JPH06505527A - Materials made of carbon compounds - Google Patents

Materials made of carbon compounds

Info

Publication number
JPH06505527A
JPH06505527A JP5510546A JP51054693A JPH06505527A JP H06505527 A JPH06505527 A JP H06505527A JP 5510546 A JP5510546 A JP 5510546A JP 51054693 A JP51054693 A JP 51054693A JP H06505527 A JPH06505527 A JP H06505527A
Authority
JP
Japan
Prior art keywords
material according
carbon
materials
anthracite
carbon powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5510546A
Other languages
Japanese (ja)
Inventor
ニッケル・クラウス−ディートリッヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citadel Investments Ltd
Original Assignee
Citadel Investments Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citadel Investments Ltd filed Critical Citadel Investments Ltd
Publication of JPH06505527A publication Critical patent/JPH06505527A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2503/00Use of resin-bonded materials as filler
    • B29K2503/04Inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2503/00Use of resin-bonded materials as filler
    • B29K2503/04Inorganic materials
    • B29K2503/08Mineral aggregates, e.g. sand, clay or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processing Of Solid Wastes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 炭素化合物より成る材料 本発明は公知の全ての合成樹脂加工機械にて成形体、板、管、シートまたはこれ らの類似物に加工てきる炭素化合物製材料に関する。[Detailed description of the invention] Materials made of carbon compounds The present invention is applicable to all known synthetic resin processing machines such as molded bodies, plates, tubes, sheets or the like. This invention relates to carbon compound materials that can be processed into similar materials.

沢山の種々の純粋な合成樹脂、例えばポリビニル、ポリエチレン(低−および高 密度)、ポリプロピレン、ポリスチレン、ポリアミド等の他に価格の理由から一 部は合成樹脂とフィラーとの組合せも市場において特に重要に成っている。個々 の市場の要求を満たす為に、熱可塑性ポリマーより成るマトリックス中に埋め込 まれた極めて微細に調製した石炭粉末、コークス粉末および石油コークス粉末よ り成る組合せも公知に成っており、その際に若干の場合には石炭、コークスまた は石油コークスの極めて微細に調製した粉末を通例の意味でフィラーとしてたけ てなく、熱可塑性ポリマーの性質に決定的に影響を及ぼす該合成樹脂の必須成分 としても多かれ少なかれ見なされるでいる。Many different pure synthetic resins, such as polyvinyl, polyethylene (low and high Density), polypropylene, polystyrene, polyamide, etc., as well as other materials due to price reasons. The combination of synthetic resins and fillers is also becoming particularly important in the market. individual embedded in a matrix of thermoplastic polymers to meet the market demands of very finely prepared coal powder, coke powder and petroleum coke powder. Combinations consisting of coal, coke or is a very finely prepared powder of petroleum coke that can be used as a filler in the customary sense. An essential component of the synthetic resin that has a decisive influence on the properties of the thermoplastic polymer. It is more or less regarded as such.

ポリエチレンおよびコークスなる微細粉末フィラーより成る熱可塑的成形性材料 の製造方法も公知に成っている。この場合にはポリエチレン−マトリックスがそ の重量の少なくともI/4、好ましくは同じかまたは更に多い量の微細粉末コー クスか公知の方法で混入されている(ドイツ特許出願公開第1. 065. 6 07号明細書)。A thermoplastic moldable material consisting of polyethylene and a finely powdered filler of coke. The manufacturing method is also known. In this case the polyethylene matrix at least I/4 of the weight of the fine powder coat, preferably the same or more. (German Patent Application No. 1.065.6) No. 07 Specification).

石炭−またはコークス粉末は熱可塑的加工性材料中において最もしばしば使用さ れるフィラーか持つしばしば悪化させる材料特性を有しておらず、驚くへきこと に成形材料に改善された物理的性質(改善された引張強度、曲げ強度、伸び率お よび冷間破壊安定性)をもたらし、即ちその成形材料は良好に加工できる。石炭 −1石油−またはピッチコークスがポリエチレン−マトリックスに充填するのに 特に適していることが判っている。中でも天分の少ない石炭コークスからは、同 し割合のポリエチレンにて、曲げ試験の際に他のフィラー、例えば粉砕扱きをポ リエチレン−マトリックスに充填するのと異なり良好な安定性を示す良好な熱可 塑性板状物が成形される。同じ混合比の場合には、粉砕板岩−ポリエチレンは僅 かな曲げ応力によって既に板が割れる。Coal- or coke powder is the most frequently used material in thermoplastic processable materials. Surprisingly, it does not have the material properties that fillers often have improved physical properties (improved tensile strength, flexural strength, elongation and and cold fracture stability), i.e. the molding material can be processed well. coal -1 Petroleum or pitch coke is used to fill a polyethylene matrix. It has been found to be particularly suitable. Among them, coal coke with low natural properties has the same In polyethylene with a similar proportion, other fillers, e.g. Polyethylene - good thermoplastic material with good stability unlike filling matrix A plastic plate is formed. For the same mixing ratio, crushed sheetrock-polyethylene is slightly The plate already cracks due to the bending stress.

公知の方法では、コークス粉末が通例の方法で粉砕することによって製造される 。高度な微細度の粉末(6,400メッシュcm2)たけてなく粗い構造のもの (900メツシュcm2)でも高価値の成形材料に使用してもよい。In the known method, coke powder is produced by grinding in a customary manner. . Highly fine powder (6,400 mesh cm2) with extremely coarse structure (900 mesh cm2) may also be used in high-value molding materials.

ポリエチレンおよびコークス粉末より成る混合物に架橋剤、滑り剤および他の公 知の添加物、例えばUV安定剤、熱安定剤等も添加してもよい。A mixture of polyethylene and coke powder is added with crosslinking agents, slip agents and other additives. Known additives such as UV stabilizers, heat stabilizers, etc. may also be added.

公知の成形材料で製造された成形体の良好な溶接性が特に優れている。Particularly good weldability of molded bodies produced with known molding materials is outstanding.

60μm以下の直径を持つ微細なコークスを含有するポリエチレン、ポリプロピ レン、ポリブチレン、エチレン−プロピレン、エチレン−ブチレンまたはプロピ レン−ブチレンのコポリマーより成る成形材料も公知である。これらの場合には 、100部のポリマーを基準として200〜400部の微細な石油コークスが含 まれており、この石油コークスは少なくとも80%までが0.75〜50μmの 平均粒子径を有している(ドイツ特許出願公告第1,259,095号明細書) 。これらの成形材料は、石油コークス粒子の粒度分布には最終生成物において高 い構造強度を達成する為に臨界があるという知見に基づいている。この様なポリ マーに、直径が平均して50μmより大きい150〜200部以上の石油コーク ス粒子を添加することは実質的に不可能であった。更にこの生成物は、要求され る高い衝突−引張−および曲げ強度を有していない。石油コークスを微粉砕しそ して0.75〜約50μmの粒度の粒子をポリマーと混合した時に最も高い有利 な物理的性質か達成されることが判った。Polyethylene, polypropylene containing fine coke with a diameter of 60 μm or less ethylene, polybutylene, ethylene-propylene, ethylene-butylene or propylene Molding compositions consisting of lene-butylene copolymers are also known. In these cases , containing 200 to 400 parts of fine petroleum coke based on 100 parts of polymer. At least 80% of this petroleum coke has a particle size of 0.75 to 50 μm. (German Patent Application Publication No. 1,259,095) . These molding materials have a high particle size distribution of petroleum coke particles in the final product. It is based on the knowledge that there is a criticality for achieving high structural strength. This kind of poly 150 to 200 parts or more of petroleum coke with an average diameter of more than 50 μm It was virtually impossible to add particles. Furthermore, this product is It does not have high impact-tensile- and bending strengths. Finely crush petroleum coke The highest advantage is obtained when particles with a particle size of 0.75 to about 50 μm are mixed with the polymer. It was found that some physical properties were achieved.

公知の成形材料を製造する為には、約10−0.2の溶融係数および約50゜0 00〜700,000の分子量を有する通例のあらゆるポリオレフィンまたは共 重合体ポリオレフィンを使用することができる。To produce the known molding composition, a melting coefficient of about 10-0.2 and a melting coefficient of about 50° Any customary polyolefin or copolymer having a molecular weight between 00 and 700,000 Polymeric polyolefins can be used.

石油コークスを公知の成形材料で使用する前に微粉砕しそしてか焼することは、 コークス部分をボールミル、塵芥用ミル、ハンマーミル、遠心分離機で粉砕する ことによって、水蒸気または空気で表面の方へ泡立てることにょて、回転羽根( Pa l Imann粉砕装置)の遠心分離作用によって、超音波懸濁によって または0.0254cmまたはそれ以下の間隔て対向する鋼鉄製ロールを使用す ることによって達成される。Pulverizing and calcining petroleum coke before use in known molding materials Grind the coke portion using a ball mill, garbage mill, hammer mill, or centrifuge. By bubbling steam or air towards the surface, the rotating impeller ( By the centrifugal action of Pal Imann grinding device) and by ultrasonic suspension. or using opposing steel rolls spaced 0.0254 cm or less apart. This is achieved by

石油コークスの硬度は特に比較的高い灰分含有量の場合に顕著であり得る−例え ば、モース硬度目盛で7.8〜8−ので、−ト述の種類の一つでの石油コークス の粉砕は、微粉砕装置の速やかな摩耗をもたらしそしてそれ故に粉砕物中に金属 −1鉄−または鋼鉄残さをもたらし、これらが厄介であり且つ除くのに多大な費 用を必要とするかまたはあらゆる用途分野で受入られない性質の成形材料をもた らす。The hardness of petroleum coke can be particularly pronounced at relatively high ash contents - e.g. For example, petroleum coke of one of the types mentioned above has a hardness of 7.8 to 8 on the Mohs hardness scale. grinding leads to rapid wear of the milling equipment and therefore metal in the grinding material. -1 iron- or steel residues, which are troublesome and costly to remove. or have molding materials of a nature that is unacceptable for any field of application. Ras.

合成樹脂のフィラーどして特別に粉砕した石炭を製造する方法も公知に成ってい るっ二の場合には硬質炭、例えば無煙炭を非酸化性雰囲気で、平均粒度が2゜5 μmより大きくなくそして少なくとも90%が51zmより小さいという粒度分 布か特に存在するように微粉砕する(ドイツ特許出願公開第1,592,914 号明細書)。There is also a known method for producing specially pulverized coal using synthetic resin fillers. In the case of Runi, hard coal, such as anthracite, is heated in a non-oxidizing atmosphere with an average particle size of 2°5. Particle size not larger than μm and at least 90% smaller than 51zm (German Patent Application No. 1,592,914) No. Specification).

これらの公知の石炭の状態は=一般に、市販の石炭を微粉砕あるいは破砕するこ とによって、特に自動粉砕装置で得られ、その際に流動剤を用いて運転する粉砕 装置は、商品名“1(urr ican−Mueh!en”て一般に知られてい る様なものを用いる。この粉砕装置は微粉砕の際に空気および自由酸素を含有し ていない。何故ならばぞうしないと流動剤が、例えばゴムおよび他のポリマーに おいて使用される粉砕さねた石炭にマイナスの影響を示すからである。コークス の破砕の際にあるいは結合を断ぢ切る、:どに展づき非常に高い反応性の粒子が 生じるので、石炭の公知の粉砕法の場合には非酸化性雰囲気が必要とされる。こ れは粉砕の間に牛し7、この様に断ぢ切られた結合が空気酸素と反応しそしてそ れによってそ第1の及1.乙、性か(1与されるという結果を伴う。しかしなが ら断ち切られた結合を充分に保護する場合には、この結合がポリマーの他のポリ マーの成分と反応しそ(−で優れた物理的性質を持つポリマーあるいはゴムをも たらす。These known conditions of coal are generally those obtained by pulverizing or crushing commercially available coal. and, in particular, grinding obtained in automatic grinding equipment and operated with flow agents. The device is commonly known under the trade name “1 (urr ican-Mueh!en)”. Use something that looks like this. This grinding equipment contains air and free oxygen during fine grinding. Not yet. This is because fluidizing agents, for example rubber and other polymers, This is because it has a negative impact on the pulverized coal used in the process. coke When fragmenting or breaking bonds: highly reactive particles spread out everywhere. As such, a non-oxidizing atmosphere is required in the case of known methods of comminution of coal. child During the grinding process, the bonds thus broken react with atmospheric oxygen and the By this, the first effect is 1. B, sex (1) with the result of being given.However, If the broken bonds are sufficiently protected, they can be Polymers or rubbers with excellent physical properties that react with the polymer components (-) Tarasu.

微粉砕する際の酸素の影響は不活性ガス雰囲気によ−〕で回避され、これに対し で分級の際には生成物の重量を基準として約0.1−1%のステアリン酸亜鉛を はら蒔くことによって回避される。後者の場合、個々の粒子を、比較的に均一な 被覆か得られるまで、ステアリン酸亜鉛で覆う。この被覆を、保護されたコーク ス粉末か加硫性天然ゴムに添加される時に溶融する。The influence of oxygen during pulverization is avoided by an inert gas atmosphere; During classification, about 0.1-1% zinc stearate is added based on the weight of the product. Avoided by sowing. In the latter case, individual particles are separated into relatively uniform Cover with zinc stearate until a coating is obtained. This coating is coated with protected coke. The powder melts when added to vulcanizable natural rubber.

天然ゴムの添加物どしての他に、公知の方法に従って調製される石炭は慣用の合 成樹脂の為のフィラーとしても使用できる。In addition to natural rubber additives, coal prepared according to known methods can be It can also be used as a filler for synthetic resins.

コークス混合物を製造する別の方法も例えばドイツ特許出願公開第1,719. 517号明細書で公知に成っており、この場合には合成樹脂の混入の為に使用さ オ]る粉砕された粒子の場合には表面積の著しい増加が生しる。押出成形および 射出成形によって管、板、円盤および他の成形体を製造する為の合成樹脂は、導 電性炭素材料の混入によって帯電防止性を有する合成樹脂(ドイツ特許出願公開 第2,017,410号明細書)並びに天然−または合成グラファイトを有機系 液体中で空気の排除下に粉砕することによって製造される親油性グラファイトを 含有する変性合成樹脂である。Other methods for producing coke mixtures are also available, for example as described in German Patent Application No. 1,719. 517, and in this case it is used for mixing synthetic resins. In the case of ground particles, a significant increase in surface area occurs. extrusion and Synthetic resins for producing tubes, plates, discs and other molded bodies by injection molding are Synthetic resin that has antistatic properties due to the inclusion of electrically conductive carbon material (German patent application published) No. 2,017,410) as well as natural or synthetic graphite. Lipophilic graphite produced by grinding in liquid with exclusion of air It is a modified synthetic resin containing.

これら全ての材料は、石炭またはコークスの調製に多大な費用が掛り、それによ って製造される材料のm位重量当たりの価格が、これらの材料が有している全て の長所を価格の為に狭い範囲でしか使用できない程に高いという欠点を有してい る。All these materials are expensive to prepare for coal or coke and therefore The price per meter weight of the materials produced is However, it has the disadvantage of being so expensive that it can only be used in a narrow range. Ru.

更に、合成樹脂4′、たは合成樹脂/フィラー−組み合わせの能力がリサイクル する為にはいずねにしても僅かしかないという欠点がある。勿論、従来公知の合 成樹脂/フィラー−組み合わせの場合には一般に著しい品質の損傷が、既にリサ イクルした合成樹脂を一次合成樹脂と一緒にしか再利用できないかまたはこれと 混合することなしに低価値の成形体の製造の為にしか使用されないという結果を 伴う。Furthermore, the ability of synthetic resin 4' or synthetic resin/filler combinations to be recycled The disadvantage is that there are only a few resources available to do so. Of course, conventionally known combinations In the case of plastic/filler combinations, there is generally significant quality damage that has already been Is it possible to reuse recycled synthetic resins only together with primary synthetic resins? The result is that it is only used for the production of low-value moldings without mixing. Accompany.

更に、このような材料は多大な費用用りで処理したり、殊に廃棄したりてきない という重大な問題がある。材料は例えば塵堆積物を殆と形成せず、燃焼した際に 排ガス中に有害物質を発生する。これらの欠点は、合成樹脂の使用が定常的に増 加しているので、ますます重要に成っている。例えば1990年代には西トイソ 国(東1−イツを含まない)では、増加する化学繊維を含めて9百万トンを逼か に超える合成樹脂か加工されていた。合成樹脂市場の8%/年の公式の成長率の 場合、かっての百ドイツ地域の合成樹脂の消費が2000年代までに千9百万ト ン/年に成長する。工場および家庭からの古い合成樹脂廃棄物の処理が従来には 解決されておらずそしてそれのリサイクルは西ドイツでも目下のところ約7%だ けであるので、これたけも、政府によって可決された包装材料法規に記載の条件 では既に1996年以前でも解決できない課題であり得る。これに対して、アル ミニウノ、は383%、古紙は407%および古いガラスは432%のリサイク ル率である。生分解性でない合成樹脂を単に廃棄した場合には、空気および水中 ての物質転化を待つ長期にわたる不確かな運命を持つ塵捨て場が生じる。Moreover, such materials cannot be processed at great expense and especially cannot be disposed of. There is a serious problem. The material, for example, forms few dust deposits and when burned Generates harmful substances in exhaust gas. These drawbacks are due to the steady increase in the use of synthetic resins. It is becoming more and more important as For example, in the 1990s, Western Toiso In Japan (excluding East Japan), 9 million tons, including the increasing amount of chemical fibers, were produced. It was processed with synthetic resin exceeding The official growth rate of the synthetic resin market is 8%/year. In this case, the consumption of synthetic resins in the former 100 German regions will increase to 19 million tons by the 2000s. Grows per year. Traditionally, the disposal of old synthetic resin waste from factories and households unresolved and its recycling is currently about 7% in West Germany. As such, Koretake also meets the conditions stated in the Packaging Materials Regulations passed by the government. This may already be an issue that cannot be solved even before 1996. On the other hand, Al Mini Uno recycles 383%, used paper 407% and old glass 432%. rate. If non-biodegradable synthetic resins are simply disposed of, they may be exposed to air and water. A dumping ground with a long and uncertain fate awaits the transformation of all materials.

多くの合成樹脂を例えば塵芥燃焼装置で燃やすことも、フィラーにより多量の灰 分廃棄物によって装置に負荷が掛りそして燃焼の際に生しる、有毒なダイオキ、 ノンおよび他の物質を含む煙道ガスが重大な困難をもたらす。が−る毒物学的に 重大な物質群は燃焼の間に250〜400″Cの温度範囲を通る際に放出されそ して煙道ガスを通して大気に達する。か−る危惧から、特殊ゴミの為の特殊な塵 芥燃焼装置を配置することが急務であるが、目下の国家的に未だ殆と実施されて いない。It is also possible to burn many synthetic resins in, for example, garbage combustion equipment, which produces a large amount of ash due to the use of fillers. The equipment is loaded with waste and the toxic rhubarb produced during combustion. Flue gases containing carbon dioxide and other substances pose significant difficulties. Toxicologically A significant group of substances is likely to be released during combustion as it passes through a temperature range of 250-400"C. and reaches the atmosphere through the flue gas. Special dust for special garbage due to concerns about There is an urgent need to install mustard combustion equipment, but it is still not being implemented nationally. not present.

中でも合成樹脂製の包装材並びに家庭廃棄物、例えばボールペン、フィルム、容 器、カニスタ、子供の玩具並ひに混ざって発生する家庭ごみの内の合成樹脂繊維 を材料毎に選択するのに特に費用か掛かる。これらの全ての合成樹脂は一次合成 樹脂または二次合成樹脂−即ち既に少なくとも一度はリサイクルされている合成 樹脂−一−より成る。これらは熱−および放射線負荷の為に並びにリサイクル過 程での溶融および再顆粒化によって一次合成樹脂に比へて著しく品質の低下を示 す。分離に問題があるので、合成樹脂を材料毎に分離しない(ポリエチレン、ポ リプロピレン、ポリスチレン、ポリカルボナート、ポリエステル、ポリアミド等 )かまたは−次合成樹脂および二次合成樹脂を一緒にリサイクルするがまたは合 成樹脂が中でもそれの最初の用途で顔料、安定剤、可塑剤またはその他の転化物 を含有している場合には、経済的理由がらこの種の合成樹脂を再利用するのが禁 止される程の追加的品質の損傷が結果的に生しる。それ故に生じる合成樹脂の僅 かな部分しかりサイクルされない。上記の品質損傷なしてのリサイクルは材質毎 の合成樹脂の場合にしか行われない。これらでも用いるフィラーあるいは着色材 の種類が未だ相当に相違しており、それによる品質の損傷を回避できない。Among these, synthetic resin packaging materials and household waste, such as ballpoint pens, films, containers, etc. Synthetic resin fibers found in household waste mixed with utensils, canisters, and children's toys. It is especially expensive to select each material. All of these synthetic resins are primary synthetic Resins or secondary synthetic resins - i.e. synthetics that have already been recycled at least once Consists of resin. These are used due to heat and radiation loads as well as recycling overload. Due to melting and re-granulation during the process, the quality deteriorates significantly compared to primary synthetic resins. vinegar. Synthetic resins should not be separated by material (polyethylene, polyethylene, etc.) due to separation problems. Lipropylene, polystyrene, polycarbonate, polyester, polyamide, etc. ) or - the secondary synthetic resin and the secondary synthetic resin are recycled together, or The first use of the resin, among others, as pigments, stabilizers, plasticizers or other conversion products. , it is prohibited to reuse this type of synthetic resin for economic reasons. This results in additional quality damage that may be stopped. Therefore, only a small amount of synthetic resin is produced. Only the kana part is not cycled. The above recycling without quality damage is possible for each material. This is only done for synthetic resins. Fillers or colorants used in these There are still considerable differences in the types of products, and the resulting quality damage cannot be avoided.

例えはドイツ国において構造物中に存在する“Dualen Systems( 二元系)”の助けをもっても、未来に全部の一次合成樹脂製造の内の8〜10% たけを十分に材料毎に分けられたもの(例えばポリエチレン)、更に10〜13 %か類似材料毎に分けられたものそして約10%が混合された汚れたものとする ことは困難である。For example, in Germany, "Dualen Systems" ( Even with the help of "binary systems", 8-10% of all primary synthetic resin production will be Bamboo shoots are sufficiently divided by material (e.g. polyethylene), and further 10 to 13 % or similar materials, and approximately 10% is mixed and soiled. That is difficult.

リサイクルされた合成樹脂はその必然的に低下した品質、欠点のあるデザイン並 びに高過ぎる価格の為に要求される市場受容性を有していない。更に二次合成樹 脂の使用を著しく制限する法律上の規約およびDIN規格が存在している。Recycled synthetic resins inevitably suffer from reduced quality, flawed design and quality. and do not have the required market acceptance due to their excessively high prices. Furthermore, secondary synthetic trees There are legal regulations and DIN standards that significantly restrict the use of fats.

それら全てによって、集め、分離し、再加工し、顆粒化し、運搬しそして再販売 価格の為の多大な経費が合成樹脂のリサイクルが最小なおのに制限されている更 に、製造元または取扱者の回収義務の為に一次合成樹脂の市場価格が25〜30 %たけ高く成り、集めそして分級することによる著しい負荷およびそれから生じ るか\る物質の廃棄処理の費用が重なる。All of which collect, separate, reprocess, granulate, transport and resell Recycling of synthetic resins is limited to a minimum due to the large expense due to price changes. In recent years, the market price of primary synthetic resins has increased by 25 to 30 %, significant loads due to collecting and classifying and resulting from The cost of disposing of such materials will be high.

合成樹脂のリサイクルの従来の方法は、もはやリサイクルできずそして熱的に破 壊するのにももはや使用できない、かってリサイクルした合成樹脂の山が遅かれ 早かれもたらされる。Traditional methods of recycling synthetic resins are no longer recyclable and thermally destructive. A pile of once-recycled synthetic resin that can no longer be used for destruction will be destroyed sooner or later. It will come sooner or later.

これに対して本発明の課題は、価格的に有利に製造でき存在するほり全ての合成 樹脂加工機械および一装置で加工でき、炭素化合物より成る公知の材料に少なく とも匹敵する良好な機械的、物理的および加工特性を持つだけでなく、更に価値 を下げる品質損傷がなく再利用できそして問題なく且つ環境を汚染せずに処理て きる炭素化合物製材料を提供することである。In contrast, the problem of the present invention is to synthesize all of the existing products that can be manufactured economically. It can be processed with a resin processing machine and one equipment, and it can be processed with less Not only has good mechanical, physical and processing properties comparable to It can be reused without any quality damage and can be processed without problems and without polluting the environment. The object of the present invention is to provide a carbon compound material that can

本発明者は、炭素化合物が、非常に早い衝突速度にて微細粒子状炭素粉末に破砕 された有害物質−および灰分不含の石炭、石炭コークスまたは石油コークスの他 に炭化水素基含有熱可塑性ポリマーも含有しており、該ポリマーが石炭粉末の微 細粒子と、材料加工装置の密閉系での高速衝突微粉砕の際に開放される結合エネ ルギーによって別の添加物なしに、37,500kJ/kg以上の発熱量にて化 学的に結合されて、価値を下げる品質の損傷なしに何度もリサイクルできる材料 Mをもたらす炭化水素基含有熱可塑性ポリマーも含有することによって、上記の 課題が解決されることを見出した。The inventor has discovered that carbon compounds are crushed into fine particulate carbon powder at very high collision speeds. - and other hazardous substances such as ash-free coal, coal coke or petroleum coke It also contains a thermoplastic polymer containing hydrocarbon groups, and this polymer Fine particles and the bonding energy released during high-speed impact pulverization in the closed system of material processing equipment. With a calorific value of more than 37,500 kJ/kg without any other additives, Materials that are chemically combined and can be recycled many times without quality damage that reduces their value By also containing a hydrocarbon group-containing thermoplastic polymer that provides M, the above I found that the problem was solved.

本発明にて、固体燃料、例えばコークス、炭素、石炭、石油コークス、特に無煙 炭の状態の炭素を熱エネルギー(燃焼)として利用する以前に、これらの燃料物 質が有害物質および灰分を殆と含まずそして非常に早い衝突速度で微細粒子石炭 粉末に調製する限り、沢山の新(,7いおよび種々の用途がもたらされる。本発 明者は、石炭粉末のこれらの細かい粒子を密1す系でのその高速衝突破砕の際に 結合エネルギーが放出され、更に添加物なしに熱可塑性ポリマーと化学的に材料 に結合される。これらの材料およびそれから製造される生成物は、従来に使用さ れたポリマーに比へて改善された物理的−および工業的性質を有している。この 新規の材料は品質低下なしに何度もリサイクルできそして次に燃焼によって高い 発熱量で熱エネルギーに添加され、その際に燃焼室または燃焼の際に生じる煙道 ガスも許容できる程度以上に有害物質を含有していないことは驚くべきことであ る。In the present invention, solid fuels such as coke, carbon, coal, petroleum coke, especially smokeless Before using carbon in the form of charcoal as thermal energy (combustion), these fuels Fine-grained coal with a very high impact velocity and almost no harmful substances and ash As long as it is prepared as a powder, it brings many new and various uses. The authors have shown that during its high-speed impact crushing in a dense system, these fine particles of coal powder Bonding energy is released and the material is chemically bonded to thermoplastic polymers without further additives. is combined with These materials and the products made from them are It has improved physical and industrial properties compared to conventional polymers. this The new material can be recycled many times without quality loss and then burned to high The calorific value is added to the thermal energy and the combustion chamber or flue created during combustion. It is surprising that gas does not contain more than acceptable amounts of harmful substances. Ru.

循環系に存在する新規の材料は環境を汚染しない顕著なエネルギーの保存物でも ある。A new material in the circulatory system is a remarkable energy store that does not pollute the environment. be.

このエネルギー保存物から熱エネルギーへの変換は、本発明によって何度もリサ イクルした後に環境を汚染せずに殆と無料で、廃棄場所または塵芥用燃焼装置を 必要とせずに行うことができる。This conversion of stored energy into thermal energy can be reused many times by the present invention. Almost free of charge, without polluting the environment, after cycling You can do it without needing it.

燃料の微粉砕は原則として高速衝突微粉砕に適する微粉砕装置中で行うことがで きる。しかしながら特に有利な中でも経済的で且つ価格的に有利な微粉砕はドイ ツ特許第3,802,260号明細書(D2)に従って渦動式砕解機中で達成さ れることか明らかになっている。この様な渦動式砕解機は対抗回転する放射状に 連続する環状羽根を用いて、環状羽根相互の間の環状空間に渦動領域が形成され るように作動し、その渦動領域で燃料粒子が妨げに成る金属摩耗を生じることな しに、高速で衝突し合う。平均して各燃焼粒子は放射状に連続する渦動領域を通 過する際に他の粒子とのハロの衝突を経験する。その際になかでも最後から二番 目の環状羽根と外側の環状羽根との間の最後の渦動領域で、またそれを超えた領 域でも音速の近辺の衝突速度が生しる。In principle, pulverization of fuel can be carried out in a pulverizer suitable for high-speed impact pulverization. Wear. However, among the most advantageous, economical and cost-effective fine pulverization is in Germany. Achieved in a vortex crusher according to Patent No. 3,802,260 (D2) It is clear that this will happen. This type of vortex crusher uses counter-rotating radial Using successive annular vanes, a vortex region is formed in the annular space between the annular vanes. The fuel particles in the vortex region do not cause interfering metal wear. Then, they collide at high speed. On average, each combustion particle passes through a radially continuous vortex region. The halo experiences collisions with other particles as it passes. At that time, the second to last In the last vortex region between the eye annular vane and the outer annular vane, and beyond it. Collision velocities near the speed of sound occur even in the region.

渦動式砕解機の内部での粉砕時間は、例えばボールミルまたは他の微粉砕装置中 ての燃料の粉砕時間について測定して、0.5秒であり、極めて短く、他の粉砕 中でと同様にそれによって価格的に有利な調製だけでなく、本質的な方法技術的 利益も得られる。何故ならば放出される結合エネルギー(主としてイオンまたは 電子)か調製装置の金属構造物を介してそれ程迅速に底部に導かれないからであ る。The grinding time inside a vortex mill is different from that in e.g. a ball mill or other fine grinding device. The measured crushing time for all types of fuel was 0.5 seconds, which was extremely short and compared to other types of crushing. In it as well as by it a price-advantaged preparation as well as an essential method technical You can also make a profit. This is because the bond energy released (mainly ions or This is because the electrons are not guided to the bottom as quickly through the metal structure of the preparation device. Ru.

L述の種類の渦動式砕解機中の材料粉砕は従つ−〔、他の粉砕方法に比較して他 の重要な長所を有している。微粉砕の際の早い衝突速度の為に、中でも、燃料粒 子自体が互いに衝突しそして壁まt−は他の類似物に対する遠心分離力によ−) て遠心分離されないかまたはボールミル中てのボールミルによって表面緊密にさ れることによって、燃料粒子を押出機中てポリマーの炭化水素と一緒にした際に 、本発明の材料の物質品質を改善する為に殆と完全に利用される高い結合エネル ギーか開放されそして充分に維持される。説明した高速度衝突微粉砕の場合には 、例えばドイツ特許出願公開第1,592.914号明細書に従う剪断−または 引裂微粉砕の場合と違って、最初に最も弱い結合エネルギーか断ち切られる。」 −述の高速衝突微粉砕の場合には、常に燃料粒子相互の最も弱い結合エネルギー しか開放されず、その結果燃料が安定な沢山の微細粒子の状態に崩壊される。何 故こうして微細粉末として生じるかは、その微細粒子中に固体の結合品質および 新規の材料の卓越した性質をもたらす、それぞれのポリマーと化学結合する。The material crushing in a vortex crusher of the type mentioned above follows - [, compared to other crushing methods. It has important advantages. Due to the high impact velocity during pulverization, the fuel particles The children themselves collide with each other and the walls or t- due to centrifugal forces on other similar objects) surface that is not centrifuged or closely ground by ball milling. When the fuel particles are combined with the polymer hydrocarbons in the extruder, , the high binding energy that is almost completely exploited to improve the material quality of the materials of the invention. Ghee is open and well maintained. In the case of the high-velocity impact pulverization described, , for example according to German Patent Application No. 1,592.914 - or Unlike in tear milling, the weakest bond energies are broken first. ” - In the case of high-speed collisional pulverization mentioned above, the weakest bonding energy between fuel particles is always Only the fuel is released, so that the fuel is broken down into a stable mass of fine particles. what Therefore, whether it is produced as a fine powder depends on the bonding quality of the solid in the fine particles and the Chemically bonding with the respective polymers results in the novel materials' outstanding properties.

高速衝突微粉砕は、水素イオン/電子および炭素−電子の為の励起エネルギーを 提供し、従ってこれか自由軌道−高いエネルギー水準−を有している。これは温 度に依存している。それ故に本発明によれば高速衝突微粉砕および押出機中ての 熱供給下での活性化炭素粉末とポリマーとの混合も一部は、放出される結合エネ ルギーか空気の酸素と反応するのを防止する為に、不活性ガス雰囲気で実施する 。更に押出機の前またはその中ての熱エネルギーの供給によって炭素粉末の反応 し易さが向上する。本発明者は、押出機中で結合した材料をもたらす炭素粉末と ポリマーとの最良の加工温度か240〜300℃であることを見出した。High-speed collisional milling increases the excitation energy for hydrogen ions/electrons and carbon-electrons. therefore, it has free orbitals - high energy levels. This is warm It depends on the degree. According to the invention, therefore, high-speed impact milling and extrusion The mixing of activated carbon powder with polymers under heat supply also contributes in part to the bonding energy released. Carry out in an inert gas atmosphere to prevent reaction with oxygen in the air. . Further reaction of the carbon powder by supplying thermal energy before or in the extruder Improved ease of use. The inventor has developed a carbon powder and We have found that the best processing temperature with polymers is 240-300°C.

この温度が過度に低下する場合には、良好な導電性を含めた新規材料の価値ある 材料特性は得られない。If this temperature drops too much, novel materials with good electrical conductivity are valuable. Material properties are not available.

殆と音速での高速衝突微粉砕での上述の調製は、無煙炭の場合には、粒子間隙に 36μm以下の直径の孔の構造で表面積に変化をもたらし、結果的に微粒子の表 面積かポール−または振動ミルで調製した無煙炭(粒度は40μmで分級した) の10倍程に増加する。高速衝突微粉砕の場合の表面積は2.6m2/gの替わ りに、28m2/gてありそしてホール−または振動ミルで調製する場合に2. 8m2/gである。孔は、音速限界の近くの高速衝突微粉砕の場合に衝突て30 0°Cまての温度が短時間に生じそしてそれによって無煙炭の揮発性成分か放出 されることて生しる。それ故に、無煙炭をこの微細孔が吸湿性にする(6%まで 水を吸収し、一部は周囲の空気からも吸湿する)ことに特に注意するへきである 。この微細孔中に侵入しそしてそこに固着する湿分の能力はそれぞれの液体の分 子構造によって制限される。H+−イオン、または少なくともH+−双極子、は 孔の中に相応する場所に付着しており、その結果0H−−イオンまたはOH−双 極子がそこにもはや付くことができない。(この事象は時間に依存している)押 出機で更に加工する以前に無煙炭の貯蔵時間を伸ばすと、OH−一基を持つ分子 の吸収性か相応して低下する。この事象は押出成形によって炭素粉末、殊に無煙 炭粉末をポリマーて接合する際に重要な役割を果たしそしてそれ故に注目しなけ れはならない。The above-mentioned preparation with high-speed impact milling at almost sonic speeds, in the case of anthracite, The structure of pores with a diameter of 36 μm or less changes the surface area, resulting in a surface area of fine particles. Anthracite prepared in area or pole or vibrating mill (graded to 40 μm particle size) It increases by about 10 times. In the case of high-speed impact pulverization, the surface area is 2.6 m2/g. 28 m2/g and 2.0 m2/g when prepared in a hall or vibratory mill. It is 8m2/g. The hole is impinged in the case of high-speed impact pulverization near the sonic limit. Temperatures up to 0°C occur within a short period of time and the volatile components of the anthracite are thereby released. What happens is what happens. Therefore, these micropores make anthracite hygroscopic (up to 6% Special attention should be paid to the fact that water is absorbed (some of it is also absorbed from the surrounding air). . The ability of moisture to penetrate into these micropores and stick there is determined by the fraction of each liquid. Limited by child structure. The H+-ion, or at least the H+-dipole, is attached at the appropriate locations in the pores, resulting in 0H-- ions or OH- The pole can no longer attach there. (This event is time dependent) If anthracite is stored for a longer period of time before being further processed in the extraction machine, molecules with one OH- group The absorbency of the material decreases accordingly. This phenomenon is caused by extrusion molding of carbon powder, especially smokeless Plays an important role in bonding charcoal powder with polymers and therefore deserves attention. It should not be.

例えばH+−イオンの砕解した無煙炭の“特に有利なこと”の内、水またはフェ ノールを用いての吸収実験によって確認できる事柄は、本発明の材料の場合にポ リマーの−CH2CH2−鎖の水素が無煙炭の炭素鎖−C−C−C−と化学的に 結合することを推断せざるを得ない。For example, among the "particular advantages" of H+-ion crushed anthracite, water or The things that can be confirmed by absorption experiments using Nor The hydrogen in the -CH2CH2- chain of the remer is chemically connected to the carbon chain -C-C-C- of the anthracite. I have no choice but to conclude that they will combine.

ポリマーとしては本発明によれば、例えば同じ方向に回転するスクリューを持つ 二軸スクリュー押出機て240°C〜300°Cて溶融する純粋なポリエチレン あるいはポリプロピレンを用いることができる。溶融物中に調製された炭素粉末 、好ましくは200〜300°Cに加熱された微粒子の砕解した無煙炭を連続的 に配量供給する。無煙炭の割合を40〜80M%の間の種類の顆粒間で変更する 。生じる押出成形物を顆粒化し、品質低下することなしに貯蔵できそして殆と全 ての公知の合成樹脂加工機械または一装置で市場性のある製品(例えば成形体、 板、管、ンートおよび、耐薬品性および紫外線安定性の為に化学廃棄物および特 殊廃棄物を処理するための容器、タンク、ピンおよびカニスタにも)に加工でき る。According to the invention, the polymers may have, for example, screws rotating in the same direction. Pure polyethylene melted at 240°C to 300°C in a twin screw extruder Alternatively, polypropylene can be used. Carbon powder prepared in the melt , preferably 200 to 300°C, finely crushed anthracite is continuously heated to supply in quantity. Varying the proportion of anthracite between granules of types between 40-80M% . The resulting extrudate can be granulated and stored without loss of quality and almost entirely Any known synthetic resin processing machine or device can produce marketable products (e.g. molded bodies, Plates, pipes, tracts and chemical waste and specialty materials for chemical resistance and UV stability It can also be processed into containers, tanks, pins and canisters for the treatment of special wastes. Ru.

微細粒子に調製された炭素粉末としては殆と以下の分析値を持つ、灰分および硫 黄分の少ない特別の無煙炭が適している一炭素含を量 94%以上 灰分含有量 35%以下 硫黄分含を量 15%以下 揮発性成分 2.5%以下 発熱量 35,500kJ/kg この材料は粉末化した無煙炭70重量%とポリエチレン30重量%より成る。Most carbon powder prepared into fine particles has the following analytical values, ash and sulfur content. A special anthracite with low yellow content is suitable, with a carbon content of 94% or more. Ash content: 35% or less Sulfur content: 15% or less Volatile components: 2.5% or less Calorific value 35,500kJ/kg This material consists of 70% by weight of powdered anthracite and 30% by weight of polyethylene.

本発明によれば、この微細粒状に調製された無煙炭粉末はポリエチレンと化学的 に結合して新規の材料をもたらす。このものは純粋のポリエチレンに比較して以 下の性能値を有している。According to the present invention, this finely granulated anthracite powder is chemically combined with polyethylene. to bring about new materials. Compared to pure polyethylene, this material has It has the performance value below.

性質 INN ポリエチレン 新規材料(標準タイプ)引張強度 53455  25N/mm” 35N/mm’伸び率 53455 6% 2% 曲げ強度 53452 18N/mm2 44N/mm”E−モデュール 53 457 84ON/mm2246ON/mm2衝撃強度 53453 破断じな い 破断しない軟化温度 l5O30678°C107°Cピッカート 導電性 2・10”Ω 2−10”Ω 冷間衝撃強度 破断しない 破断しない別のデータおよび比較はグラフから読み 取れる。Properties INN Polyethylene New material (standard type) Tensile strength 53455 25N/mm” 35N/mm’ Elongation rate 53455 6% 2% Bending strength 53452 18N/mm2 44N/mm"E-Module 53 457 84ON/mm2246ON/mm2 Impact strength 53453 No breakage Softening temperature without breaking l5O30678°C107°C Pickert Conductivity 2・10”Ω 2-10”Ω Cold impact strength No rupture Other data and comparisons can be read from the graph. I can take it.

この性能データは従来技術によって公知に成っている殆との材料の性能データよ りも優れている。屋外暴露の際に新規材料の強度は純粋なPEに比べてそれ程顕 著に低下しない。衝撃強度は500時間後でも完全に維持されている。This performance data is similar to that of most materials known in the prior art. The quality is also excellent. During outdoor exposure, the strength of the new material is less pronounced compared to pure PE. No significant decline. Impact strength is fully maintained even after 500 hours.

本発明によれば微細粒子炭素粉末は材料の使用基準次第で10μm〜90μmの 粒度に砕解させそして分級する。新規材料の重量割合20〜7oχであり、この 場合には100重量おあての差の値がポリマーより成る。According to the invention, the fine-grained carbon powder has a particle diameter of 10 μm to 90 μm, depending on the material usage criteria. Disintegrate and classify to particle size. The weight ratio of the new material is 20 to 7oχ, and this In some cases, a difference value of 100% by weight consists of a polymer.

新規の材料の発熱量か以下の表に示した通り通例の燃料の発熱量よりも上にある ことが特に重要である。The calorific value of the new material is higher than that of conventional fuels as shown in the table below. This is particularly important.

物質 発熱量 石炭 21〜33kJ/kg 天然ガス 37kJ/kg 新規材料 38.5kJ/kgまで(ポリマーの重量%次第)それ故に新規材料 は困粋なしにリサイクリ(、た後でも発電所、セメント工場、石灰・焼成所であ るいは塵芥燃焼装置で燃やすことによって処理し、環境を〆Fi染しない熱エネ ルギーを得ることができる。従来には、特別な塵芥用燃焼装置で合成樹脂を燃や す為に1トン当たり400DM(ドイツ・マルタ)まで支払わなければならなか った。これと反対に、発電所、セメント工場、石灰焼成場所等に供給することに よっであるいは供給者に高い発熱量を支払うことによって達成することができる 。90%以上の高い炭素含有量である為に、か−る材料廃棄物は鋼鉄の品質を改 善する製鉄所にとっても興味が持たれる。暖房装置の汚染または煙道ガスへの許 容できる程度以上の有害物質の混入が生じない。Substance calorific value Coal 21-33kJ/kg Natural gas 37kJ/kg New material up to 38.5 kJ/kg (depending on weight percentage of polymer) therefore new material can be easily recycled (even after being used in power plants, cement factories, limestone and calcining plants). Waste is disposed of by burning it in a garbage combustion device, which provides heat energy that does not pollute the environment. You can earn Rugi. Traditionally, synthetic resins were burned in special garbage combustion equipment. You have to pay up to DM400 (Germany/Malta) per ton for It was. On the other hand, it is necessary to supply power plants, cement factories, lime burning sites, etc. This can therefore be achieved by paying a higher calorific value to the supplier. . Due to its high carbon content of more than 90%, such material waste can improve the quality of steel. It is also of interest to steel mills. Contamination of heating equipment or exposure to flue gases No harmful substances will be mixed in beyond what can be tolerated.

高い強度高い温度安定性および高い導電性を持つ顆粒材料または粉末材料の加工 性の特殊品質が、周囲に対して完全に密封された調製系において該材料を不活性 ガス雰囲気でまたは3%まで残留酸素含有量の不活性ガス雰囲気で調製しそして 更に加工するまで空気と接触することなしに気密に充填して貯蔵する。Processing of granular or powder materials with high strength, high temperature stability and high electrical conductivity The special quality of the material makes it inert in a preparation system that is completely sealed to the surroundings. prepared in a gas atmosphere or in an inert gas atmosphere with a residual oxygen content of up to 3% and It is stored in an airtight container without contact with air until further processing.

有害物質の少ない処理は、添加物、安定剤、導電体または顔料としてそれぞれに 添加される熱可塑性ポリマーが、材料またはそれから製造された製品を燃やす際 に煙道ガスが有毒な物質を含有していないかまたは許容できる程度以上に有害物 質を含有していないような物質だけが得られる。Processing with less harmful substances can be used as additives, stabilizers, conductors or pigments, respectively. When the added thermoplastic polymer burns the material or the product made from it The flue gas does not contain toxic substances or is toxic to an acceptable extent. Only substances that contain no substances are obtained.

本発明者は、例えば70重量%の粉末状無煙炭および30重量%のポリエチレン より成る材料が最高37°Cの通常の雰囲気温度のもとて化学薬品によって攻撃 されずそして紫外線安定性である(試験時間2000時間、無煙炭粉末粒度範囲 60μm)ことを見出した。The inventor has proposed, for example, 70% by weight of powdered anthracite and 30% by weight of polyethylene. Materials consisting of are attacked by chemicals at normal ambient temperatures up to 37°C. UV stable (test time 2000 hours, anthracite powder particle size range) 60 μm).

電子的促進手段で本発明の材料を架橋する。二とによってこのものから製造され る製品の強度および熱安定性が更に顕著に向上される(例えば管、容器、ビン、 成形部材等の場合)。熱可塑性は既に架橋度と平行して減少する。更に架橋した 材料はもはやリサイクルに適していないが、有害物質の少ない高い発熱量の燃料 として環境に優しい処理の為に顕著な長所を与えない。The materials of the invention are crosslinked by means of electronic promotion. manufactured from this by The strength and thermal stability of the products (e.g. tubes, containers, bottles, (For molded parts, etc.) Thermoplasticity decreases already in parallel with the degree of crosslinking. further cross-linked Materials are no longer suitable for recycling, but high calorific value fuels with fewer harmful substances As it does not offer any significant advantages for environmentally friendly processing.

以下に、新規材料の本質的性質をパラメータを考虜してグラフによって説明する 。Below, the essential properties of the new material will be explained using graphs while considering the parameters. .

図1は、60μmの粒度の無煙炭の割合を増やした場合の本発明の材料の引張強 度(=弾性限界での応力)が増加することを示している。100%の比較用ベー スとして純粋のポリエチレン(PE)を使用する。無煙炭の分析値は、請求項2 に特徴付けられているものに相当する。無煙炭粉末の粒度を小さくした場合には 、引張強度が僅かだけである。Figure 1 shows the tensile strength of the material of the invention with increasing proportion of anthracite with a particle size of 60 μm. This shows that the stress (=stress at the elastic limit) increases. 100% comparison base Pure polyethylene (PE) is used as the base. The analysis value of anthracite is as claimed in claim 2. corresponds to that characterized by. When the particle size of anthracite powder is reduced, , the tensile strength is only low.

図2は、新規材料の強度の向上が無煙炭の重量割合に依存していることが判る。Figure 2 shows that the improvement in strength of the new material is dependent on the weight proportion of anthracite.

ペースとして25.2N/mm”の純粋のPEおよび32.6N/mm2の純粋 のPPを使用する。無煙炭はここでも60μmの粒度を有している。ポリマー成 分としてPEを含有する材料がポリマー成分としてPPを含有する材料よりも明 らかに高い引張強度を示すことに興味か持たれる。本発明に従って調製した無煙 炭は明らかにPPとよりもPEと安定して反応する。両方の材料の場合、引張強 度が無煙炭の重量割合の増加と別に増加する。25.2N/mm” pure PE and 32.6N/mm2 pure as pace Use PP. The anthracite here again has a particle size of 60 μm. polymer composition Materials containing PE as a component are more transparent than materials containing PP as a polymer component. It is interesting that it shows a clearly high tensile strength. Smokeless prepared according to the invention Charcoal apparently reacts more stably with PE than with PP. For both materials, the tensile strength The degree increases independently of the increase in the weight proportion of anthracite.

図3では、新規材料の耐衝撃性が材料中の無煙炭の色々な微細度に依存している ことか判る。原則として90μmの無煙炭粉末の粒度の場合の耐衝撃性は無煙炭 か30重量%まで完全に維持される。無煙炭の重量%の増加と共に、耐衝撃性か 低下しそして60%の無煙炭の場合に20%以下の値に達する。新規材料の無煙 炭の割合が多い場合には耐衝撃性については粒度が小さいものを選択るのが有利 である。Figure 3 shows that the impact resistance of the new material depends on the different fineness of the anthracite in the material. I understand that. As a general rule, the impact resistance of anthracite powder with a particle size of 90 μm is that of anthracite. or 30% by weight. With the increase of weight percentage of anthracite, the impact resistance and reaches values below 20% in the case of 60% anthracite. Smokeless new material When the proportion of charcoal is high, it is advantageous to choose one with a small particle size for impact resistance. It is.

図4によると、本発明の材料の耐衝撃性は屋外暴露によって変化しない。これに 対してPEは250時間後に既に脆性かある。工業界においてPEの欠点は安定 剤の添加によって一般に相殺される。本発明の材料はこの添加物なして間に合図 5によれば、無煙炭の重量割合は導電性にも影響する。導電性は無煙炭の重量割 合60%の場合に最大値に達する(これは表面抵抗の最小値に相当する)。According to FIG. 4, the impact resistance of the material of the invention does not change with outdoor exposure. to this In contrast, PE is already brittle after 250 hours. The disadvantages of PE in the industrial world are stability generally offset by the addition of agents. The material of the invention can be used without this additive. 5, the weight proportion of anthracite also influences the conductivity. Conductivity is based on the weight of anthracite The maximum value is reached for a total of 60% (this corresponds to the minimum value of the surface resistance).

図6によると材料の引張強度は何度リサイクルしても実質的に完全に維持される 。伸び率は上昇する。材料の三回のリサイクルの後に耐衝撃性が50%に低下す る。切り欠き強度はリサイクルの回数と比例して低下する。両方の特性値は四つ の生成物について5回のリサイクルの後でも未だ完全に満足である。軟化温度は 僅かしか低下しない。リサイクル回数に影響されず新規材料の高い発熱量は無変 化のままである。According to Figure 6, the tensile strength of the material is maintained virtually completely no matter how many times it is recycled. . The growth rate will increase. Impact resistance decreases to 50% after recycling the material three times Ru. Notch strength decreases in proportion to the number of recycles. Both have four characteristic values. The product is still completely satisfactory even after 5 recycles. The softening temperature is It decreases only slightly. The high calorific value of the new material remains unchanged regardless of the number of times it is recycled. It remains as it is.

図7か示している通り、無煙炭の重量割合は新規材料の軟化温度にも影響を及は す。100%に当たる純粋のPEの78°Cの軟化温度から出発して、70%の 重量割合か粒度60μmの無煙炭である材料の軟化温度は殆と137%で、約1 07°Cである。As shown in Figure 7, the weight proportion of anthracite does not affect the softening temperature of the new material. vinegar. Starting from a softening temperature of 78°C for 100% pure PE, 70% The softening temperature of the material, which is anthracite with a weight percentage or particle size of 60 μm, is almost 137%, about 1 It is 07°C.

IA:2ffOユ循画科叫 888 g 88 ♀ 8 & 8 ロ “9期輩 ”1)逐9T:)IA: 2ffO Yu circulation picture class cry 888 g 88 ♀ 8 & 8 b “9th grade senior ”1) Every 9T:)

Claims (11)

【特許請求の範囲】[Claims] 1.公知の合成樹脂加工機械にて成形体、板、管、シート等に加工できる、炭素 化合物より成る材料において、該炭素化合物が、非常に早い衝突速度にて微細粒 子状炭素粉末に破砕された有害物質−および灰分不含の石炭、石炭コークスまた は石油コークスの他に炭化水素基含有熱可塑性ポリマーも含有しており、該ポリ マーが石炭粉末の微細粒子と、材料加工装置の密閉系での高速衝突微粉砕の際に 開放される結合エネルギーによって別の添加物なしに、37,500kJ/kg 以上の発熱量にて化学的に結合されて、価値を下げる品質の損傷なしに何度もリ サイクルできる材料をもたらす炭化水素基含有熱可塑性ポリマーも含有すること を特徴とする、上記の材料。1. Carbon that can be processed into molded bodies, plates, tubes, sheets, etc. using known synthetic resin processing machines. In materials made of compounds, the carbon compounds form fine particles at very high collision speeds. Harmful substances crushed into carbon particles - and ash-free coal, coal coke or In addition to petroleum coke, it also contains a thermoplastic polymer containing hydrocarbon groups. During high-speed collision pulverization with fine particles of coal powder in a closed system of material processing equipment, The bond energy released is 37,500 kJ/kg without any other additives. It is chemically bonded with a heating value of more than Also contains thermoplastic polymers containing hydrocarbon groups resulting in a cyclable material The above material characterized by: 2.微細粒子状に調製された炭素粉末としてほぼ以下の分析値を持つ好ましくは 灰分および硫黄の少ない無煙炭を使用する請求項1に記載の材料:炭素含有量> 94% 灰分含有量<2% 揮発性成分<2.5% 硫黄含有量<1.5%2. Preferably, the carbon powder prepared in fine particles has the following analytical values: The material according to claim 1, which uses anthracite with low ash and sulfur content: carbon content> 94% Ash content <2% Volatile components <2.5% Sulfur content <1.5% 3.微細粒子状に調製された炭素粉末を材料の使用条件次第で、10μm〜90 μmの粒度に粉砕しそして材料の重量割合の20〜70%であり、その際に10 0%までの重量割合の差がポリマーより成る請求項1または2に記載の材料。3. Depending on the usage conditions of the material, the carbon powder prepared in the form of fine particles is milled to a particle size of μm and 20 to 70% of the weight proportion of the material, with 10 3. Material according to claim 1, in which a difference in weight proportions of up to 0% consists of polymer. 4.熱可塑性ポリマーとして好ましくはポリエチレンまたはポリプロピレンを使 用する請求項1〜3のいずれか一つに記載の材料。4. Preferably polyethylene or polypropylene is used as thermoplastic polymer. The material according to any one of claims 1 to 3 for use. 5.320m/秒までの高い衝突速度の炭素粉末を好ましくは小さい金属摩耗性 の渦動式砕解機中で砕解する請求項1〜4のいずれか一つに記載の材料。5. Carbon powder with high impact velocity up to 320 m/s preferably has low metal abrasiveness 5. The material according to claim 1, which is disintegrated in a vortex disintegrator. 6.外部雰囲気に対して完全に密閉された調製系において不活性ガス雰囲気また は3%までの残留酸素含有量の不活性ガス雰囲気で調製しそして更に加工するま で空気雰囲気と接触することなしに気密に充填貯蔵する請求項1〜5のいずれか 一つに記載の方法。6. Inert gas atmosphere or prepared in an inert gas atmosphere with a residual oxygen content of up to 3% and for further processing. Any one of claims 1 to 5, wherein the product is filled and stored airtight without contacting with an air atmosphere. The method described in one. 7.微細粒子の砕解された炭素粉末と選択されたポリマーとの結合をを押出機中 で200℃〜300℃の加工温度としての熱エネルギーの供給によって行う請求 項1〜6のいずれか一つに記載の材料。7. The finely divided carbon powder is combined with the selected polymer in an extruder. Claims made by supplying thermal energy as processing temperature at 200℃~300℃ The material according to any one of items 1 to 6. 8.供給された微細な砕解炭素粉末および選択したポリマーを押出機中で200 N/mm2の作業圧のもとで結合させそして加工する請求項1〜7のいずれか一 つに記載の材料。8. The supplied finely ground carbon powder and the selected polymer were combined in an extruder for 200 min. Any one of claims 1 to 7, which is bonded and processed under a working pressure of N/mm2. Materials listed in. 9.微細粒子の砕解された炭素粉末を押出機に添加する以前に作業温度に加熱す る請求項1〜8のいずれか一つに記載の材料。9. The finely divided carbon powder is heated to working temperature before being added to the extruder. A material according to any one of claims 1 to 8. 10.それぞれに添加する熱可塑性ポリマーが添加物として安定剤、導電体また は顔料を、材料またはそれから製造された製品を燃焼させる際に煙道ガスが毒性 物質を含有していないかまたは許容できる範囲を超えて含有していないような物 質しか含有していない請求項1〜9のいずれか一つに記載の材料。10. The thermoplastic polymer added to each can be used as an additive to stabilize, conductive or The flue gas is toxic when burning pigments, materials or products manufactured from them. Items that do not contain substances or do not contain substances beyond the permissible range 10. A material according to any one of claims 1 to 9, containing only a substance. 11.好ましくは60重量%の粉末無煙炭および40重量%のポリエチレンより 成る請求項1〜10のいずれか一つに記載の材料。11. Preferably from 60% by weight powdered anthracite and 40% by weight polyethylene 11. A material according to any one of claims 1 to 10.
JP5510546A 1991-12-04 1992-11-26 Materials made of carbon compounds Pending JPH06505527A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4140025.9 1991-12-04
DE4140025A DE4140025C2 (en) 1991-12-04 1991-12-04 Material consisting of carbon compounds
PCT/EP1992/002724 WO1993012169A1 (en) 1991-12-04 1992-11-26 Material composed of carbon compounds

Publications (1)

Publication Number Publication Date
JPH06505527A true JPH06505527A (en) 1994-06-23

Family

ID=6446277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5510546A Pending JPH06505527A (en) 1991-12-04 1992-11-26 Materials made of carbon compounds

Country Status (13)

Country Link
EP (1) EP0571586A1 (en)
JP (1) JPH06505527A (en)
CN (1) CN1076433A (en)
AU (1) AU666898B2 (en)
CA (1) CA2101650A1 (en)
DE (1) DE4140025C2 (en)
FI (1) FI933456A0 (en)
HU (1) HUT76624A (en)
NO (1) NO932776D0 (en)
PL (1) PL170735B1 (en)
RU (1) RU2089566C1 (en)
TW (1) TW235305B (en)
WO (1) WO1993012169A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10152189B4 (en) * 2001-10-23 2006-03-23 Hubert Rosing Process for the production of semi-finished products from ultra-high molecular weight polyethylene with anthracite, semifinished products thus produced and their use
RU2491302C2 (en) * 2008-10-13 2013-08-27 Закрытое акционерное общество "Макполимер" Electro-conductive composite material based on polypropylene and globular carbon nano-filler
US20210102071A1 (en) * 2017-04-05 2021-04-08 Ohio University Coal plastic composites

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL98847C (en) * 1955-08-29
NL285994A (en) * 1961-11-30
GB1115973A (en) * 1965-02-12 1968-06-06 Exxon Research Engineering Co Coke fillers
US3404120A (en) * 1965-08-02 1968-10-01 Marathon Oil Co Polymer compositions containing coal which has been ground in a non-oxidizing atmosphre
US3846523A (en) * 1967-12-12 1974-11-05 American Mfg Co Inc Method of forming expanded composite materials in the absence of recognized blowing agents
DE2017410A1 (en) * 1970-04-11 1971-10-28 Conradty Fa C Plastic for the production of pipes, plates, discs and other shaped bodies by extrusion and injection molding
DE3802260A1 (en) * 1988-01-27 1989-08-10 Kasa Technoplan ROTATING DISINTEGRATION DEVICE

Also Published As

Publication number Publication date
AU666898B2 (en) 1996-02-29
NO932776L (en) 1993-08-03
TW235305B (en) 1994-12-01
PL300205A1 (en) 1994-02-21
PL170735B1 (en) 1997-01-31
CN1076433A (en) 1993-09-22
NO932776D0 (en) 1993-08-03
WO1993012169A1 (en) 1993-06-24
CA2101650A1 (en) 1993-06-05
AU3082792A (en) 1993-07-19
FI933456A (en) 1993-08-03
RU2089566C1 (en) 1997-09-10
EP0571586A1 (en) 1993-12-01
DE4140025C2 (en) 1994-06-30
HUT76624A (en) 1997-10-28
FI933456A0 (en) 1993-08-03
DE4140025A1 (en) 1993-06-09
HU9302106D0 (en) 1994-03-28

Similar Documents

Publication Publication Date Title
JP7267382B2 (en) biomass solid fuel
US6165238A (en) Fuel pellet and method for its production
JP2005538862A (en) Process for forming fiber pellets and fiber pellets
CN105695028A (en) Solid fuel
US20100116181A1 (en) Method of making cellulose/plastic pellets having a low plastic content
KR101134809B1 (en) Method for producing pulverized waste plastic
Obidiegwu et al. The effect of walnut shell powder on the properties of polypropylene filled composite
Li et al. Mechanical properties of high‐density polyethylene/scrap rubber powder composites modified with ethylene–propylene–diene terpolymer, dicumyl peroxide, and silicone oil
JPH06505527A (en) Materials made of carbon compounds
JP2006305802A (en) Regenerated synthetic resin composition and its manufacturing method
US20220348837A1 (en) Processing of low rank coal
KR20210104098A (en) Method for producing pellets for firing industrial furnaces
WO2002051969A1 (en) Fuel pellet and method for its production
JP4998657B2 (en) How to blow plastic into the furnace
JP2022532538A (en) Manufacturing method and additive composition of additives for bitumen conglomerate with high mechanical performance
JP2011056789A (en) Method for manufacturing waste plastics pulverized powder, and ore reducing agent or solid fuel
US5726238A (en) Material composed of carbon compounds
NL2022251B1 (en) Process for preparing pellets for firing an industrial furnace
US20230123647A1 (en) Injection Molding and Molding Compositions Therefore
JP2024520431A (en) Powdered alternative fuel
WO2023242731A1 (en) Agglomerated product for use in the steelmaking process
JPH08276426A (en) Method and apparatus for recycling thermally curable resin waste
JP2005314747A (en) Method for blowing plastics into furnace
JP2005336603A (en) Method for blowing plastic into furnace
EA045643B1 (en) METHOD FOR OBTAINING ADDITIVE FOR BITUMEN CONGLOMERATES WITH HIGH MECHANICAL CHARACTERISTICS AND COMPOSITION OF ADDITIVE