexene copolymer was obtained. (MW=42000.MID・2.07.SCB・8.9/1 by IR 00OC).

実施例11 実施例10に記載したものと同−設計の反応器を用いて、反応器を脱気し、窒素 でパージし、エチレンでパージして199℃に加熱した。コモノマーの1−ヘキ セン(75ml)をエチレン加圧下で反応器に添加した。[(Me qsi)  2N] 2BfCbの保存溶液は、トルエン25m1に当該遷移金属化合物9. 0mgを溶解して調製した。試験溶液は、上記保存溶液2.5mlを10.0m lの1.OM MAQ溶液に加えることによって調製した。上記試験溶液(0, 43m1)を窒素圧で定容積注入管に移した。オートクレーブをエチレンで18 31barに加圧し、1800rpmで撹拌した。過圧で上記試験溶液をオート クレーブに注入したが、その際7℃の温度上昇が観察された。温度及び圧力を1 20秒間にわたって連続的に記録し、120秒後にオートクレーブの内容物を急 速に排気して受け器に移した。反応器をキシレンで洗浄して残留ポリマーをすべ て回収した。この洗浄物を、反応器の排気時に放出されたポリマーと混合した。Example 11 Using a reactor of the same design as described in Example 10, the reactor was degassed and flushed with nitrogen. Purged with ethylene, heated to 199°C. Comonomer 1-hex Sen (75 ml) was added to the reactor under ethylene pressure. [(Meqsi) 2N] 2BfCb stock solution is 9.5ml of the transition metal compound in 25ml of toluene. It was prepared by dissolving 0 mg. The test solution was 2.5ml of the above stock solution in 10.0ml 1 of l. Prepared by adding to OMMAQ solution. The above test solution (0, 43 ml) was transferred to a constant volume injection tube under nitrogen pressure. autoclave with ethylene It was pressurized to 31 bar and stirred at 1800 rpm. Automate the above test solution with overpressure A temperature increase of 7° C. was observed during the injection into theclave. Temperature and pressure 1 Continuously record for 20 seconds, and after 120 seconds, the contents of the autoclave are It was quickly evacuated and transferred to a receiver. Clean the reactor with xylene to remove any residual polymer. It was collected. This wash was mixed with the polymer released during reactor venting.

アセトンを添加して混合物からポリマーを析出させたところ、0.5gのエチレ ン/ヘキセン共重合体が得られた(M?=57000゜MWD=2.22. I Rによる5CB=8.0/100OC)。When acetone was added to precipitate the polymer from the mixture, 0.5 g of ethylene was added. A hexene/hexene copolymer was obtained (M?=57000゜MWD=2.22.I 5CB by R=8.0/100OC).

本発明を、好ましい具体的態様について言及して説明してきた。当業者はこの開 示を読む際に種々の変更又は修正に思い至るであろうが、それらは本明細書及び 請求の範囲に記載された本発明の技術的範囲及び思想から逸脱するものではない 。The invention has been described with reference to preferred embodiments. Those skilled in the art will Various changes or modifications may occur to you upon reading the specification, but they do not apply to this specification and This does not deviate from the technical scope and spirit of the invention as set forth in the claims. .

国際調査報告 tmm^−一・I″a@−・l+IM/IIQQ1ノnogtcフロントページ の続き (51) Int、 C1,5識別記号 庁内整理番号CO8F 210102 Iinternational search report tmm^-1・I″a@-・l+IM/IIQQ1ノnogtc front page Continued (51) Int, C1,5 identification code Office reference number CO8F 210102 I

Claims (17)

【特許請求の範囲】[Claims] 1.下記一般式で表される化合物。 ▲数式、化学式、表等があります▼ 上記式中、yは1であって窒素原子間の橋架け基の存在を表すものであり、zは 2−yであり、Mはジルコニウム、ハフニウム又はチタンであり、Nは3つの置 換基を有する窒素原子であり、各Xは独立にハライド、ヒドリド、置換もしくは 未置換C1〜C30炭化水素、アルコキシド、アリールオキシド、アミド、アリ ールアミド、ホスフィド又はアリールホスフィドのような一価陰イオン性配位子 であり、Tは第IVA族もしくは第VIA族元素を含有する未置換炭化水素及び 置換炭化水素からなる群から選択される共有結合橋架け基であり、各Rは独立に 一つの枝分れを有する炭素原子数4〜30の炭化水素、複数の枝分れを有する炭 素原子数4〜30の炭化水素、ハロゲン基、アミド基、ホスフィド基、シリル基 、アルコキシ基、アルキルボライド基、C1〜C30炭化水素で置換された第I VA族メタロイド基、及び置換C1〜C30炭化水素基であって1又はそれ以上 の水素原子がハロゲン基、アミド基、ホスフィド基、アルコキシ基又はその他の ルイス酸もしくはルイス塩基性官能基を含む基によって置換されているC1〜C 30炭化水素基、からなる群から選択される基である。1. A compound represented by the general formula below. ▲Contains mathematical formulas, chemical formulas, tables, etc.▼ In the above formula, y is 1 and represents the presence of a bridging group between nitrogen atoms, and z is 2-y, M is zirconium, hafnium or titanium, and N is three positions. is a nitrogen atom having a substituent, and each X is independently a halide, a hydride, a substituted or Unsubstituted C1-C30 hydrocarbons, alkoxides, aryloxides, amides, ants monovalent anionic ligands such as arylamides, phosphides or aryl phosphides and T is an unsubstituted hydrocarbon containing a Group IVA or Group VIA element; a covalent bridging group selected from the group consisting of substituted hydrocarbons, each R independently Hydrocarbons having 4 to 30 carbon atoms with one branch, carbons with multiple branches Hydrocarbon having 4 to 30 atoms, halogen group, amide group, phosphide group, silyl group , an alkoxy group, an alkylboride group, a C1-C30 hydrocarbon substituted Group VA metalloid group, and one or more substituted C1-C30 hydrocarbon groups hydrogen atom is a halogen group, amide group, phosphide group, alkoxy group or other C1-C substituted by a group containing a Lewis acid or Lewis basic functional group 30 hydrocarbon groups. 2.α−オレフィン重合用の触媒系にして、下記成a)請求項1記載の下記一般 式の化合物▲数式、化学式、表等があります▼ 上記式中、yは1又は0であってそれぞれ窒素原子間の橋架け基の存在の有無を 表すものであり、zは2−yであり、Mはジルコニウム、ハフニウム又はチタン であり、Nは3つの置換基を有する窒素原子であり、各Xは独立にハライド、ヒ ドリド、置換もしくは未置換C1〜C30炭化水素、アルコキシド、アリールオ キシド、アミド、アリールアミド、ホスフィド又はアリールホスフィドのような 一価陰イオン性配位子であり、Tは第IVA族もしくは第VIA族元素を含有す る未置換炭化水素及び置換炭化水素からなる群から選択される共有結合橋架け基 であり、各Rは独立に一つの枝分れを有する炭素原子数4〜30の炭化水素、複 数の枝分れを有する炭素原子数4〜30の炭化水素、ハロゲン基、アミド基、ホ スフィド基、シリル基、アルコキシ基、アルキルボライド基、C1〜C30炭化 水素で置換された第IVA族メタロイド基、及び置換C1〜C30炭化水素基で あって1又はそれ以上の水素原子がハロゲン基、アミド基、ホスフィド基、アル コキシ基又はその他のルイス酸もしくはルイス塩基性官能基を含む基によって置 換されているC1〜C30炭化水素基、からなる群から選択される基である、及 びb)アルモキサン を含んでなる触媒系。2. As a catalyst system for α-olefin polymerization, the following composition a) The following general according to claim 1: Compounds with the formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ In the above formula, y is 1 or 0, and each indicates the presence or absence of a bridging group between nitrogen atoms. z is 2-y, M is zirconium, hafnium or titanium , N is a nitrogen atom with three substituents, and each X is independently a halide, a hydrogen atom, Dolide, substituted or unsubstituted C1-C30 hydrocarbon, alkoxide, aryl such as oxides, amides, arylamides, phosphides or arylphosphides. It is a monovalent anionic ligand, and T is a group IVA or group VIA element. a covalent bridging group selected from the group consisting of unsubstituted hydrocarbons and substituted hydrocarbons; and each R independently represents a hydrocarbon having 4 to 30 carbon atoms having one branch; Hydrocarbons having 4 to 30 carbon atoms with several branches, halogen groups, amide groups, Suphide group, silyl group, alkoxy group, alkylboride group, C1-C30 carbonization Group IVA metalloid groups substituted with hydrogen and substituted C1-C30 hydrocarbon groups and one or more hydrogen atoms are halogen group, amide group, phosphide group, substituted by a group containing a Coxy group or other Lewis acid or Lewis basic functional group. is a group selected from the group consisting of a C1-C30 hydrocarbon group, and b) Alumoxane A catalyst system comprising. 3.請求項1記載の化合物又は請求項2記載の系において、各Rが独立にハロゲ ン基、アミド基、ホスフィド基、シリル基、アルコキシ基、アルキルボライド基 、C1〜C30炭化水素で置換された第IVA族メタロイド基、及び置換C1〜 C30炭化水素基であって1又はそれ以上の水素原子がハロゲン基、アミド基、 ホスフィド基、アルコキシ基又はその他のルイス酸もしくはルイス塩基性官能基 を含む基によって置換されているC1〜C30炭化水素基からなる群から選択さ れる基であることを特徴とする化合物又は系。3. In the compound according to claim 1 or the system according to claim 2, each R independently represents a halogen. ion group, amide group, phosphide group, silyl group, alkoxy group, alkylboride group , Group IVA metalloid groups substituted with C1-C30 hydrocarbons, and substituted C1- A C30 hydrocarbon group in which one or more hydrogen atoms are a halogen group, an amide group, Phosphide group, alkoxy group or other Lewis acid or Lewis basic functional group selected from the group consisting of C1-C30 hydrocarbon groups substituted by a group containing A compound or system characterized by being a group. 4.請求項1乃至請求項3のいずれか1項記載の化合物又は系において、Tが第 IVA族原子を含有する共有結合橋架け基であることを特徴とする化合物又は系 。4. The compound or system according to any one of claims 1 to 3, wherein T is Compounds or systems characterized by being covalent bridging groups containing group IVA atoms . 5.請求項1乃至請求項4のいずれか1項記載の化合物又は系において、少なく とも1つのRがケイ素含有基であることを特徴とする化合物又は系。5. A compound or system according to any one of claims 1 to 4, comprising at least A compound or system characterized in that both R's are silicon-containing groups. 6.請求項1乃至請求項5のいずれか1項記載の化合物又は系において、少なく とも1つのXが窒素含有基であることを特徴とする化合物又は系。6. A compound or system according to any one of claims 1 to 5, comprising at least A compound or system characterized in that both X's are nitrogen-containing groups. 7.請求項1乃至請求項6のいずれか1項記載の化合物又は系において、各Xが 独立にヒドリド、アルコキシド、アミド、炭化水素及びハライドからなる群から 選択されることを特徴とする化合物又は系。7. In the compound or system according to any one of claims 1 to 6, each X is independently from the group consisting of hydrides, alkoxides, amides, hydrocarbons and halides A compound or system characterized in that it is selected. 8.請求項7記載の化合物又は系において、少なくとも1つのXがヒドリド、炭 化水素、アミド及びハライドからなる群から選択されることを特徴とする化合物 又は系。8. 8. The compound or system according to claim 7, wherein at least one X is hydride, carbon Compound selected from the group consisting of hydrogen hydride, amide and halide Or system. 9.請求項1乃至請求項8のいずれか1項記載の化合物又は系において、Mがジ ルコニウム又はハフニウムであることを特徴とする化合物又は系。9. In the compound or system according to any one of claims 1 to 8, M is A compound or system characterized in that it is ruconium or hafnium. 10.請求項2乃至請求項9のいずれか1項記載の触媒系において、前記アルモ キサンが、トリメチルアルミニウム、トリエチルアルミニウム及びトリイソブチ ルアルミニウムからなる群から選択されるアルミニウムアルキルの加水分解で得 られることを特徴とする触媒系。10. The catalyst system according to any one of claims 2 to 9, wherein the alum xane is trimethylaluminum, triethylaluminum and triisobutyl obtained by hydrolysis of an aluminum alkyl selected from the group consisting of A catalyst system characterized by: 11.請求項2乃至請求項15のいずれか1項記載の触媒系において、アルミニ ウム:遷移金属比が1:1〜20000:1であることを特徴とする触媒系。11. The catalyst system according to any one of claims 2 to 15, wherein aluminum A catalyst system characterized in that the ratio of aluminum to transition metal is 1:1 to 20,000:1. 12.ポリα−オレフィンの製造方法にして、a)請求項1乃至請求項11のい ずれか1項記載の化合物又は系を含んでなる触媒として活性な組合せに1又はそ れ以上のα−オレフィンモノマーを接触させる段階、及び b)ポリα−オレフィンを回収する段階を含んでなる方法。12. A method for producing polyα-olefin, comprising: a) the method according to claims 1 to 11; A catalytically active combination comprising a compound or system according to any one of the claims contacting the α-olefin monomers, and b) A method comprising the step of recovering poly-alpha-olefins. 13.請求項12記載の方法において、製造されるポリα−オレフィンがアイソ タクチックポリプロピレンであり、前記a)のモノマーがプロピレンであること を特徴とする方法。13. In the method according to claim 12, the polyα-olefin produced is It is tactical polypropylene, and the monomer in a) above is propylene. A method characterized by: 14.請求項12記載の方法において、製造されるポリα−オレフィンがポリエ チレン又はエチレンと炭素原子数3〜20のα−オレフィンの共重合体であり、 前記a)のモノマーがエチレン又はエチレンと炭素原子数3〜20のα−オレフ ィンからなることを特徴とする方法。14. In the method according to claim 12, the polyα-olefin produced is a polyester. A copolymer of tyrene or ethylene and an α-olefin having 3 to 20 carbon atoms, The monomer a) is ethylene or ethylene and α-oleph having 3 to 20 carbon atoms. A method characterized in that the method comprises: 15.請求項12、請求項13又は請求項14記載の方法において、重合時間が 1〜6時間であり、及び/又は圧力が0.13kPa(0.019psi)〜3 44,75MPa(50000psi)であり、及び/又は反応温度を−100 ℃〜300℃に維持することを特徴とする方法。15. In the method according to claim 12, claim 13 or claim 14, the polymerization time is 1 to 6 hours and/or the pressure is 0.13 kPa (0.019 psi) to 3 44,75 MPa (50,000 psi) and/or the reaction temperature is -100 A method characterized by maintaining the temperature between °C and 300 °C. 16.請求項15記載の方法において、製造されるポリマーが1.5〜3のMW Dを有することを特徴とする方法。16. 16. The method of claim 15, wherein the polymer produced has a MW of 1.5 to 3. A method characterized by having D. 17.請求項15又は請求項16記載の方法において、製造されるポリマーが5 〜150のSCBを有することを特徴とする方法。17. In the method according to claim 15 or 16, the polymer produced is 5 A method characterized in having an SCB of ~150.
JP50287892A 1990-12-27 1991-12-26 Catalyst system for production of amide transition metal compounds and isotactic polypropylene Expired - Fee Related JP3255173B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US63498790A 1990-12-27 1990-12-27
US634,987 1990-12-27
PCT/US1991/009676 WO1992012162A1 (en) 1990-12-27 1991-12-26 An amido transition metal compound and a catalyst system for the production of isotactic polypropylene

Publications (2)

Publication Number Publication Date
JPH06510801A true JPH06510801A (en) 1994-12-01
JP3255173B2 JP3255173B2 (en) 2002-02-12

Family

ID=24545953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50287892A Expired - Fee Related JP3255173B2 (en) 1990-12-27 1991-12-26 Catalyst system for production of amide transition metal compounds and isotactic polypropylene

Country Status (8)

Country Link
US (1) US5318935A (en)
EP (1) EP0569388B1 (en)
JP (1) JP3255173B2 (en)
AT (1) ATE135358T1 (en)
AU (1) AU9136391A (en)
DE (1) DE69117982T2 (en)
ES (1) ES2085000T3 (en)
WO (1) WO1992012162A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034961A1 (en) * 1997-02-07 1998-08-13 Mitsui Chemicals, Inc. Olefin polymerization catalyst and process for the production of olefin polymers
WO1999054364A1 (en) * 1998-04-16 1999-10-28 Mitsui Chemicals, Inc. Catalyst for olefin polymerization and method of polymerizing olefin

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265338B1 (en) * 1989-09-13 2001-07-24 Exxon Chemical Patents, Inc. Monocyclopentadienyl titanium metal compounds for ethylene-α-olefin copolymer production catalysts
ES2108861T3 (en) * 1991-11-25 1998-01-01 Exxon Chemical Patents Inc POLYTONIC CATALYTIC COMPOSITIONS OF TRANSITIONAL METALS.
JP3332051B2 (en) * 1992-12-18 2002-10-07 出光興産株式会社 Polymerization catalyst and method for producing polymer using the catalyst system
BE1006453A3 (en) * 1992-12-21 1994-08-30 Dsm Nv CATALYST AND PROCESS FOR A ZIEGLER polymerization.
DE4324685A1 (en) * 1993-07-22 1995-01-26 Wacker Chemie Gmbh Organosiloxane-bound transition metal complexes
US5486585A (en) * 1993-08-26 1996-01-23 Exxon Chemical Patents Inc. Amidosilyldiyl bridged catalysts and method of polymerization using said catalysts.
NL9400919A (en) * 1994-06-07 1996-01-02 Specs B V Novel organometallic compounds and method for polymerizing alkenes with the use of these organometallic compounds as catalysts
NL9401515A (en) * 1994-09-19 1996-05-01 Specs And Biospecs Bv Novel organometallic compounds and method for polymerizing alkenes with the use of said organometallic compounds as catalysts
AU2579895A (en) * 1994-06-07 1996-01-04 Specs And Biospecs B.V. Novel organo-metallic compounds, methods for preparing same, and a method for the polymerization of unsaturated hydrocarbons using said organo-metallic compounds as catalysts, as well as novel semi-products and catalyst preparations
US5707913A (en) * 1994-06-15 1998-01-13 Basf Aktiengesellschaft Amidinato catalyst systems for the polymerization of olefins
KR0151873B1 (en) * 1994-10-13 1998-10-15 김영욱 Metallocene compounds
US6440745B1 (en) 1994-10-18 2002-08-27 Symyx Technologies Combinatorial synthesis and screening of organometallic compounds and catalysts
US6419881B1 (en) 1994-10-18 2002-07-16 Symyx Technologies, Inc. Combinatorial arrays of organometallic compounds and catalysts
US5985356A (en) * 1994-10-18 1999-11-16 The Regents Of The University Of California Combinatorial synthesis of novel materials
US6030917A (en) 1996-07-23 2000-02-29 Symyx Technologies, Inc. Combinatorial synthesis and analysis of organometallic compounds and catalysts
US6897272B1 (en) 1995-01-24 2005-05-24 E.I. Du Pont De Nemours And Company α-olefins and olefin polymers and processes therefor
US5880241A (en) * 1995-01-24 1999-03-09 E. I. Du Pont De Nemours And Company Olefin polymers
CN100357327C (en) * 1995-01-24 2007-12-26 纳幕尔杜邦公司 'Alpha'-olefines and olefin polymers and processes therefor
US5939347A (en) * 1995-01-25 1999-08-17 W.R. Grace & Co. -Conn. Supported catalytic activator
WO1996027439A1 (en) * 1995-03-08 1996-09-12 Shell Internationale Research Maatschappij B.V. Bridged bis-amido group 4 metal compounds in a catalyst composition
US5527752A (en) * 1995-03-29 1996-06-18 Union Carbide Chemicals & Plastics Technology Corporation Catalysts for the production of polyolefins
US6143682A (en) * 1995-06-07 2000-11-07 Exxon Chemical Patents Inc. Bimetallocyclic transition metal catalyst systems
US6063633A (en) 1996-02-28 2000-05-16 The University Of Houston Catalyst testing process and apparatus
WO1997048735A1 (en) 1996-06-17 1997-12-24 Exxon Chemical Patents Inc. Mixed transition metal catalyst systems for olefin polymerization
KR100361088B1 (en) * 1996-06-27 2003-02-17 삼성종합화학주식회사 Chelate catalyst for polymerization of olefin and preparation method thereof
US6720186B1 (en) 1998-04-03 2004-04-13 Symyx Technologies, Inc. Method of research for creating and testing novel catalysts, reactions and polymers
BR9808578A (en) * 1997-02-07 2000-05-30 Exxon Chemical Patents Inc Propylene polymers incorporating polyethylene macromers
US5851945A (en) * 1997-02-07 1998-12-22 Exxon Chemical Patents Inc. Olefin polymerization catalyst compositions comprising group 5 transition metal compounds stabilized in their highest metal oxidation state
US6100354A (en) * 1997-02-24 2000-08-08 Exxon Chemical Patents Inc. Olefin copolymers from bridged bis(arylamido) Group 4 catalyst compounds
US6228794B1 (en) 1997-03-14 2001-05-08 University Of Iowa Research Foundation Cationic group 13 complexes incorporating bidentate ligands as polymerization catalysts
US5777120A (en) * 1997-03-14 1998-07-07 University Of Iowa Research Foundation Cationic aluminum alkyl complexes incorporating amidinate ligands as polymerization catalysts
WO1998045039A1 (en) * 1997-04-04 1998-10-15 The Regents Of The University Of California Polymerization catalysts containing electron-withdrawing amide ligands
US5889128A (en) * 1997-04-11 1999-03-30 Massachusetts Institute Of Technology Living olefin polymerization processes
US6030918A (en) * 1997-06-25 2000-02-29 The Regents Of The University Of California Gallium based low-interaction anions
US6136748A (en) * 1997-07-02 2000-10-24 Union Carbide Chemicals & Plastics Technology Corporation Catalyst composition for the polymerization of olefins
US6103657A (en) 1997-07-02 2000-08-15 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
US6268447B1 (en) 1998-12-18 2001-07-31 Univation Technologies, L.L.C. Olefin polymerization catalyst
US6096676A (en) * 1997-07-02 2000-08-01 Union Carbide Chemicals & Plastics Technology Corporation Catalyst for the production of olefin polymers
IL122115A (en) 1997-07-27 2007-06-17 Technion Res & Dev Foundation Process for polymerizing alpha-olefins and polymers, copolymers and elastomers prepared thereby
US6184327B1 (en) 1997-12-10 2001-02-06 Exxon Chemical Patents, Inc. Elastomeric propylene polymers
US6197910B1 (en) 1997-12-10 2001-03-06 Exxon Chemical Patents, Inc. Propylene polymers incorporating macromers
WO1999052631A1 (en) * 1998-04-15 1999-10-21 Shell Internationale Research Maatschappij B.V. CATALYST SYSTEM FOR α-OLEFIN OLIGOMERIZATION
KR100342541B1 (en) * 1998-04-16 2002-06-28 나까니시 히로유끼 Olefin polymerization catalyst and polymerization process
BR9908887A (en) 1998-05-01 2000-11-21 Exxon Chemical Patents Inc Catalytic metal complexes containing tridentate ligand for olefin polymerization
JP5407099B2 (en) 1998-08-26 2014-02-05 エクソンモービル・ケミカル・パテンツ・インク Branched polypropylene composition
CA2248463A1 (en) 1998-09-28 2000-03-28 Scott Collins Iminophosphonamide complexes for olefin polymerization
WO2000018808A1 (en) * 1998-09-30 2000-04-06 Exxon Chemical Patents Inc. Cationic group 3 catalyst system
US6303719B1 (en) 1998-12-18 2001-10-16 Univation Technologies Olefin polymerization catalyst system
US6271325B1 (en) 1999-05-17 2001-08-07 Univation Technologies, Llc Method of polymerization
US6300439B1 (en) 1999-11-08 2001-10-09 Univation Technologies, Llc Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6475946B1 (en) * 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Olefin polymerization catalysis with aryl substituted carbenium cationic complexes
US6271323B1 (en) 1999-10-28 2001-08-07 Univation Technologies, Llc Mixed catalyst compounds, catalyst systems and their use in a polymerization process
CA2387877C (en) * 1999-10-22 2006-12-19 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US6624107B2 (en) 1999-10-22 2003-09-23 Univation Technologies, Llc Transition metal catalyst compounds having deuterium substituted ligand and catalyst systems thereof
US6476164B1 (en) 1999-10-22 2002-11-05 Exxonmobil Chemical Patents Inc. Carbenium cationic complexes suitable for polymerization catalysts
US6265505B1 (en) 1999-11-18 2001-07-24 Univation Technologies, Llc Catalyst system and its use in a polymerization process
US6274684B1 (en) 1999-10-22 2001-08-14 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6417304B1 (en) 1999-11-18 2002-07-09 Univation Technologies, Llc Method of polymerization and polymer produced therefrom
US6380328B1 (en) 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US6300438B1 (en) 1999-10-22 2001-10-09 Univation Technolgies, Llc Hafnium transition metal catalyst compounds, catalyst systems and their use in a polymerization process
AU2407800A (en) 1999-10-28 2001-05-08 University Of Maryland At College Park, The Stereospecific living polymerization of olefins by a novel ziegler-natta catalyst composition
US6822057B2 (en) * 1999-12-09 2004-11-23 Exxon Mobil Chemical Patents Inc. Olefin polymerization catalysts derived from Group-15 cationic compounds and processes using them
US6489480B2 (en) 1999-12-09 2002-12-03 Exxonmobil Chemical Patents Inc. Group-15 cationic compounds for olefin polymerization catalysts
US6281306B1 (en) * 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
EP1250362B1 (en) 1999-12-20 2008-05-14 ExxonMobil Chemical Patents Inc. Processes for the preparation polyolefin resins using supported ionic catalysts
US7067603B1 (en) 1999-12-22 2006-06-27 Exxonmobil Chemical Patents Inc. Adhesive alpha-olefin inter-polymers
CA2395532A1 (en) 1999-12-22 2001-06-28 A. G. Karandinos Polypropylene-based adhesive compositions
AU2001228778A1 (en) * 2000-01-27 2001-08-07 Technion Research And Development Foundation Ltd. Process for the production of stereoregular polymers and elastomers of alpha-olefins and certain novel catalysts therefor
US6710006B2 (en) 2000-02-09 2004-03-23 Shell Oil Company Non-symmetrical ligands and catalyst systems thereof for ethylene oligomerization to linear alpha olefins
KR20010082913A (en) * 2000-02-22 2001-08-31 박찬구 Preparation of polyisobutene by bis(arylamido)group 4 catalyst compounds
US6809209B2 (en) 2000-04-07 2004-10-26 Exxonmobil Chemical Patents Inc. Nitrogen-containing group-13 anionic compounds for olefin polymerization
US7078164B1 (en) 2000-06-19 2006-07-18 Symyx Technologies, Inc. High throughput screen for identifying polymerization catalysts from potential catalysts
DE60135502D1 (en) 2000-09-25 2008-10-02 Basell Polyolefine Gmbh PROCESS FOR PREPARING ETHYLENE POLYMERS WITH A BIS-AMID TITANIUM COMPOUND
US7037988B2 (en) 2000-10-03 2006-05-02 Shell Oil Company Process for the co-oligomerisation of ethylene and alpha olefins
JP2004511632A (en) * 2000-10-19 2004-04-15 エクソンモービル・ケミカル・パテンツ・インク Cationic group 3 catalyst system
WO2002059157A2 (en) 2000-10-25 2002-08-01 Exxonmobil Chemical Patents Inc. Cationic catalyst system
WO2002046249A2 (en) 2000-11-07 2002-06-13 Symyx Technologies, Inc. Methods of copolymerizing ethylene and isobutylene and polymers made thereby
EP1406761B1 (en) 2001-06-20 2016-11-02 ExxonMobil Chemical Patents Inc. Polyolefins made by catalyst comprising a noncoordinating anion and articles comprising them
RU2292343C2 (en) * 2001-08-01 2007-01-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Ligands and catalytic systems comprising thereof for oligomerization of ethylene for preparing linear alpha-olefins
US7196148B2 (en) * 2001-10-25 2007-03-27 Exxon Mobil Chemical Patents Inc. Cationic catalyst system
US7199255B2 (en) 2001-12-18 2007-04-03 Univation Technologies, Llc Imino-amide catalysts for olefin polymerization
US7001863B2 (en) 2001-12-18 2006-02-21 Univation Technologies, Llc Monoamide based catalyst compositions for the polymerization of olefins
US6919467B2 (en) 2001-12-18 2005-07-19 Univation Technologies, Llc Imino-amide catalyst compositions for the polymerization of olefins
US6831187B2 (en) 2001-12-18 2004-12-14 Univation Technologies, Llc Multimetallic catalyst compositions for the polymerization of olefins
US6864205B2 (en) 2001-12-18 2005-03-08 Univation Technologies, Llc Heterocyclic-amide catalyst compositions for the polymerization of olefins
AU2003223188A1 (en) * 2002-03-22 2003-10-13 Exxonmobil Chemical Patents Inc. Adhesives
US7091292B2 (en) 2002-04-24 2006-08-15 Symyx Technologies, Inc. Bridged bi-aromatic catalysts, complexes, and methods of using the same
WO2003091262A1 (en) * 2002-04-24 2003-11-06 Symyx Technologies, Inc. Bridged bi-aromatic ligands, complexes, catalysts and processes for polymerizing and poymers therefrom
US7060848B2 (en) * 2002-04-24 2006-06-13 Symyx Technologies, Inc. Bridged bi-aromatic catalysts, complexes, and methods of using the same
AU2003277808A1 (en) * 2002-06-21 2004-01-06 Exxonmobil Chemical Patents Inc. Yttrium-based ethylene polymerization catalysts with bulky amidinate ancillary ligands
US7033560B2 (en) * 2002-08-30 2006-04-25 Air Products And Chemicals, Inc. Single source mixtures of metal siloxides
US7053020B2 (en) 2002-09-25 2006-05-30 Shell Oil Company Catalyst systems for ethylene oligomerisation to linear alpha olefins
US7294681B2 (en) 2002-10-15 2007-11-13 Exxonmobil Chemical Patents Inc. Mutliple catalyst system for olefin polymerization and polymers produced therefrom
US7041759B2 (en) * 2002-11-20 2006-05-09 The University Of Maryland, College Park Method for the preparation of well-defined metal acetamidinate-based catalysts on solid supports
US7183364B2 (en) * 2002-12-20 2007-02-27 University Of Maryland, College Park Process for preparation of polyolefins via degenerative transfer polymerization
US7541412B2 (en) * 2002-12-20 2009-06-02 University Of Maryland, College Park Process for preparation of polyolefins via degenerative transfer polymerization
US7037989B2 (en) * 2003-05-27 2006-05-02 Exxonmobil Chemical Patents Inc. Copolymers of ethylene and/or α-olefins and vicinally disubstituted olefins
US20050014983A1 (en) * 2003-07-07 2005-01-20 De Boer Eric Johannes Maria Process for producing linear alpha olefins
US6967184B2 (en) * 2004-02-17 2005-11-22 Univation Technologies, Llc Fluoroalcohol leaving group for non-metallocene olefin polymerization catalysts
CA2560564C (en) 2004-03-24 2013-07-09 Shell Internationale Research Maatschappij B.V. Transition metal complexes
GB0411742D0 (en) 2004-05-26 2004-06-30 Exxonmobil Chem Patents Inc Transition metal compounds for olefin polymerization and oligomerization
AR049714A1 (en) * 2004-07-13 2006-08-30 Shell Int Research ALFA OLEFINAS LINEAR PREPARATION PROCESS
US7193017B2 (en) * 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
US7256296B2 (en) * 2004-09-22 2007-08-14 Symyx Technologies, Inc. Heterocycle-amine ligands, compositions, complexes, and catalysts
US7387980B2 (en) * 2004-09-22 2008-06-17 Symyx Technologies, Inc. Methods of using heterocycle-amine ligands, compositions, complexes, and catalysts
US7399874B2 (en) * 2004-10-29 2008-07-15 Exxonmobil Chemical Patents Inc. Catalyst compound containing divalent tridentate ligand
US7705157B2 (en) * 2004-12-16 2010-04-27 Symyx Solutions, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
US6987152B1 (en) 2005-01-11 2006-01-17 Univation Technologies, Llc Feed purification at ambient temperature
US7312279B2 (en) * 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
WO2006102106A1 (en) * 2005-03-17 2006-09-28 University Of Maryland, College Park Methods for modulated degenerative transfer living polymerization and isotactic-atactic stereoblock and stereogradient poly(olefins) thereby
WO2006102119A2 (en) * 2005-03-17 2006-09-28 University Of Maryland, College Park Methods for modulated degenerative transfer living polymerization and isotactic-atactic stereoblock and stereogradient poly(olefins) thereby
US7947797B2 (en) 2005-09-14 2011-05-24 Univation Technologies, Llc Method for operating a gas-phase reactor at or near maximum production rates while controlling polymer stickiness
US20070109911A1 (en) * 2005-11-16 2007-05-17 Neubauer Anthony C High speed and direct driven rotating equipment for polyolefin manufacturing
EP1963347B1 (en) 2005-12-14 2011-10-19 ExxonMobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
US7956207B2 (en) * 2006-09-28 2011-06-07 Praxair Technology, Inc. Heteroleptic organometallic compounds
WO2008042182A1 (en) 2006-10-03 2008-04-10 Univation Technologies, Llc Method for preventing catalyst agglomeration based on production rate changes
WO2008042078A1 (en) * 2006-10-03 2008-04-10 Univation Technologies, Llc Effervescent nozzle for catalyst injection
US8281332B2 (en) * 2007-05-02 2012-10-02 Google Inc. Animated video overlays
EP2112175A1 (en) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Activator for metallocenes comprising one or more halogen substituted heterocyclic heteroatom containing ligand coordinated to an alumoxane
TW200936564A (en) * 2007-11-15 2009-09-01 Univation Tech Llc Methods for the removal of impurities from polymerization feed streams
TW200936619A (en) 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
US7910760B2 (en) * 2008-04-15 2011-03-22 Exxonmobil Chemical Patents Inc. Semi-rigid linked diamines, precursors therefor, and transition metal diamido complexes as catalysts for olefin polymerization processes
US20090286944A1 (en) * 2008-05-15 2009-11-19 Symyx Technologies, Inc. Select phenol-heterocycle ligands, metal complexes formed therefrom, and their uses as catalysts
US8394902B2 (en) 2008-07-25 2013-03-12 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
US7973116B2 (en) * 2008-07-25 2011-07-05 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
US8710163B2 (en) 2008-07-25 2014-04-29 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
US8674040B2 (en) * 2008-07-25 2014-03-18 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
CN102731694B (en) 2008-08-01 2015-04-01 埃克森美孚化学专利公司 Catalyst system and process for olefin polymerization
US8580902B2 (en) 2008-08-01 2013-11-12 Exxonmobil Chemical Patents Inc. Catalyst system, process for olefin polymerization, and polymer compositions produced therefrom
RU2515900C2 (en) 2008-12-18 2014-05-20 Юнивейшн Текнолоджиз, Ллк Method of processing nucleating layer of polymerisation reaction
US20120028865A1 (en) 2010-07-28 2012-02-02 Sudhin Datta Viscosity Modifiers Comprising Blends of Ethylene-Based Copolymers
US8378042B2 (en) * 2009-04-28 2013-02-19 Exxonmobil Chemical Patents Inc. Finishing process for amorphous polymers
CN102741303B (en) 2010-01-22 2015-05-06 埃克森美孚化学专利公司 Lubricating oil compositions and method for making them
MY159256A (en) 2010-02-18 2016-12-30 Univation Tech Llc Methods for operating a polymerization reactor
RU2634720C1 (en) 2010-02-22 2017-11-03 Юнивейшн Текнолоджиз, Ллк Catalyst systems and methods for use thereof to produce polyolefin products
US8058461B2 (en) 2010-03-01 2011-11-15 Exxonmobil Chemical Patents Inc. Mono-indenyl transition metal compounds and polymerization therewith
US8722804B2 (en) 2010-04-13 2014-05-13 Univation Technologies, Llc Polymer blends and films made therefrom
WO2012009215A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring static charge on particulates
WO2012009216A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring particle accumulation on reactor surfaces
WO2012015898A1 (en) 2010-07-28 2012-02-02 Univation Technologies, Llc Systems and methods for measuring velocity of a particle/fluid mixture
ES2543432T3 (en) 2010-11-30 2015-08-19 Univation Technologies, Llc Catalyst composition with improved flow characteristics and methods of producing and using it
ES2571737T3 (en) 2010-11-30 2016-05-26 Univation Tech Llc Procedures for the polymerization of olefins with extracted carboxylate metal salts
RU2589055C2 (en) 2010-12-17 2016-07-10 Юнивейшн Текнолоджиз, Ллк Systems and methods of extracting hydrocarbons from polyolefin-containing gaseous blowing product
US9643900B2 (en) 2011-03-25 2017-05-09 Dow Global Technologies Llc Hyperbranched ethylene-based oils and greases
US9637567B2 (en) 2011-05-13 2017-05-02 Univation Technologies, Llc Spray-dried catalyst compositions and polymerization processes employing the same
CN102807580B (en) * 2011-06-03 2015-06-17 中国石油化工股份有限公司 Transition metal compound containing bidentate ligand and application thereof in olefin polymerization
WO2013028283A1 (en) 2011-08-19 2013-02-28 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
KR102022132B1 (en) 2011-11-08 2019-09-17 유니베이션 테크놀로지즈, 엘엘씨 Methods of preparing a catalyst system
BR112014010906B1 (en) 2011-11-08 2020-12-01 Univation Technologies, Llc method for producing a polyolefin
US9012578B2 (en) 2012-04-19 2015-04-21 Exxonmobil Chemical Patents Inc. Blocky ethylene propylene copolymers and methods for making them
EP4039366A1 (en) 2012-12-28 2022-08-10 Univation Technologies, LLC Supported catalyst with improved flowability
WO2014105614A1 (en) 2012-12-28 2014-07-03 Univation Technologies, Llc Methods of integrating aluminoxane production into catalyst production
BR112015016824B1 (en) 2013-01-14 2020-10-06 Univation Technologies, Llc. METHOD TO PRODUCE A CATALYTIC SYSTEM AND POLYMERIZATION PROCESS
WO2014120494A1 (en) 2013-01-30 2014-08-07 Univation Technologies, Llc Processes for making catalyst compositions having improved flow
RU2654061C2 (en) 2013-02-07 2018-05-16 ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи Production of polyolefin
US9718900B2 (en) 2013-03-15 2017-08-01 Univation Technologies, Llc Ligands for catalysts
JP6360549B2 (en) 2013-03-15 2018-07-18 ユニベーション・テクノロジーズ・エルエルシー Tridentate nitrogen-based ligands for olefin polymerization catalysts
CN107266402A (en) 2013-06-05 2017-10-20 尤尼威蒂恩技术有限责任公司 Protect phenolic group
BR112015031326B1 (en) 2013-06-28 2021-05-25 Dow Global Technologies Llc process for preparing a utility fluid composition
US9963648B2 (en) 2013-06-28 2018-05-08 Dow Global Technologies Llc Process for the preparation of branched polyolefins for lubricant applications
EP2986586B1 (en) 2013-06-28 2018-08-08 Dow Global Technologies LLC Process for the preparation of a lightly-branched hydrophobe and the corresponding surfactants and applications thereof
US9315526B2 (en) 2014-03-03 2016-04-19 Exxonmobil Chemical Patents Inc. Pyridyldiamido transition metal complexes, production and use thereof
EP3747913B1 (en) 2014-04-02 2024-04-17 Univation Technologies, LLC Continuity compositions and olefin polymerisation method using the same
CA2978925C (en) 2015-03-10 2023-08-22 Univation Technologies, Llc Spray dried catalyst compositions, methods for preparation and use in olefin polymerization processes
SG11201708340QA (en) 2015-04-17 2017-11-29 Univation Tech Llc Methods and systems for olefin polymerization
US10400049B2 (en) 2015-04-24 2019-09-03 Univation Technologies, Llc Methods for operating a polymerization reactor
SG11201708626SA (en) 2015-04-27 2017-11-29 Univation Tech Llc Supported catalyst compositions having improved flow properties and preparation thereof
WO2018022263A1 (en) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Polymerization processes using high molecular weight polyhydric quenching agents
WO2018048472A1 (en) 2016-09-09 2018-03-15 Exxonmobil Chemical Patents Inc. Pilot plant scale semi-condensing operation
WO2018118258A1 (en) 2016-12-20 2018-06-28 Exxonmobil Chemical Patents Inc. Methods for controlling start up conditions in polymerization processes
US11459408B2 (en) 2018-05-02 2022-10-04 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
EP3788081A1 (en) 2018-05-02 2021-03-10 ExxonMobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
JP2022505111A (en) 2018-11-06 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー Method of Polymerizing Olefin using Alkane Soluble Non-Metallocene Precatalyst
EP3877391B1 (en) 2018-11-06 2023-11-15 Dow Global Technologies LLC Alkane-soluble non-metallocene precatalysts
EP3877392B1 (en) 2018-11-06 2023-11-15 Dow Global Technologies LLC Alkane-soluble non-metallocene precatalysts
WO2023069407A1 (en) 2021-10-21 2023-04-27 Univation Technologies, Llc Bimodal poly(ethylene-co-1-alkene) copolymer and blow-molded intermediate bulk containers made therefrom

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392160A (en) * 1964-02-07 1968-07-09 Cabot Corp Cocatalyst compositions
BE737574A (en) * 1968-09-05 1970-02-02
NL163523C (en) * 1970-07-31 1983-11-16 Montedison Spa METHOD FOR PREPARING A POLYMERIZATION CATALYST
IT1080687B (en) * 1977-06-30 1985-05-16 Snam Progetti TRIALHYGEN TITANIUM-BASED CHEMICAL COMPOSITIONS, PROCEDURE FOR THEIR PREPARATION AND USE
US4552982A (en) * 1983-08-01 1985-11-12 Eli Lilly And Company Synthesis of 9-carbamoyl-9-(3-aminopropyl)fluorenes
US4892914A (en) * 1983-08-25 1990-01-09 The Dow Chemical Company Catalysts prepared from tetrakis(dialkylamide or diarylamide) derivatives of titanium and polymerization of olefins therewith
DE3443087A1 (en) * 1984-11-27 1986-05-28 Hoechst Ag, 6230 Frankfurt METHOD FOR PRODUCING POLYOLEFINES
US4794096A (en) * 1987-04-03 1988-12-27 Fina Technology, Inc. Hafnium metallocene catalyst for the polymerization of olefins
US4774301A (en) * 1987-06-08 1988-09-27 The Dow Chemical Company Zirconium containing catalysts and method of use
US4956323A (en) * 1987-11-30 1990-09-11 The Dow Chemical Company Catalysts prepared from tetrakis(dialkylamide or diarylamide) derivatives of titanium and polymerization of olefins therewith
US5039766A (en) * 1988-06-28 1991-08-13 Sumitomo Chemical Company, Limited Liquid catalyst component, catalyst system containing said component and process for producing ethylene-alpha-olefin copolymer using said catalyst system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034961A1 (en) * 1997-02-07 1998-08-13 Mitsui Chemicals, Inc. Olefin polymerization catalyst and process for the production of olefin polymers
WO1999054364A1 (en) * 1998-04-16 1999-10-28 Mitsui Chemicals, Inc. Catalyst for olefin polymerization and method of polymerizing olefin

Also Published As

Publication number Publication date
US5318935A (en) 1994-06-07
ES2085000T3 (en) 1996-05-16
AU9136391A (en) 1992-08-17
ATE135358T1 (en) 1996-03-15
JP3255173B2 (en) 2002-02-12
EP0569388B1 (en) 1996-03-13
DE69117982T2 (en) 1996-08-08
DE69117982D1 (en) 1996-04-18
EP0569388A1 (en) 1993-11-18
WO1992012162A1 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
JPH06510801A (en) Catalyst system for the production of amide transition metal compounds and isotactic polypropylene
JP3248907B2 (en) Method for producing crystalline poly-α-olefin using monocyclopentadienyl transition metal catalyst system
RU2165435C2 (en) Catalyst composition used for polymerization of olefins
KR100352920B1 (en) Syndiotactic polypropylene prepared using silyl bridged metallocenes
EP0628565B1 (en) Bis fluorenyl metallocenes and use thereof
FI105193B (en) Catalyst useful in polymerization of olefins
WO1988005793A1 (en) Catalysts, method of preparing these catalysts and method of using said catalysts
HU207739B (en) Process for producing catalyst for polymerizing olefines and process for it's utilizing
JP2816766B2 (en) Modified monocyclopentadienyl transition metal / alumoxane catalyst system for olefin polymerization
JPH08512063A (en) Process for producing amorphous poly-α-olefins by monocyclopentadienyl transition metal catalyst system
US6627574B2 (en) Process for the production of stereoregular polymers and elastomers of alpha-olefins and certain novel catalysts therefor
EP0979247B1 (en) Process for producing isotactic polypropylenes in condensed phase using titanocenes
EP0985686B1 (en) Polypropylene molding material
JPH09143217A (en) Olefin polymerization catalyst and production of olefin polymer
US20050176578A1 (en) Supported catalyst systems
JPH05186523A (en) Method of polymerizing alpha-olefin
JP2010528126A (en) Supported metallocene catalyst
JP3162435B2 (en) α-Olefin polymerization method
JP3704205B2 (en) Transition metal compound and catalyst component for olefin polymerization comprising the transition metal compound
JP3392205B2 (en) Novel transition metal compound and method for polymerizing olefin using the same
JP3025350B2 (en) Catalyst for producing syndiotactic poly-α-olefin and method for producing syndiotactic poly-α-olefin
JP3092974B2 (en) Catalyst for producing syndiotactic poly-α-olefin and method for producing syndiotactic poly-α-olefin
KR101496383B1 (en) Catalyst compositon for preparing alpha-olefin copolymer and preparation method of alpha-olefin copolymer
CN1120545A (en) Organometallic compound
JPH04224808A (en) Production of syndiotactic poly-alpha-olefin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees