JPH06510601A - 極めて低い温度での灰化 - Google Patents

極めて低い温度での灰化

Info

Publication number
JPH06510601A
JPH06510601A JP5503495A JP50349593A JPH06510601A JP H06510601 A JPH06510601 A JP H06510601A JP 5503495 A JP5503495 A JP 5503495A JP 50349593 A JP50349593 A JP 50349593A JP H06510601 A JPH06510601 A JP H06510601A
Authority
JP
Japan
Prior art keywords
ashing
oxygen
sample
fuel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5503495A
Other languages
English (en)
Inventor
シラジ アーマド レザ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPH06510601A publication Critical patent/JPH06510601A/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/12Condition responsive control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/24Nuclear magnetic resonance, electron spin resonance or other spin effects or mass spectrometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25125Digestion or removing interfering materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25875Gaseous sample or with change of physical state

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Processing Of Solid Wastes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。

Description

【発明の詳細な説明】 極めて低い温度での灰化 本発明は、固体燃料を、低温ないしは極めて低い温度で灰化する分野に関する。
再生バイオマス、地下燃料例えば石炭および泥炭、あるいは気相または液相の燃 料から成るすべての固体燃料は、炭素、水素、酸素および窒素に基づいている。
これらの元素に加えて、固体燃料はまた。しばしば酸素と結合した、鉱物例えば 硫黄、シリカおよび金属を含む。未燃焼物質を含む鉱物は、種々の酸化物、硫酸 塩およびケイ酸塩並びに他の化合物から成る灰を構成する。
表Iaは、化学分析により得られた、石炭からの灰の組成の例を示す。表Ibは 、石炭中の最も一般的な鉱物の例を示す。
表Ia SiO□ 25〜50% A1202to〜40% PeJi 5〜30% Ca0 1−15% MgQ O,5〜5% TtO= 0.5〜3% NazO+Kz0 1〜4% 5O20,1〜10% 表Ib ケイ酸塩(石英S:Ox、長石(K、NaXAl5iaO*) 、CaAlzS !20m)粘土鉱物(イライl□ K+−+、 sAl<(Sit−c sAl  +−+、 sO□。)(OH)4 、カオリナイトAla(SIaO+o)( OH)sモンモリロン石(1/2Ca、Na)o、t (A1.Mg、Fe)4 ((Si、AI)sOzo)(OH)4・nHzo) 硫酸塩(硬石膏Ca5O,、重晶石Ba504)硫化物(黄銅鉱Fe5z、自鉄 鉱FeS2、閃亜鉛鉱ZnS )硫黄元素S。
炭酸塩(方解石CaCO3、菱鉄鉱FeC0z )燃焼において、灰は、主とし て一酸化炭素および二酸化炭素であるガスと共に形成する。さらに、窒素酸化物 (No、N20、NO□)か、燃料中または空気中での窒素の酸化により形成す る。
二酸化硫黄および三酸化硫黄もまた、ガス中に存在する。硫黄酸化物は、3種の 形態、即ち有機硫黄、硫化物および硫酸塩として存在する、石炭中の硫黄の酸化 により形成する。硫化物および硫酸塩は、燃料中の鉱物物質として重要である。
低硫黄分の燃料を選択し、これにより二酸化硫黄の排出を減少させることが好ま しい。
上記のことから、燃料の選択は単にその比熱に基づくのみならず、鉱物物質の組 成に関する知識にも基づくことが重要であることか明らかである。
灰の化学分析の実施はよく知られており、一般的な方法は。
第一に試料を灰化させることであり、これは、燃料中の有機物質か高温で、酸素 (空気)の存在化で酸化されることを意味する。得られた灰を、適切な方法によ り分析することができる。
灰はまた、取付材料に固定し、灰の断面を、電子顕微鏡を用いて分析することか できる。この場合、灰を、X線方法により分析することかできる。
X線分析を実施するために、試料の灰化を、灰の固定を実施する可能な限り前に 進行させることが必要である。
試料中の化合物は通常、高温および高酸素分下で酸化される。
例えば、通常Fe”!化合物として存在する鉄は、pe20sに酸化される。硫 化鉄および硫化銅は、硫酸塩に酸化される。酸化カルシウムは、上記の硫化物か ら発生するSOlと反応することにより、硫酸カルシウムに転化される。従って 、燃料中の鉱物物質の初期の組成は、化学分析の結果により反映されない。
灰をさらに十分に研究するために、鉱物の相組成が必須である。表Ibは、固体 燃料中に通常に存在する鉱物の例を示す。
燃料試料の灰化を、鉱物の相変酸または損失なしに可能な限り低い温度で実施す ることができる方法を見出すことが重要である。これらの方法の1つは、以下に 記載する低い温度での灰化(LTA)である。
1965年以来、無線周波基を、100%酸素を含むガス雰囲気に用いることに より、ガス含有導電性イオンであるプラズマが得られ、このプラズマが、他の有 機および無機物質に結合した炭素を酸化する能力を有することか知られている( Gluskoter。
Fuel、 44.285−291)。
図1は、酸化チャンバ(1)、無線周波(RF)発振器(2) 、RFコイル( 3)、真空ゲージ(4)、真空ポンプ(5)および酸素コンテナ(6)を備えた 低い温度での灰化装置を図式的に示す。製造者(LFE Corporatio n)の記載において、1〜2gの石炭試料(燃料試料)をガラスポート上に拡散 させ、低圧チャンバ(1)中に配置する。
真空ポンプ(5)は、酸素コンテナ(6)からの少ない割合の酸素を含む低圧チ ャンバ(+)中の真空を、0.1mbarに等しく調整する。発振器(2)を始 動させることにより、プラズマが、酸化チャンバ(1)中に形成する。
以下の結果は、製造者の記載に従って得られた;実験は、20m1/分100% 酸素を用いて開始しく表■)、プラズマを、50Wのエネルギーで衝突させた。
灰化温度が、ガス流およびRFエネルギーの上昇に伴って上昇したため、20m 1/分に等しいガス流および50WのRFエネルギーを選択した。これは、これ らの値が、可能である最低の実験的選択であり、従って本研究に最も良好に適す るためである。
24時間の灰化の後、一方で温度が250〜300°Cに達しく以下の温度測定 を参照)、他方で石炭試料が表面で強力に酸化されたか、試料は内部ではほとん ど不変であったことか観察された。
従って、LTAの内部の温度は、測定するかまたは調節することができず、酸化 温度は、種々の試料に関して、種々の発熱量に伴って変化した。
電子顕微鏡による灰の分析により、硫化物鉱物が硫酸塩に酸化されたことが示さ れる(図4)。図4は、硫化鉄の粒子の断面図を示す。図4において、Fe、  Sおよび0元素の分布を示し、これは、粒子の若干の部分が、灰化工程の間に硫 酸塩化し、これは、粒子からの若干の硫黄かSO□として失われたことを意味す る。上述したように、工程は、10096酸素中で、低圧下(10−’mbar )で進行した。
一般に、1〜2gの石炭またはバイオマス試料は、12〜48時間の間に酸化さ れる。これらの条件下で、表面温度は、若干の石炭試料においてあまりにも高( (250〜300℃)、炭素並びに鉄の硫化物、銅の硫化物および硫黄元素もま た酸化されたことか実験的に明らかになった。
若干の鉱物が失われるかまたは変成されるため、電子顕微鏡分析および表■から 、燃料中の鉱物の灰化および濃縮が、LTAにおいておよび製造者(LFE C orporation)の記載によっては実施することができないことを結論づ けることができる。
このことから、通常のLTA方法により、鉱物物質か酸化され、若干の鉱物もま た灰化の間に失われると考えられる。実験的パラメータ(ガス流、RFエネルギ ー)か可能な限り低いため、この傾向は、1つの方法としてのLTAの一般的に 受け入れられている利点を疑う。このことから、LTAは、損失または変成を伴 わず燃料試料を灰化する最も好ましい方法ではないと考えられる。
本発明(極めて低い温度での灰化、VLTA)はこれらの困難を回避し、バイオ マスおよび地下燃料を、鉱物の損失または変成を伴わずに灰化させる方法を含む 。
LTAは、硫化鉄が、この灰化方法において、硫酸塩に酸化されるかまたはSO lとして失われるため、燃焼前の燃料中の鉱物物質の組成に関しての正確な情報 を得るのに適していない。
驚異的なことに、本発明において、炭素の酸化が単に極めて低い温度でのみなら ず、ある割合でヘリウムと混合した尚低い温度での灰化雰囲気(酸素)中で、燃 料中の炭素に関して選択的に行われる。「選択的」は、主に、燃料中の炭素が酸 化され、一方硫黄化合物は燃料中で影響されないことを示す。この方法は、酸化 温度を低温に維持しながら、より効率的なプラズマを提供する。
本発明の目的は、このようにして上述の物質の灰化を提供することにある。これ を、以下に詳細に記載する。
極めて低い温度での灰化(VLTA)は、燃料試料の灰化か低い温度ないし極め て低い温度で、調節された方法により行われる方法である(図3および6参照) 。図6は、質量分析計(7)、真空ゲージ(8)並びに、調節ユニット(10) 、流量メータ(11)、ヘリウムコンテナ(12)、酸素コンテナ(6)および 90%ヘリウムと10%酸素との混合物を含むコンテナ(13)が接続されたマ スフローコントローラ(9)を有するVLTAの実験装置を図式的に示す。
プラズマ中の酵素分を調節することにより、酸化温度を調節することができ、試 料中の鉱物の相変成を防止することができる(図4および5参照)。図3は、石 炭試料アントラサイト(Antracite)(An) 、セミアントラサイト (SemiantraciteXSemiAn)および中揮発性歴青炭(Mvb )における酵素分と灰化温度との関係を示す。
灰化温度を測定するために、サーモグラフィックインジケータを用いた。これら のインジケータは、銀白色から黒色への色の変化により、灰化工程中に到達した 最高酸化温度を示す。これらのインジケータをパイレックス(Pyrex)アン プル中に封入して、インジケータを、チャンバ(1)の雰囲気中での燃焼から保 護した。次に、インジケータを試料ボート中に配置し、石炭で覆った(図2)。
実験を、同一の石炭試料(並びに同一のガス流およびRFエネルギー)並びに1 96の02および99%のHeから成るガス混合物を用いて、チャンバ内に流入 する低圧で繰り返した。
温度が顕著に低く、65〜70°Cであり、試料か均一に酸化されたことが確認 された。酸素とヘリウムとの間の割合を、種々の石炭試料に関して調整して、極 めて低い温度(60〜70″C)での灰化温度を得なければならないことが、実 験的に明らかになった(図3参照)。この低い灰化温度において、試料の酸化は 選択的に行われる。
電子顕微鏡分析により、硫化鉄は、影響されていないことが示された(図5)。
図5は、硫化鉄粒子の断面を示す。元素Fe、Sおよび○の分布を図5に示す。
硫化鉄は、影響されないことがわかる。
このことから、相変成または損失を全く伴わない灰化は、VLTAによってのみ 得られることが結論づけられる。
VLTAにおける温度測定はまた、酸化チャンバ(1)のすぐ外側に配置され、 IR放射をすることができるIR検出器(14) (図7参照)を用いて実施す ることができる。VLTA工程を、ガス流およびRFエネルギーを調整すること により灰化温度および排ガス中のSO□を調節するコンピュータ(15)を用い て自動化することができる。このようにして、効率的な選択的酸化を、全灰化期 間中実施することができる(下記参照)。
等級および硫黄分が異なる6種の石炭試料を、本試験に選択した。この選択はま た、これらが、はとんどすべてのASTM等級を包含するように実施した。また 、泥炭試料を灰化して、この手法の実用性をより十分に理解した。試料を種々の ヘリウムと酸素とのガス混合物中で灰化し、排ガスを同時にSOxに関して分析 した。この分析を、バルツアーズ(Bal tzers)製の四重極質量分析計 (7)(モデルQMG 311)を用いて実施し、実験装置を図6に示す。排ガ ス中の若干の化合物が、ポンプ油またはポンプフィルタに吸収されるため、排ガ スを、ポンプ(5)の前で分析することが最も重要である。この実験装置を用い て、ガス混合物中の0.01%の酵素分を得ることができる。
試料中の硫黄分を、レコ(Leco)S−アナライザ、モデルS−132を用い て分析し、他のパラメータをレコ マッグ(Leco Mac)400を用いて 分析した(表■)。
石 炭 固定炭素%9 揮発性物質96 灰 分96 S−合計96アン1−ラ サイト(4口)94.5 5.5 25.20 0.61±0.Olセミアント ラサイト(Se+ni An) 88.(i 11.4 1.02 +、74± 0.03中揮発性、【青炭Qlvb) 71.6 28.4 13.Go 0. 139±0.O1高揮発性2青炭B(IlvBb[) 63.8 3[i、2  10.40 1.16±0,02Kft光性4青炭B(t+vBbll) 60 .2 39.8 7.80 3.25±0.0G亜ie’i’を炭B(SubB ) 45.5 54.5 、 5゜70 0.58±0.01泥炭 31.9  68.1 7.80 0.40±0.Ollこれらの値は、乾燥および鉱物物質 非含有基準で再計算したSO□か生成された条件を確立するために、S02を、 全灰化期間中連続的に分析した。各灰化の後、灰をもう一度硫黄分に関して分析 した。灰中の硫黄分を、初期の硫黄分に関して再計算した(表■)。表■から、 硫黄損失は、灰化雰囲気中のヘリウム分の増加(低酸素濃度)に伴って減少した ことか明らかである。
従って、硫黄が灰中に10096回収される条件において、排ガス中に302は 観察されなかったことか確認された。
表■ 選択された石炭試料における、灰化雰囲気と、灰化中の硫黄損失との間の関係 初期硫黄分の灰化の後の残留硫黄% 雰囲気 An Sem1An &Ivb HvBb[)IvBbll 5ubB  泥炭100χ0□ 48.0 16.0 4G、0 40.0 50.0 8 3.0 80.090λ0210鉗e 5Z0 75g、25可e 60.0 50$0z50利e 61.0 25’;0275′1J(e 64.010′1lOz90:u(e 55.0  33.0 80.0 50.0 Go、0 94.0 90.05’、Jz9 5鉗e 68.0 97.0 86.0 68.0 [i8.0 100.0  100.01’、Jz99’Je 96.0 99.0 100.0 91.0  ?9.00.5λ0299.5可e 100.00、1ZOz99.9u+e  100.0 100.0 100−0灰化雰囲気中の酵素分が低い場合には、 灰化速度が低くなることが、実験的に明らかになった。通常多くの試料を分析す ることか必要であるため、雰囲気中の酸素濃度を、鉱物の変成または損失の危険 を全く伴わずに、可能な限り高く維持することか重要である。灰化雰囲気中の高 酸素濃度は、硫化物が酸化し、灰化温度か上昇する高度の危険を意味する。
本発明はまた、最適な方法で、可能な限り迅速に、試料中の鉱物物質の相変成を 全く咋わずに実施される、燃料試料の灰化または選択的酸化方法を得ることを目 的とする。このような灰化は、図7に従って実施することができる。図7は、I R検出器(14)およびコンピュータ(15)を備えた、自動VLTAに用いら れる実験装置を示す。
灰化温度を、真空チャンバ(i)のすぐ外側に配置され、IR放射を通過させる 窓に隣接したIR検出器(14)により測定する。
灰化温度を、分析の正確さ並びに試料の等級および硫黄分を考慮して予め設定す る。相変酸を発生せずに灰化を達成するために、他の必要条件は、排ガスを、適 切な機器、例えば質量分析計(7)により連続的に分析することである。
RFエネルギーおよび灰化雰囲気中の酸素濃度を調節し、調整することにより、 灰化温度を調節し、排ガス中のSO2を、零または零付近に維持することができ る。この調整を、コンピュータ(15)および適切な形態により設計されたコン ピュータプログラムにより実施することができる。このコンピュータは、灰化工 程を、灰化温度が高すぎるかまたは排ガスがSOxを含む際に、RFエネルギー または酵素分あるいはこれらの両方を調整しなければならないように調節する。
酵素分を、灰化の開始時に低くしなければならず、炭素分が試料中で減少した灰 化期間の後、連続的に増加させることができることが、実験的に明らかになった 。ここで、灰化期間を、選択性を損なうことなく減少させることができる。
TA Figure 2 Figure 3 Figur 4 Figure 7 補正書の写しく翻訳文)提出書(特許法第184条の8)平成6年 2月 7日

Claims (11)

    【特許請求の範囲】
  1. 1.固体燃料あるいは燃焼済み、または部分的燃焼済み燃料(または鉱物、例え ば油またはヒト血液を含む任意の有機マトリックス)を炉内で、大気圧より低い 分圧で灰化するにあたり、 酸素とヘリウムとの混合物を、大気圧より低い全圧で用い、プラズマを形成し、 ここで試料中の鉱物成分が実質的に影響されず、ガス混合物の割合が、試料にお いて150℃を超えない表面温度を達成することを特徴とする、固体燃料あるい は燃焼済み、または部分的燃焼済み燃料の灰化方法。
  2. 2.固体燃料あるいは燃焼済み、または部分的燃焼済み燃料(または鉱物、例え ば油またはヒト血液を含む任意の有機マトリックス)を炉内で、プラズマを用い て灰化するにあたり、酸素とヘリウムとの間の割合を、酸素分を減少させること により調節し、ここで表面温度が150℃を超えず、上記温度を全灰化期間中調 節することを特徴とする、固体燃料あるいは燃焼済み、または部分的燃焼済み燃 料の灰化方法。
  3. 3.石炭、固体燃料および灰(または有機マトリックス)のいわゆる選択的酸化 が、60〜70℃の灰化温度で行われることを特徴とする請求の範囲1または2 記載の灰化方法。
  4. 4.ガス混合物が、≧0〜50%の酸素および≦50〜100%のヘリウムから 成ることを特徴とする請求の範囲1記載の灰化方法。
  5. 5.試料の表面温度を、酸素とヘリウムとのガス混合物から成るプラズマ中の酸 素分により調節することを特徴とする請求の範囲1記載の灰化方法。
  6. 6.「俳ガス」中のSO2含量を、酸素とヘリウムとのガス混合物から成るプラ ズマ中の酸素分により調節することを特徴とする請求の範囲1または3記載の灰 化方法。
  7. 7.表面温度を、試料からのIR放射と接触させずに読み取り、表面温度が所定 の設定値に到達した際に、酸素分を自動的に減ずることを特徴とする請求の範囲 2記載の灰化方法。
  8. 8.表面温度を、試料の表面からのIR放射の測定により読み取ることを特徴と する請求の範囲6記載の灰化方法。
  9. 9.酸素とヘリウムとの間の割合を、酸素分を減少させることにより、試料の表 面温度が150℃を超えず、SO2が試料から消失しないかまたは有意でない量 で消失するように調節することを特徴とする請求の範囲1記載の灰化方法。
  10. 10.工程を、質量分析計(7)、IR検出器(14)および、灰化工程を分析 し、調節するコンピュータ(15)により自動的に管理することを特徴とする、 自動VLTAを達成するための請求の範囲1記載の灰化方法。
  11. 11.灰化温度を、ガラスアンプル中に封入され、酸化チャンバ(1)中に配置 されたサーモグラフィックインジケータにより測定することを特徴とする請求の 範囲1〜7のいずれか1つの項記載の灰化方法。
JP5503495A 1991-08-09 1992-06-16 極めて低い温度での灰化 Pending JPH06510601A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE9102320A SE500480C2 (sv) 1991-08-09 1991-08-09 Sätt vid inaskning av fasta bränslen under låg temperatur
SE9102320-0 1991-08-09
PCT/SE1992/000428 WO1993003363A1 (en) 1991-08-09 1992-06-16 Very low temperature ashing (vlta)

Publications (1)

Publication Number Publication Date
JPH06510601A true JPH06510601A (ja) 1994-11-24

Family

ID=20383436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5503495A Pending JPH06510601A (ja) 1991-08-09 1992-06-16 極めて低い温度での灰化

Country Status (8)

Country Link
US (1) US5492832A (ja)
EP (1) EP0597919B1 (ja)
JP (1) JPH06510601A (ja)
AT (1) ATE178992T1 (ja)
AU (1) AU2370792A (ja)
DE (1) DE69228934D1 (ja)
SE (1) SE500480C2 (ja)
WO (1) WO1993003363A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075439A (ja) * 2013-10-10 2015-04-20 三菱重工業株式会社 低灰分試料の成分分析方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19919499C1 (de) * 1999-04-29 2001-02-01 Thyssenkrupp Stahl Ag Verfahren zur Bestimmung anorganischer Bestandteile in einer Beschichtung eines Substrates
US6798068B2 (en) * 2002-11-26 2004-09-28 Advanced Micro Devices, Inc. MOCVD formation of Cu2S
US9206827B2 (en) 2012-11-20 2015-12-08 Avery Dennison Corporation Wall mount organization system
US10073019B2 (en) 2014-11-06 2018-09-11 Cem Corporation Rapid quantitative element testing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234315A (en) * 1978-09-29 1980-11-18 Phillips Petroleum Company Gas chromatographic analysis method and apparatus
US4474621A (en) * 1982-06-16 1984-10-02 International Telephone And Telegraph Corporation Method for low temperature ashing in a plasma
DD268843A3 (de) * 1982-12-30 1989-06-14 Akad Wissenschaften Ddr Vorrichtung zur plasmachemischen Niedertemperaturveraschung oxidierbarer kohlenstoffhaltiger Materialien
US4532219A (en) * 1984-01-27 1985-07-30 Minnesota Mining And Manufacturing Company High frequency radiation-induced plasma analysis of volatile or non-volatile materials
US4799799A (en) * 1985-02-06 1989-01-24 The United States Of America As Represented By The Secretary Of The Interior Determining inert content in coal dust/rock dust mixture
US4824790A (en) * 1986-10-17 1989-04-25 Advanced Fuel Research, Inc. System and method for thermogravimetric analysis
DK577087A (da) * 1986-11-03 1988-05-04 Tessek Sdruzeni Fremgangsmaade og apparat til at goere carbonholdige materialer mineralske
US5204270A (en) * 1991-04-29 1993-04-20 Lacount Robert B Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075439A (ja) * 2013-10-10 2015-04-20 三菱重工業株式会社 低灰分試料の成分分析方法

Also Published As

Publication number Publication date
SE9102320L (sv) 1993-02-10
SE500480C2 (sv) 1994-07-04
SE9102320D0 (sv) 1991-08-09
AU2370792A (en) 1993-03-02
DE69228934D1 (de) 1999-05-20
EP0597919A1 (en) 1994-05-25
EP0597919B1 (en) 1999-04-14
ATE178992T1 (de) 1999-04-15
WO1993003363A1 (en) 1993-02-18
US5492832A (en) 1996-02-20

Similar Documents

Publication Publication Date Title
Tomeczek et al. Kinetics of mineral matter transformation during coal combustion
CA1252705A (en) Method for analyzing different sulphur forms
GB2076951B (en) Apparatus and method for flue gas recirculation in a solid fuel boiler
CA1184370A (en) Process for reducing phosphate ore
JPH06510601A (ja) 極めて低い温度での灰化
ES8600492A1 (es) Perfeccionamientos en los aparatos de regular proporciones de combustible-aire en mezclas de combustible-aire
AU566012B2 (en) Method and apparatus for burning flue gas
SE8700945D0 (sv) Forfarande for att ur forsurande rokgaser absorbera gasformiga komponenter
JPH0436386A (ja) スラグの改善
JP4065935B2 (ja) 吸着用木炭の製造方法
KR950014339A (ko) 아연, 납 및 철의 산화물을 함유하는 물질을 처리하는 바엘쯔 방법
Al-Makhadmeh et al. Effect of air and oxyfuel staged combustion on oil shale fly ash formation with direct in-furnace limestone addition for sulphur retention
US3615219A (en) Sulfur dioxide removal from a gas
CA1316800C (en) Method and apparatus for analyzing different sulphur forms
CA2417022A1 (en) A method of reducing unburned carbon levels in coal ash
US2425740A (en) Reduction of sulphates
Waugh et al. Determination of carbon dioxide and other volatiles in pyritic limestones by loss on ignition
Zhuang ON THE MECHANISM OF SULFUR CAPTURE DURING COAL BRIQUETTE COMBUSTION
SU584047A1 (ru) Способ очистки железных руд от примесей
JPS633207B2 (ja)
US5481989A (en) Method of collecting and conditioning a petroleum coke fluid bed combustion ash
JP2011073917A (ja) セメントクリンカーの製造方法
JPS55116612A (en) Manufacture of activated carbon
EP0892214A3 (de) Verfahren und Vorrichtung zum Betreiben von Gasbrennern
Borgwardt Selected Studies on Alkaline Additives for Sulfur Dioxide Control