JPH0650619A - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator

Info

Publication number
JPH0650619A
JPH0650619A JP11029291A JP11029291A JPH0650619A JP H0650619 A JPH0650619 A JP H0650619A JP 11029291 A JP11029291 A JP 11029291A JP 11029291 A JP11029291 A JP 11029291A JP H0650619 A JPH0650619 A JP H0650619A
Authority
JP
Japan
Prior art keywords
pipe
temperature end
pulse tube
gas
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11029291A
Other languages
Japanese (ja)
Inventor
Junpei Yuyama
純平 湯山
Masahiko Kasuya
雅彦 粕谷
Chiizen Ko
▲ちー▼全 耿
Hidekazu Goto
英一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP11029291A priority Critical patent/JPH0650619A/en
Publication of JPH0650619A publication Critical patent/JPH0650619A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1414Pulse-tube cycles characterised by pulse tube details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Abstract

PURPOSE: To obtain a pulse pipe refrigerating machine the performance of which does not drop even when the flow rate is large although the machine requires a large flow rate in order to increase the generated refrigeration quantity per unit flow rate passing through a cold storage tank. CONSTITUTION: A pulse pipe refrigerating machine is provided with a compressor 1, a change-over valve 2, cooling water 9, and tubes 10. A pulse pipe 4 is composed of a multistage pipe which is constituted by successively connecting pipes from a small-diameter pipe to a large-diameter pipe and the diameter of the pipe 4 at its room-temperature end 7 is made smaller than that at its low-temperature end 8. Consequently, the quantity of the gas flowing in the pipe 4 through a cold storage tank 3 for compressing the gas in the pipe 4 can be reduced by reducing the volume of the pipe 4. On the other hand, when the diameter of the pipe 4 at the low-temperature end 8 is made equal to the conventional diameter, the same quantity of refrigeration can be generated, since the gas contributing to the generation of refrigeration accompanying expansion work is the gas which gets in and out the pipe 4 through the low- temperature end 8 when the gas is pushed and withdrawn by means of a piston 11 provided at the room-temperature end 7 of the pipe 4. Namely, the quantity of the generated refrigeration per unit flow rate can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】人工衛生に搭載する赤外線検出器
の冷却用冷凍機のように、保守が不可能な環境で使用さ
れる場合、また、磁気共鳴画像診断装置(MRI)・S
QUID脳(心)磁計測装置などの医療用装置や超伝導
コンピュータなど連続使用を前提とする装置の冷却用冷
凍機では高い信頼性が要求される。低温部に可動部品を
有しないパルス管冷凍機はこのような要求に最も適した
冷凍機である。本発明は、このパルス管冷凍機の性能向
上に関するものである。
[Industrial application] When used in an environment where maintenance is not possible, such as a refrigerator for cooling infrared detectors installed in artificial hygiene, magnetic resonance imaging equipment (MRI) / S
High reliability is required for cooling refrigerators for medical devices such as QUID brain (magnetocardiography) measuring devices and devices for continuous use such as superconducting computers. The pulse tube refrigerator, which has no moving parts in the low temperature part, is the refrigerator most suitable for such requirements. The present invention relates to improving the performance of this pulse tube refrigerator.

【0002】[0002]

【従来の技術】図1は、従来のパルス管冷凍機で最も高
い性能を示しているオリフィス型パルス管冷凍機であ
る。室温部の圧縮機1、高・低圧を切替える弁2、金網
等を充てんした蓄冷器3、中空のパルス管4、室温部の
オリフィスまたは絞り弁5およびバッファ容器6で構成
される。
2. Description of the Related Art FIG. 1 shows an orifice type pulse tube refrigerator having the highest performance among conventional pulse tube refrigerators. It is composed of a compressor 1 at room temperature, a valve 2 for switching between high pressure and low pressure, a regenerator 3 filled with wire mesh, a hollow pulse tube 4, an orifice or throttle valve 5 at room temperature, and a buffer container 6.

【0003】以下に動作原理を示す。切替え弁2で高圧
側に切替わると、圧縮機1で圧縮された高圧の作業気体
は蓄冷器3を通過しつつ温度が下がって、パルス管4内
へ入る。このとき、もともとパルス管内に存在した気体
は圧縮されて室温端7に向かって移動する。その結果、
パルス管4内の圧力がバッファ容器6内の圧力に比べて
高くなるのでオリフィス(絞り弁)5を通過して気体が
バッファ容器6へ流れ込む。次に切替え弁2で低圧側に
切替わると、パルス管4内の気体は、蓄冷器3を通過し
つつ温度が上昇して、圧縮機1の吸入口へ向かって流れ
る。このときは、逆に、パルス管4内の圧力がバッファ
容器6内の圧力より低くなるので、バッファ容器6内の
気体がオリフィス(絞り弁)5を通過して、パルス管4
内へ流れ込む。オリフィス(絞り弁)5を通過する気体
がなく、気体と管壁との熱交換が無視できるほど小さけ
れば、パルス管内の気体は断熱的に圧縮、膨張を繰り返
すだけである。この際、圧力変動と気体の変位との位相
は一致している。一方、オリフィス(絞り弁)5を通過
する気体がある場合は、位相が変化し、圧力変動と気体
の変位との位相差が90°である成分が発生する。この
成分のため、パルス管4内にエンタルピー流が生じ、低
温端8での気体の膨張仕事が室温端7へ伝えられ、オリ
フィス(絞り弁)5で熱に変えられて、冷却水(9)で
運び去られる。こうして、パルス管低温端8に気体の膨
張に伴う冷凍が発生する。
The principle of operation will be described below. When the switching valve 2 switches to the high-pressure side, the high-pressure working gas compressed by the compressor 1 passes through the regenerator 3 and its temperature drops, and enters the pulse tube 4. At this time, the gas originally present in the pulse tube is compressed and moves toward the room temperature end 7. as a result,
Since the pressure inside the pulse tube 4 becomes higher than the pressure inside the buffer container 6, the gas flows into the buffer container 6 through the orifice (throttle valve) 5. Next, when the switching valve 2 switches to the low pressure side, the temperature of the gas in the pulse tube 4 rises while passing through the regenerator 3 and flows toward the suction port of the compressor 1. At this time, on the contrary, the pressure in the pulse tube 4 becomes lower than the pressure in the buffer container 6, so that the gas in the buffer container 6 passes through the orifice (throttle valve) 5 and the pulse tube 4
It flows in. If there is no gas passing through the orifice (throttle valve) 5 and the heat exchange between the gas and the tube wall is negligible, the gas in the pulse tube simply adiabatically repeats compression and expansion. At this time, the pressure fluctuation and the gas displacement are in phase with each other. On the other hand, when there is gas passing through the orifice (throttle valve) 5, the phase changes and a component having a phase difference of 90 ° between the pressure fluctuation and the gas displacement is generated. Due to this component, an enthalpy flow is generated in the pulse tube 4, the expansion work of the gas at the low temperature end 8 is transmitted to the room temperature end 7, and is converted into heat at the orifice (throttle valve) 5 to cool the cooling water (9). Be carried away by. In this way, freezing occurs due to the expansion of the gas at the low temperature end 8 of the pulse tube.

【0004】[0004]

【発明が解決しようとする問題点】従来のパルス管冷凍
機の最大の問題点は、蓄冷器3を通過する単位流量あた
りの発生冷凍量が小さいことであった。このため、大き
な流量が必要となり、通過する気体の熱容量が蓄冷材の
熱容量に比べて大きくなるので、蓄冷器3の性能が低く
なる。また、流量が大きいとパルス管低温端8でのレイ
ノルズ数が大きくなり乱流が発生しやすくなる。その
上、低温端8では、温度の低下とともに気体の粘性が小
さくなるのでレイノルズ数が大きくなる傾向にある。乱
流が発生するとパルス管4内の温度分布が乱れるため、
冷凍機の性能低下につながる。本発明の目的は、このよ
うな問題点を解決する手段を提供し、よって高性能なパ
ルス管冷凍機を実現することにある。
The greatest problem of the conventional pulse tube refrigerator is that the amount of refrigeration generated per unit flow rate passing through the regenerator 3 is small. For this reason, a large flow rate is required, and the heat capacity of the passing gas becomes larger than the heat capacity of the regenerator material, so that the performance of the regenerator 3 becomes low. Further, when the flow rate is large, the Reynolds number at the low temperature end 8 of the pulse tube becomes large and turbulent flow is likely to occur. Moreover, at the low temperature end 8, the Reynolds number tends to increase because the viscosity of the gas decreases as the temperature decreases. When turbulence occurs, the temperature distribution in the pulse tube 4 is disturbed,
This will reduce the performance of the refrigerator. An object of the present invention is to provide means for solving such a problem, and to realize a high performance pulse tube refrigerator.

【0005】[0005]

【問題点を解決するための手段】上記目的を達成するた
め、本発明によるパルス管冷凍機では、直径の異なる管
を順次連結する(図2)、もしくは、テーパー管を使用
することによって、パルス管室温端7の直径を低温端8
の直径より小さくなるように構成する。こうすることに
より、パルス管4の体積を減少させ、管内の気体を圧縮
するために蓄冷器3を通って流れ込む気体の量を少なく
することができる。一方、膨張仕事に伴う冷凍発生に寄
与するのは、室温端7に設けられたピストン11に押さ
れたり引かれたりして、パルス管低温端8に出入りする
気体であり、これは低温端8の直径を従来の場合と同じ
にしておけば、同じ量の冷凍を発生する。すなわち、単
位流量あたりの発生冷凍量を向上させ、前述の問題点を
解決することができる。また、パルス管低温端8付近に
直径の小さな細管10を挿入し、流路径を小さくしてレ
イノルズ数を小さくすることは有効である。この方法
は、本発明の発明者等が、特許出願第02−17078
7号に記載した方法と類似の方法である。以上の記述
は、パルス管室温端7にピストン(可動プラグ)11を
設けて膨張仕事を回収する方式のパルス管冷凍機に関す
るものであるが、同様にオリフィス型パルス管冷凍機に
も本発明によるパルス管の構造と細管の挿入とを適用す
ることが可能である。
In order to achieve the above object, in the pulse tube refrigerator according to the present invention, pulses having different diameters are sequentially connected (FIG. 2) or a tapered tube is used. The diameter of the tube room temperature end 7 is set to
Is smaller than the diameter of. By doing so, the volume of the pulse tube 4 can be reduced and the amount of gas flowing through the regenerator 3 for compressing the gas in the tube can be reduced. On the other hand, what contributes to the generation of freezing due to the expansion work is the gas that enters and leaves the low temperature end 8 of the pulse tube by being pushed or pulled by the piston 11 provided at the room temperature end 7, which is the low temperature end 8. If the diameter of is the same as in the conventional case, the same amount of refrigeration is generated. That is, it is possible to improve the amount of refrigeration generated per unit flow rate and solve the above-mentioned problems. Further, it is effective to insert a thin tube 10 having a small diameter in the vicinity of the low temperature end 8 of the pulse tube to reduce the channel diameter to reduce the Reynolds number. This method is disclosed by the inventors of the present invention in Patent Application No. 02-17078.
This method is similar to the method described in No. 7. The above description relates to the pulse tube refrigerator of the type in which the piston (movable plug) 11 is provided at the room temperature end 7 of the pulse tube to recover the expansion work, but similarly, the present invention also applies to the orifice type pulse tube refrigerator. It is possible to apply the structure of pulse tubes and the insertion of capillaries.

【0006】[0006]

【実施例】図2の三段型パルス管の長さを、室温端7側
より120mm、120mm、40mmとし、直径を6mm、1
6mm、25mmとする。このパルス管の性能を図1の従来
型パルス管(直径25mm、長さ280mm)と比較する。
簡単のため、室温端7を300K、低温端8を20Kと
して、温度勾配は一定とする。気体と管壁との熱交換は
無視できるほど小さいとする。また、作業気体はヘリウ
ムガスとする。図3は各部分でのレイノルズ数を臨界レ
イノルズ数(円管なので2300)で割った値を示して
いる。(a)の従来型パルス管では、約100Kより低
温部分では臨界レイノルズ数を超え乱流が発生するが、
(b)の三段型パルス管では約60K付近まで臨界レイ
ノルズ数以下の値である。
EXAMPLE The length of the three-stage pulse tube in FIG. 2 is 120 mm, 120 mm, 40 mm from the room temperature end 7 side, and the diameter is 6 mm, 1
6mm and 25mm. The performance of this pulse tube is compared with the conventional pulse tube of FIG. 1 (diameter 25 mm, length 280 mm).
For simplicity, the room temperature end 7 is 300K and the low temperature end 8 is 20K, and the temperature gradient is constant. The heat exchange between the gas and the tube wall is negligibly small. The working gas is helium gas. FIG. 3 shows a value obtained by dividing the Reynolds number in each part by the critical Reynolds number (2300 because it is a circular tube). In the conventional pulse tube of (a), turbulent flow exceeds the critical Reynolds number at a temperature lower than about 100K, but
In the three-stage pulse tube of (b), the value is below the critical Reynolds number up to around 60K.

【0007】次に、低温端8付近に外径1mm、肉厚10
μm のニッケル製の細管10を挿入する。この場合の通
過するヘリウムガスの熱容量を細管の熱容量で割った比
が図4に示される。約60K以下ではヘリウムガスの熱
容量が充分大きいため、ヘリウムガスと細管との熱交換
は充分小さく、よってパルス管4内のヘリウムガスが断
熱的サイクルを描くことの妨げとはならない。ここで
は、直径の異なる三種類の直管を連結した構造となって
いるが、前述のようにテーパー管を利用しても同様の効
果が得られることは明かである。
Next, in the vicinity of the low temperature end 8, an outer diameter of 1 mm and a wall thickness of 10
A nickel capillary 10 of μm is inserted. The ratio of the heat capacity of the passing helium gas in this case divided by the heat capacity of the capillaries is shown in FIG. Since the heat capacity of helium gas is sufficiently large at about 60 K or less, heat exchange between the helium gas and the thin tube is sufficiently small, and therefore, the helium gas in the pulse tube 4 does not prevent the adiabatic cycle from being drawn. Here, the structure is such that three types of straight pipes having different diameters are connected, but it is clear that the same effect can be obtained by using a tapered pipe as described above.

【0008】[0008]

【発明の効果】本発明によるパルス管冷凍機では、発生
する冷凍量を維持したまま、低温端からパルス管に出入
りする気体量を少なくすることができ、また、低温端付
近の細管の働きも加わってパルス管内での乱流の発生が
防止され、蓄冷器の効率も向上し、高性能なパルス管冷
凍機を実現できる。
In the pulse tube refrigerator according to the present invention, the amount of gas flowing into and out of the pulse tube from the low temperature end can be reduced while maintaining the generated refrigeration amount, and the function of the thin tube near the low temperature end is also improved. In addition, the generation of turbulence in the pulse tube is prevented, the efficiency of the regenerator is improved, and a high-performance pulse tube refrigerator can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のオリフィスパルス管冷凍機を示す図。FIG. 1 is a diagram showing a conventional orifice pulse tube refrigerator.

【図2】本発明による三段型パルス管を備えた冷凍機。FIG. 2 shows a refrigerator equipped with a three-stage pulse tube according to the present invention.

【図3】パルス管内のレイノルズ数の比較により本発明
の効果を示す図。
FIG. 3 is a diagram showing an effect of the present invention by comparing Reynolds numbers in pulse tubes.

【図4】ヘリウムガスと細管との熱容量比を示す図であ
る。
FIG. 4 is a diagram showing a heat capacity ratio between helium gas and a thin tube.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 切替え弁 3 蓄冷器 4 パルス管 5 オリフィスまたは絞り弁 6 バッファ容器 7 室温端 8 低温端 9 冷却水 10 細管 11 ピストン 1 compressor 2 switching valve 3 regenerator 4 pulse tube 5 orifice or throttle valve 6 buffer container 7 room temperature end 8 low temperature end 9 cooling water 10 thin tube 11 piston

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591100921 耿 ▲ちー▼全 埼玉県和光市広沢2番1号 理化学研究所 国際交流会館A−101 (72)発明者 湯山 純平 神奈川県厚木市森の里2−28−2 (72)発明者 粕谷 雅彦 神奈川県茅ヶ崎市室田1−15−52 ハイ ツ・カワバタ1−202 (72)発明者 耿 ▲ちー▼全 神奈川県茅ヶ崎市矢畑64−2−304 グリ ーンハイムイヌキ (72)発明者 後藤 英一 神奈川県藤沢市辻堂東海岸3−9 湘南ハ イムFE305 ─────────────────────────────────────────────────── ─── Continuation of the front page (71) Applicant 591100921 Kaya ▲ Chi ▼ All 2-1, Hirosawa, Wako City, Saitama Prefecture RIKEN A-101 (72) Inventor Junpei Yuyama 2 Morinosato, Atsugi City, Kanagawa Prefecture −28-2 (72) Inventor Masahiko Kasuya 1-15-52 Murota, Chigasaki City, Kanagawa Prefecture 1-202 Heights Kawabata (72) Inventor, Gaya ▲ Chi ▼ 64-2-304 Yahata, Chigasaki City, Kanagawa Prefecture Nunheim Inuki (72) Inventor Eiichi Goto 3-9 Tsujido East Coast, Fujisawa City, Kanagawa Shonanheim FE305

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パルス管がテーパー管で構成されるか、
もしくは、直径の異なる管を直径の小さなものから大き
なものへと順次連結することにより、室温端の直径が低
温端の直径より小さいことを特徴とするパルス管冷凍
機。
1. The pulse tube comprises a tapered tube,
Alternatively, a pulse tube refrigerator characterized in that a diameter at a room temperature end is smaller than a diameter at a low temperature end by sequentially connecting pipes having different diameters from a small diameter to a large diameter.
【請求項2】 パルス管低温端近傍に、乱流発生防止の
ため、作業流体の熱容量より充分小さな熱容量を有する
肉薄の細管を多数挿入したことを特徴とする請求項1記
載のパルス管冷凍機。
2. The pulse tube refrigerator according to claim 1, wherein a large number of thin thin tubes having a heat capacity sufficiently smaller than that of the working fluid are inserted near the low temperature end of the pulse tube to prevent turbulence. .
【請求項3】 パルス管室温端にピストンを設けたこと
を特徴とする請求項2記載のパルス管冷凍機。
3. The pulse tube refrigerator according to claim 2, wherein a piston is provided at the room temperature end of the pulse tube.
【請求項4】 パルス管室温端がオリフィスもしくは絞
り弁を介して大きなバッファ容器に連結することを特徴
とする請求項2記載のパルス管冷凍機。
4. The pulse tube refrigerator according to claim 2, wherein the room temperature end of the pulse tube is connected to a large buffer container through an orifice or a throttle valve.
JP11029291A 1991-05-15 1991-05-15 Pulse tube refrigerator Pending JPH0650619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11029291A JPH0650619A (en) 1991-05-15 1991-05-15 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11029291A JPH0650619A (en) 1991-05-15 1991-05-15 Pulse tube refrigerator

Publications (1)

Publication Number Publication Date
JPH0650619A true JPH0650619A (en) 1994-02-25

Family

ID=14532000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11029291A Pending JPH0650619A (en) 1991-05-15 1991-05-15 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JPH0650619A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398939C (en) * 2003-03-28 2008-07-02 中国科学院理化技术研究所 Heat exchange type heat insulating air relensing expansion refringerating machine
CN112212541A (en) * 2020-09-15 2021-01-12 中国科学院上海技术物理研究所 Single-compressor three-cold-head pulse tube refrigerator capable of freely adjusting input power and refrigerating capacity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100398939C (en) * 2003-03-28 2008-07-02 中国科学院理化技术研究所 Heat exchange type heat insulating air relensing expansion refringerating machine
CN112212541A (en) * 2020-09-15 2021-01-12 中国科学院上海技术物理研究所 Single-compressor three-cold-head pulse tube refrigerator capable of freely adjusting input power and refrigerating capacity

Similar Documents

Publication Publication Date Title
US10859293B2 (en) Mechanical vibration-isolated, liquid helium consumption-free and extremely low temperature refrigerating system
CN106524554B (en) Compact liquid-free helium 1K low-temperature refrigerating device suitable for ultrahigh vacuum environment
CN103175328B (en) High frequency pulse tube cooler
US6532748B1 (en) Cryogenic refrigerator
JPH0460351A (en) Freezer
US5345769A (en) Cryogenic refrigeration apparatus
CN104879968A (en) Low-temperature surface type heat exchanger adopting bypass throttling and precooling J-T refrigerator
CN113803905A (en) Efficient precooling and liquefying system of clearance type refrigerating machine
JPH0650619A (en) Pulse tube refrigerator
CN106091463A (en) 4K thermal coupling regenerating type low-temperature refrigerator based on controlled heat pipe and refrigerating method thereof
JP5468425B2 (en) Regenerator, regenerative refrigerator, cryopump, and refrigeration system
JP2003139427A (en) Cooling device
JPH1163697A (en) Separation type cryogenic cooler
JPS6129658A (en) Method of preventing closing of orifice for joule-thomson heat-exchange cooling machine, cooling machine and joule-thomson cryostat
CN114754508B (en) Very low temperature cold head evaporator capable of inhibiting super-current helium liquid film from climbing against gravity
CN2062805U (en) Coaxial pulse tube refrigerating machine with small hole and air vesicle
Blaurock et al. Compact four-valve pulse tube refrigerator in coaxial configuration
Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
CN1140741C (en) Pulse-tube refrigerator
CN108662804B (en) Pulse tube refrigerator adopting micro-channel bidirectional air inlet structure
CN117214224B (en) Closed circulation sample testing temperature changing system
CN114754507A (en) Composite low-temperature negative-pressure dividing wall type heat exchanger for extremely-low-temperature region refrigerator
JP2002235962A (en) Pulse-tube refrigerator
Kwon et al. Experimental Investigation of Hybrid System Pulse Tube and Active Magnetic Regenerator
Lee et al. The influence of gas velocity on surface heat pumping for the orifice pulse tube refrigerator