JPH065077B2 - Turbo molecular pump - Google Patents

Turbo molecular pump

Info

Publication number
JPH065077B2
JPH065077B2 JP60094496A JP9449685A JPH065077B2 JP H065077 B2 JPH065077 B2 JP H065077B2 JP 60094496 A JP60094496 A JP 60094496A JP 9449685 A JP9449685 A JP 9449685A JP H065077 B2 JPH065077 B2 JP H065077B2
Authority
JP
Japan
Prior art keywords
rotor
stator
blades
blade
molecular pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60094496A
Other languages
Japanese (ja)
Other versions
JPS60243393A (en
Inventor
重一 川口
成田  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60094496A priority Critical patent/JPH065077B2/en
Publication of JPS60243393A publication Critical patent/JPS60243393A/en
Publication of JPH065077B2 publication Critical patent/JPH065077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、低真空領域でも優れた排気速度性能を発揮し
得るターボ分子ポンプに関するものである。
TECHNICAL FIELD The present invention relates to a turbo molecular pump capable of exhibiting excellent pumping speed performance even in a low vacuum region.

[従来の技術] ターボ分子ポンプは、よく知られているように、機械的
に気体分子を吹き飛ばして超高真空を得るようにしたも
ので、このためにそのポンプ本体は、高速回転されるあ
る傾きを有するロータ翼(動翼)と、それと逆向きの傾
きを有するステータ翼(静翼)とを交互に通常多段に配
置してなる翼車群を具備してなる。
[Prior Art] As is well known, a turbo molecular pump mechanically blows out gas molecules to obtain an ultra-high vacuum. For this reason, the pump body is rotated at high speed. It is provided with an impeller group in which rotor blades (moving blades) having an inclination and stator blades (static blades) having an inclination opposite thereto are normally arranged in multiple stages.

ところが、この種ポンプではその翼車群での圧縮比が低
いことから、動作特性として低真空領域で排気性能が著
しく低下する不都合がある。そこで、この欠点を補うた
め翼車群の軸方向でロータ翼とステータ翼を多段に設け
るようにした構造も採られているが、この場合では重量
が大きくなって高速回転が困難になったり、コスト面で
不利となっている。具体的には、従来のターボ分子ポン
プでは、10-3〜10-2Torr程度の真空度からその排気
速度が急激に悪化し、0.1Torr程度ではその排気速度が
殆ど無に等しくなっている。このため、低真空域でター
ボ分子ポンプを作動する場合では、(ターボ分子ポン
プ)+(メカニカルブースタポンプ)+(ロータリポン
プ)のように適宜の補助真空ポンプを連結してその排気
能力をカバーする排気システムを採用するのが普通とな
っている。
However, in this type of pump, since the compression ratio in the impeller group is low, there is a disadvantage that the exhaust performance is significantly reduced in the low vacuum region as an operating characteristic. Therefore, in order to compensate for this drawback, a structure in which rotor blades and stator blades are provided in multiple stages in the axial direction of the impeller group is also adopted, but in this case, the weight becomes large and high-speed rotation becomes difficult, It is disadvantageous in terms of cost. Specifically, in the conventional turbo molecular pump, the exhaust rate rapidly deteriorates from a vacuum degree of about 10 −3 to 10 −2 Torr, and the exhaust rate becomes almost nothing at about 0.1 Torr. For this reason, when the turbo molecular pump is operated in a low vacuum region, an appropriate auxiliary vacuum pump such as (turbo molecular pump) + (mechanical booster pump) + (rotary pump) is connected to cover its exhaust capacity. It is common to use an exhaust system.

[発明が解決しようとする問題点] 本発明は、以上のような技術的背景をもとにしてなされ
たもので、その翼車群の構成を改良工夫することによっ
てそれ自身大きな圧縮比増大機能を具備したものとな
し、これによってポンプの排気可能域をより低真空側に
拡張したターボ分子ポンプを提供することを目的とす
る。
[Problems to be Solved by the Invention] The present invention has been made on the basis of the technical background as described above, and has a large compression ratio increasing function by itself by improving and devising the configuration of the impeller group. It is an object of the present invention to provide a turbo molecular pump in which the pumpable region of the pump is expanded to a lower vacuum side.

[問題点を解決するための手段] 本発明は、このような目的を達成するために、ロータ翼
とステータ翼を交互に配置してなる翼車群の前記ロータ
翼を高速回転して排気するターボ分子ポンプにおいて、
前記翼車群の少なくとも軸方向一部に、前記ロータ翼と
ステータ翼の長さを排気口側に向けて順次短寸のものに
形成しロータとステータの間の半径方向隙間を次第に狭
めてなる圧縮比漸増部を設けたことを特徴としている。
[Means for Solving the Problems] In order to achieve such an object, the present invention rotates the rotor blades of a turbine wheel group in which rotor blades and stator blades are alternately arranged at high speed and exhausts them. In the turbo molecular pump,
The lengths of the rotor blades and the stator blades are sequentially made shorter toward the exhaust port side in at least part of the impeller group in the axial direction, and the radial gap between the rotor and the stator is gradually narrowed. It is characterized in that a compression ratio gradually increasing portion is provided.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図と第2図は、本発明に係るターボ分子ポンプの主
要部の構成例を示している。すなわち、その中心に位置
し図外の原動機により回転駆動される駆動軸1に、第2
図に示すように基盤部2Iの外周から放射状に所定の傾
斜角をもったロータ翼2IIを突設してなるロータ2(2
a、2b・・・2k)を、該駆動軸1に外嵌圧入して順
次固着しているとともに、このロータ2a、2b・・・
2kを囲繞する外周から基端部3Iをそれぞれ環状のス
ペーサ4、4に挟持させて位置決め固定したステータ3
a、3b・・・を、前記ロータ翼2IIと逆向きの傾斜角
を有するそのステータ翼3IIを該ロータ翼2II、2II間
に位置させて配設し、これら交互に配置したロータ翼2
IIとステータ翼3IIとによって所要の翼車群を構成して
いる。かかる翼車群は、前記ロータ翼2IIを駆動軸1と
共に高速回転すると、気体分子に衝突してこれに軸方向
の運動量を与え、前記ステータ翼3IIとの協働作用の下
にその一端の吸気口Aから他端の排気口Bに向けて強制
的に流れを発生し、排気する作用を営む。
FIG. 1 and FIG. 2 show a structural example of the main part of the turbo-molecular pump according to the present invention. That is, the drive shaft 1 located at the center of the drive shaft and driven to rotate by a prime mover (not shown)
As shown in the figure, a rotor 2 (2 having a rotor blade 2II radially protruding from the outer periphery of a base portion 2I and having a predetermined inclination angle is provided.
a, 2b ... 2k) are externally fitted and press-fitted onto the drive shaft 1 so as to be sequentially fixed, and the rotors 2a, 2b ...
A stator 3 in which a base end portion 3I is sandwiched between annular spacers 4 and 4 from the outer circumference surrounding 2k and positioned and fixed.
a, 3b ... are arranged such that their stator blades 3II having an inclination angle opposite to that of the rotor blades 2II are located between the rotor blades 2II and 2II, and these rotor blades 2 are arranged alternately.
II and the stator blade 3II constitute a required impeller group. When the rotor blades 2II and the drive shaft 1 rotate at high speed, the impeller group collides with gas molecules to give momentum in the axial direction to the gas molecules, and the intake air at one end of the rotor blades 2II cooperates with the stator blades 3II. A force is generated from the port A toward the exhaust port B at the other end, and the flow is exhausted.

さて、従来のターボ分子ポンプにおいては、その翼車群
の構成は、軸方向に亘りそのロータ翼の長さを一定に形
成するか、あるいは軸方向途中の一箇所で隣設するロー
タ翼の翼長さを階段状に変化させるようにするのが通例
である。これに対し、本発明に係るものでは、第1図、
第2図に見るように、その排気口B側に位置する略下半
部(図示例では2g〜2k)で、その各ロータ2の基盤部2
Iを大径のものとしながら相対的にそのロータ翼2IIの
翼長さ1を排気口B側に向けて順次短寸のものに形成し
(これに伴いロータ翼2IIと交互に配置されるステータ
翼3IIの翼長さも勿論順次短寸のものに形成さる)、こ
のロータ翼2IIおよびステータ翼3IIの翼長さが変化す
る翼車群の軸長Lの部分に、半径方向隙間が次第に狭め
られる圧縮比漸増部を設けるように構成している。な
お、この場合軸長Lの間に位置するロータ2は、順次そ
の翼長さを短寸化する必要があるが、単一の各ロータ2
では必ずしもその軸方向で翼長さを変える必要はない。
Now, in the conventional turbo molecular pump, the configuration of the impeller group is such that the length of the rotor blade is formed to be constant over the axial direction, or the blades of the rotor blades adjacent to each other at one point in the axial direction are provided. It is customary to change the length stepwise. On the other hand, according to the present invention, FIG.
As shown in FIG. 2, the base portion 2 of each rotor 2 is located in the lower half portion (2g to 2k in the illustrated example) located on the exhaust port B side.
The blade length 1 of the rotor blade 2II is formed to be relatively shorter toward the exhaust port B while I has a large diameter (the rotor blade 2II and the stator arranged alternately). The blade length of the blade 3II is, of course, gradually reduced), and the radial gap is gradually narrowed to a portion of the axial length L of the impeller group where the blade lengths of the rotor blade 2II and the stator blade 3II change. The compression ratio gradually increasing portion is provided. In this case, the rotors 2 located between the axial lengths L need to have their blade lengths shortened one after another.
Then, it is not always necessary to change the blade length in the axial direction.

このように、各ロータ2の翼長さ1を排気口B側に向け
て順次短寸のものに形成し、これに伴いステータ翼3II
の長さも排気口B側に向けて順次短寸なものに形成し
て、ロータ2とステータ3の間の半径方向隙間を次第に
狭めるようにしたものであれば、気体分子を案内するそ
の流路面積が前記圧縮比漸増部Lで次第に狭寸のものに
形成されるから、ロータ翼2IIとステータ翼3IIを交互
に通って送られる排気はその部分でロータ一段毎に分子
密度が高められる。したがって、ロータ翼2IIによる付
勢効果が増大して気体分子の逆流が防止される。また、
分子密度が高まっているところへ、ステータ翼3II(ス
テータ3g〜3kに対応する)が介在しているため、気
体の流れを乱流状態にする。したがって、気体分子同士
の衝突回数も増え、この点においても逆流防止に奏効す
る。これらの結果、気体分子の吸気口A側への逆流が有
効に防止され、排気口Bに向かう圧縮比が高められて行
く。つまり、排気の圧縮比が高められることから、低真
空領域についても排気が可能となる。
In this manner, the blade length 1 of each rotor 2 is gradually reduced toward the exhaust port B side, and the stator blade 3II is accordingly formed.
The length of the flow path for guiding gas molecules can be increased as long as the radial gap between the rotor 2 and the stator 3 is gradually narrowed toward the exhaust port B side. Since the area is gradually narrowed at the compression ratio gradually increasing portion L, the exhaust gas sent through the rotor blades 2II and the stator blades 3II alternately has a higher molecular density at each rotor stage. Therefore, the biasing effect of the rotor blades 2II is increased, and the backflow of gas molecules is prevented. Also,
Since the stator blades 3II (corresponding to the stators 3g to 3k) are interposed where the molecular density is increased, the gas flow is made turbulent. Therefore, the number of collisions of gas molecules also increases, and in this respect also, it is effective in preventing backflow. As a result, the backflow of gas molecules to the intake port A side is effectively prevented, and the compression ratio toward the exhaust port B is increased. That is, since the compression ratio of the exhaust gas is increased, the exhaust gas can be exhausted even in the low vacuum region.

上記実施例の如き本発明のターボ分子ポンプによると、
その翼車群の一部に設けられた圧縮比漸増部が排気の圧
縮比を有効に増大するものとなるから、高い値をもって
その排気速度曲線を低真空側に延長することができる。
すなわち、より低真空域まで排気が可能となる。具体的
には、図示例のものの場合では、10-3〜10-2Torr程
度の真空度でも10-3Torr以下の真空度と同程度の排気
速度が確保され、0.1Torr付近でもなおある程度の有効
な排気速度を持続し得る。したがって、このポンプを使
用する場合には、従来のように、真空補助のために多段
に補助ポンプを接続する必要はなく、例えば(ターボン
分子ポンプ)+(ロータリポンプ)のような簡易な排気
システムでも十分に使用でき、この点から排気システム
の簡易化とコストダウンが図られる。
According to the turbo molecular pump of the present invention as in the above embodiment,
Since the compression ratio gradually increasing portion provided in a part of the impeller group effectively increases the compression ratio of exhaust gas, the exhaust speed curve can be extended to the low vacuum side with a high value.
That is, it is possible to exhaust to a lower vacuum region. Specifically, in the case of the illustrated example, a vacuum degree of about 10 −3 to 10 −2 Torr can secure an exhaust speed similar to a vacuum degree of 10 −3 Torr or less, and even at about 0.1 Torr, a certain degree It can sustain an effective pumping speed. Therefore, when this pump is used, it is not necessary to connect auxiliary pumps in multiple stages for vacuum assistance as in the conventional case, and a simple exhaust system such as (Tarbon molecular pump) + (rotary pump) is used. However, it can be used satisfactorily, and from this point, the exhaust system can be simplified and cost can be reduced.

なお、実施例では圧縮比漸増部Lをその排気口B側の端
部に設ける場合を説明したが、この漸増部Lは少なくと
も翼車群その軸方向の一部に設けるようにすればよい。
但し、吸気口A側は排気速度をもたせるためにその翼長
さを一定にしたものを配置するのが望ましい。
In the embodiment, the case where the compression ratio gradually increasing portion L is provided at the end portion on the exhaust port B side has been described, but this gradually increasing portion L may be provided at least at a part of the impeller group in the axial direction thereof.
However, it is desirable to arrange the intake port A with a constant blade length in order to have an exhaust velocity.

[発明の効果] 以上述べたように、本発明はその翼車群におけるロータ
翼およびステータ翼の長さおよびロータとステータの間
の半径方向隙間を改良工夫して、その軸方向一部に気体
の逆流を効果的に防止する圧縮比漸増部を設けるように
したものであるから、別に圧縮比増大機能を付加するこ
となしにポンプ本体自身に圧縮比増大効果が発揮され、
これによって低真空領域でも優れた排気速度を有するタ
ーボ分子ポンプが提供できたものである。
[Advantages of the Invention] As described above, according to the present invention, the lengths of the rotor blades and the stator blades in the impeller group and the radial gap between the rotor and the stator are improved and devised so that gas is partially present in the axial direction. Since the compression ratio gradually increasing portion is provided to effectively prevent backflow of the pump, the compression ratio increasing effect is exerted on the pump body itself without adding a separate compression ratio increasing function.
As a result, a turbo molecular pump having an excellent pumping speed even in a low vacuum region can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すターボ分子ポンプ本体
(翼車群)の縦断面図であり、第2図(a)、(b)は
その単一ロータの形態を示す平面図と側面図である。 1・・・駆動軸 2、2a〜2k・・・ロータ 3a〜3k・・・ステータ 2II・・・ロータ翼 3II・・・ステータ翼 4・・・スペーサ L・・・圧縮比漸増部
FIG. 1 is a vertical cross-sectional view of a turbo molecular pump main body (impeller group) showing an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are plan views showing the form of a single rotor thereof. It is a side view. DESCRIPTION OF SYMBOLS 1 ... Drive shaft 2, 2a-2k ... Rotor 3a-3k ... Stator 2II ... Rotor blade 3II ... Stator blade 4 ... Spacer L ... Compression ratio gradually increasing part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ロータ翼とステータ翼を交互に配置してな
る翼車群の前記ロータ翼を高速回転して排気するターボ
分子ポンプにおいて、前記翼車群の少なくとも軸方向一
部に、前記ロータ翼とステータ翼の長さを排気口側に向
けて順次短寸のものに形成しロータとステータの間の半
径方向隙間を次第に狭めていく圧縮比漸増部を設けたこ
とを特徴とするターボ分子ポンプ。
1. A turbo molecular pump for rotating at high speed the rotor blades of an impeller group comprising rotor blades and stator blades arranged alternately, and exhausting the rotor blades, at least in a part of the impeller group in the axial direction. A turbo molecule characterized in that the length of the blade and the stator blade are gradually reduced toward the exhaust port side, and a compression ratio gradually increasing portion is provided to gradually narrow the radial gap between the rotor and the stator. pump.
JP60094496A 1985-04-30 1985-04-30 Turbo molecular pump Expired - Fee Related JPH065077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094496A JPH065077B2 (en) 1985-04-30 1985-04-30 Turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094496A JPH065077B2 (en) 1985-04-30 1985-04-30 Turbo molecular pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59038958 Division 1984-02-29 1984-02-29

Publications (2)

Publication Number Publication Date
JPS60243393A JPS60243393A (en) 1985-12-03
JPH065077B2 true JPH065077B2 (en) 1994-01-19

Family

ID=14111911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094496A Expired - Fee Related JPH065077B2 (en) 1985-04-30 1985-04-30 Turbo molecular pump

Country Status (1)

Country Link
JP (1) JPH065077B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3777498B2 (en) * 2000-06-23 2006-05-24 株式会社荏原製作所 Turbo molecular pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2231654A1 (en) * 1972-06-28 1974-01-17 Leybold Heraeus Gmbh & Co Kg TURBOMOLECULAR PUMP
NL8105614A (en) * 1981-12-14 1983-07-01 Ultra Centrifuge Nederland Nv HIGH VACUUM MOLECULAR PUMP.
JPS6028297U (en) * 1983-07-30 1985-02-26 株式会社島津製作所 turbo molecular pump

Also Published As

Publication number Publication date
JPS60243393A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
JP4395210B2 (en) Improvement of vacuum pump
US6135709A (en) Vacuum pump
US5611660A (en) Compound vacuum pumps
JPH0826877B2 (en) Turbo molecular pump
JP2003515037A5 (en)
JP2003515037A (en) Radial flow turbo molecular vacuum pump
JP4195743B2 (en) Turbo molecular vacuum pump
JPS62113887A (en) Vacuum pump
JP2001107889A (en) Improvement of vacuum pump
JP4050811B2 (en) Double flow type gas friction pump
KR890004933B1 (en) Turbo molecular pump
JPH065077B2 (en) Turbo molecular pump
JPS60182394A (en) Turbomolecular pump
JPH0219694A (en) Oil-free vacuum pump
JPH0689756B2 (en) Dry vacuum pump
JPH065076B2 (en) Turbo molecular pump
JP3099475B2 (en) Turbo molecular pump
JP2865888B2 (en) Multi-turbo type vacuum pump
JPS6385290A (en) Vacuum pump
JPH10246197A (en) Turbo-molecular pump
JP3734616B2 (en) Turbo molecular pump
JP2003013880A (en) Turbo molecular pump
JP3233364U (en) Vacuum system
JP3045418B2 (en) Turbo vacuum pump
JPH03237297A (en) Turbo-molecular pump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees