JPH0649575B2 - Method for producing piezoelectric ceramic powder - Google Patents

Method for producing piezoelectric ceramic powder

Info

Publication number
JPH0649575B2
JPH0649575B2 JP14642784A JP14642784A JPH0649575B2 JP H0649575 B2 JPH0649575 B2 JP H0649575B2 JP 14642784 A JP14642784 A JP 14642784A JP 14642784 A JP14642784 A JP 14642784A JP H0649575 B2 JPH0649575 B2 JP H0649575B2
Authority
JP
Japan
Prior art keywords
ceramic powder
piezoelectric ceramic
lead
zirconium
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14642784A
Other languages
Japanese (ja)
Other versions
JPS6126514A (en
Inventor
猛 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14642784A priority Critical patent/JPH0649575B2/en
Publication of JPS6126514A publication Critical patent/JPS6126514A/en
Publication of JPH0649575B2 publication Critical patent/JPH0649575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、フィルタ,振動子,着火素子,遅延素子,ブ
ザー等の各種電子部品に用いられる圧電セラミックス粉
末の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a piezoelectric ceramic powder used in various electronic components such as filters, vibrators, ignition elements, delay elements, buzzers and the like.

従来例の構成とその問題点 従来、圧電セラミックス粉末は、PbO,TiO,Z
rOの3種の主成分と、MgO,Nb,Zn
O,MnO等の各種添加物を目標の特性に応じた組成
に配合し、湿式のボールミルで混合し、乾燥させ、仮焼
して固相反応させ、湿式のボールミルで粉砕し、乾燥さ
せて製造する。この工程のフローチャートを第1図に示
す。この方法は単純混合法と呼ばれる。この方法の欠点
は、組成の均一度合がミクロな観点からすると悪く、高
純度なセラミック粉末が得にくい。また微粒子が得られ
ない等があげられる。
Configuration of Conventional Example and its Problems Conventionally, piezoelectric ceramic powders are composed of PbO, TiO 2 , Z
Three main components of rO 2 and MgO, Nb 2 O 5 , Zn
Various additives such as O and MnO 2 are blended in a composition according to the target characteristics, mixed in a wet ball mill, dried, calcined to cause a solid phase reaction, pulverized in a wet ball mill, and dried. To manufacture. A flowchart of this process is shown in FIG. This method is called the simple mixing method. The disadvantage of this method is bad from the viewpoint of microscopic uniformity of composition, and it is difficult to obtain high-purity ceramic powder. In addition, it is also possible that fine particles cannot be obtained.

そこで、これらの欠点を補うセラミックス粉末の製造方
法に、液相法の一種である共沈法がある。この方法は、
溶液にとけている状態から沈でん剤を加えて同時に沈で
んさせるため、各元素の混合度合も均一で、しかも高純
度で微粒子が得られる。しかし、この共沈法の欠点は、
沈でんが生成するPH領域が各元素によって異なるた
め、実用上のセラミック粉末のように多成分の構成元素
を同時に沈でんさせることが難しいことである。
Therefore, a co-precipitation method, which is a type of liquid phase method, is known as a method for producing a ceramic powder that compensates for these drawbacks. This method
Since the precipitation agent is added from the state of being melted to the solution and the particles are simultaneously precipitated, the mixing degree of each element is uniform, and the fine particles can be obtained with high purity. However, the disadvantage of this coprecipitation method is that
Since the PH region in which precipitation is generated differs depending on each element, it is difficult to simultaneously precipitate the multi-component constituent elements such as practical ceramic powder.

チタン酸ジルコン酸鉛系の圧電材料組成にMnOを添
加すると、焼結性の改善,機械的品質係数(Q)の向上
等の利点がある。しかし、この組成を共沈法で作ろうと
した場合、Pb2+が沈でんを生成するPH領域は7〜1
1,Zr4+は4以上,Ti4+は3以上,Mn2+は10以
上であり、最初にPH3以下の強酸にPb,Ti,Z
r,Mnのそれぞれの出発原料をとかしておいて、沈で
ん剤として通常アンモニア水を用いるが、このアンモニ
ア水を滴下してPHを10〜11にしなければならず、
大量のアンモニア水が必要となり、反応容器も大型とな
り実用的でない。
Addition of MnO 2 to the lead zirconate titanate-based piezoelectric material composition has advantages such as improved sinterability and improved mechanical quality factor (Q M ). However, if this composition is attempted to be produced by the coprecipitation method, the PH region in which Pb 2+ produces precipitation is 7-1.
1, Zr 4+ is 4 or more, Ti 4+ is 3 or more, Mn 2+ is 10 or more, and Pb, Ti, Z is first added to a strong acid of PH 3 or less.
Although ammonia water is usually used as a precipitating agent after each of the starting materials for r and Mn is melted, the pH of the ammonia must be 10-11 by dropping the ammonia water.
A large amount of ammonia water is required, and the reaction vessel becomes large, which is not practical.

発明の目的 本発明はかかる問題点に鑑み、液相法で実用的にチタン
酸ジルコン酸鉛系にマンガンを添加した圧電セラミック
ス粉末の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a method for producing a piezoelectric ceramic powder in which manganese is added to a lead zirconate titanate system by a liquid phase method.

発明の構成 この目的を達成するために本発明は、鉛,チタン,ジル
コニウムの各元素からなる複合物を共沈させ、これを仮
焼した後に、この粉末を水溶液に分散させ、硝酸マンガ
ン水溶液を添加して、沈でん剤にアンモニア水を用いて
沈でんさせることによりマンガンを添加することを特徴
とする圧電セラミックス粉末の製造方法である。また、
好適な実施態様としては、鉛,チタン,ジルコニウムの
各元素の出発原料に硝酸鉛,オルトチタン酸テトライソ
プロピル,オキシ硝酸ジルコニウムを用い、沈でん剤と
してアンモニア水溶液を用いて共沈させ、これを仮焼し
た後に、この粉末を水溶液に分散させ、硝酸マンガン水
溶液を添加して、沈でん剤にアンモニア水を用いて沈で
んさせることによりマンガンを添加することを特徴とす
る圧電セラミックス粉末の製造方法である。このように
する理由は、共沈法で作製したチタン酸ジルコン酸鉛の
微細な一次粒子または一次粒子が集まった二次粒子に、
マンガンを均一に分散させるためである。
To achieve this object, the present invention is to coprecipitate a composite of lead, titanium, and zirconium elements, calcining this, and then dispersing this powder in an aqueous solution to prepare an aqueous solution of manganese nitrate. A method for producing a piezoelectric ceramic powder, characterized in that manganese is added by adding and precipitating using ammonia water as a precipitating agent. Also,
In a preferred embodiment, lead nitrate, tetraisopropyl orthotitanate, and zirconium oxynitrate are used as starting materials for each element of lead, titanium, and zirconium, and coprecipitated using an aqueous ammonia solution as a precipitation agent, which is then calcined. After that, this powder is dispersed in an aqueous solution, an aqueous solution of manganese nitrate is added, and manganese is added by precipitating with ammonia water as a precipitating agent, which is a method for producing a piezoelectric ceramic powder. The reason for doing this is to use fine particles of lead zirconate titanate prepared by the coprecipitation method or secondary particles in which primary particles are collected,
This is for uniformly dispersing manganese.

実施例の説明 共沈法によりPbTi0.48Zr0.52+0.25wt%Mn
の組成の圧電セラミックス粉末を合成した。出発原
料として、関東化学(株)製の特級硝酸鉛(Pb(N
)同じく、EPオルトチタン酸テトライソプロ
ピル(〔(CHCHO〕Ti)、同じくGRオ
キシ硝酸ジルコニウム(ZrO(NO・2H
O)を用い、硝酸鉛およびオキシ硝酸ジルコニウムは
水溶液とし、オルトチタン酸テトライソプロピルは硝酸
水溶液に溶かし、目的の組成になるように3材料を秤量
し、混合硝酸水溶液とした。ミキサーを用いて、アンモ
ニア水の中に、撹拌しながら、前記混合硝酸液およびア
ンモニア水をPHが7〜8の範囲に調整しながら添加す
る。この操作で得た沈でん物を、過,洗浄した後、純
水中に分散させ、噴霧乾燥させた。この粉末を電気炉で
600℃2時間仮焼し、チタン酸ジルコン酸鉛を作製し
た。次に、ミキサーを用いて、アンモニア水溶液中に、
この仮焼粉末を分散させ、撹拌しながら、これに、関東
化家(株)製の特級硝酸マンガン(Mn(NO・n
O)水溶液をMnOとしての添加量が0.25wt%と
なる量だけ秤量し、PHがおよそ11の条件で添加し
た。こうして作製した沈でん物を過,洗浄し、乾燥さ
せた。本実施例の圧電セラミックス粉末の製造工程のフ
ローチャートを第2図に示した。
Description of Examples PbTi 0.48 Zr 0.52 O 3 +0.25 wt% Mn by coprecipitation method
A piezoelectric ceramic powder having a composition of O 2 was synthesized. As a starting material, special grade lead nitrate (Pb (N
O 3) 2) Similarly, EP tetraisopropyl orthotitanate ([(CH 3) 2 CHO] 4 Ti), likewise GR zirconium oxynitrate (ZrO (NO 3) 2 · 2H
2 O) was used to prepare an aqueous solution of lead nitrate and zirconium oxynitrate, tetraisopropyl orthotitanate was dissolved in an aqueous solution of nitric acid, and the three materials were weighed so as to have a desired composition to prepare a mixed aqueous solution of nitric acid. Using a mixer, the above-mentioned mixed nitric acid solution and aqueous ammonia are added to aqueous ammonia while stirring while adjusting the pH to a range of 7 to 8. The precipitate obtained by this operation was washed excessively, then dispersed in pure water and spray-dried. This powder was calcined in an electric furnace at 600 ° C. for 2 hours to produce lead zirconate titanate. Next, using a mixer, in an aqueous ammonia solution,
The calcined powder is dispersed and stirred, and then added to the special grade manganese nitrate (Mn (NO 3 ) 2 · n manufactured by Kanto Kajia Co., Ltd.
The H 2 O) aqueous solution was weighed in such an amount that the added amount of MnO 2 was 0.25 wt%, and was added under the condition that the PH was about 11. The precipitate thus prepared was washed, washed and dried. A flow chart of the manufacturing process of the piezoelectric ceramic powder of this embodiment is shown in FIG.

一方、比較のため、従来の圧電セラミックス粉末の製造
方法で粉末を作成した。出発原料として、一酸化鉛(P
hO),酸化チタン(TiO),酸化ジルコニウム
(ZrO),二酸化マンガン(MnO)を目標の組
成に秤量し、湿式でボールミル混合をし、乾燥させ、電
気炉で900℃で2時間仮焼し、湿式でボールミルで粉
砕し、乾燥させた。組成は、PbTi1-xZrx3+0.2
5wt%でx=0.51,0.52,0.53で行った。
また比較のために、本実施例と同様に共沈法で作製し
た、鉛,チタン,ジルコニウムの沈でん物を噴霧乾燥,
600℃仮焼後、二酸化マンガンを0.25wt%添加
し、湿式のボールミルで混合し、乾燥させた粉末も作製
した。これらの粉末を造粒,成形,焼成し、16mmφ,
0.5mmtの円板に加工し、銀電極を塗布、700℃で
焼付けし、シリコンオイル中で100℃で、3KV/mm
の直流電界をかけ30分間分極処理した。特性測定結果
を下表に示す。特性は組成によって異なるものである
が、本発明の方法による圧電セラミックス粉末は螢光X
線による元素分析の結果、組成ずれはおこしていないこ
とを確認した。また従来法において、MnOの添加を
仮焼後に行っても、混合前に添加した場合と特性は同等
であった。このように、本発明の方法によれば、従来法
の同組成のものに比べ、結合係数Kpが0.44→0.
54と23%ほど大きく向上した。
On the other hand, for comparison, a powder was prepared by a conventional piezoelectric ceramic powder manufacturing method. As a starting material, lead monoxide (P
hO), titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), and manganese dioxide (MnO 2 ) are weighed to a target composition, wet ball mill mixed, dried, and temporarily stored in an electric furnace at 900 ° C. for 2 hours. Baked, wet ball milled and dried. The composition is PbTi 1-x Zr x O 3 +0.2
It was carried out at x = 0.51, 0.52, 0.53 at 5 wt%.
For comparison, a precipitate of lead, titanium, and zirconium produced by the coprecipitation method as in this example was spray-dried,
After calcination at 600 ° C., 0.25 wt% of manganese dioxide was added, mixed by a wet ball mill, and dried powder was also prepared. These powders are granulated, molded and fired to obtain 16mmφ,
It is processed into a disk of 0.5 mmt, coated with a silver electrode, baked at 700 ° C, and in silicon oil at 100 ° C, 3 KV / mm.
Then, a direct current electric field of (3) was applied and polarization was performed for 30 minutes. The characteristic measurement results are shown in the table below. Although the characteristics vary depending on the composition, the piezoelectric ceramic powder produced by the method of the present invention is fluorescent X.
As a result of elemental analysis by lines, it was confirmed that there was no compositional deviation. In addition, in the conventional method, even if MnO 2 was added after calcination, the characteristics were the same as when added before mixing. As described above, according to the method of the present invention, the coupling coefficient Kp is 0.44 → 0.
This is a significant improvement of 54 and 23%.

また、比較例として行った、鉛とチタンとジルコニウム
を共沈し、仮焼した粉末に、従来法でMnOを添加し
た方法では、このような結合係数の向上は見られなかっ
た。鉛とチタンとジルコニウムを共沈させ、仮焼してチ
タン酸ジルコン酸鉛の粉末を作製し、この粉末に液相法
でマンガンを添加することによりはじめて、前記のよう
に結合係数Kpを著しく向上させることができた。共沈
法で得られる粉末は、仮焼温度がほぼ550℃以上でチ
タン酸ジルコン酸鉛のペロブスカイ相が形成され、従来
法に粉末がほぼ850℃以上でチタン酸ジルコン酸鉛の
ペロブスカイト相が形成されるのに比べ仮焼温度が低く
なる。共沈法の場合、仮焼温度は550℃〜700℃が
適当である。鉛,チタン,ジルコニウムの出発原料とし
て、他にも考えられるが、例えばチタンの出発原料とし
て、四塩化チタン(TiCl)水溶液等も考えられる
が、この場合PbClの沈でんが生成し、共沈が不均
一となり適当でない。硝酸鉛,オルトチタン酸テトライ
ソプロピル,オキシ硝酸ジルコニウムを出発原料に用い
るのが一番適当であった。
In addition, the method of adding MnO 2 to the powder obtained by coprecipitating lead, titanium, and zirconium and calcined as a comparative example by the conventional method did not show such an improvement in the coupling coefficient. Only by coprecipitating lead, titanium, and zirconium, and calcining to prepare a powder of lead zirconate titanate, and adding manganese to this powder by the liquid phase method, the coupling coefficient Kp is remarkably improved as described above. I was able to do it. The powder obtained by the coprecipitation method has a perovskite phase of lead zirconate titanate formed at a calcination temperature of about 550 ° C. or higher, and a perovskite phase of lead zirconate titanate formed on the conventional method at a temperature of about 850 ° C. or higher. However, the calcination temperature becomes lower than that. In the case of the coprecipitation method, the calcination temperature is preferably 550 ° C to 700 ° C. Other starting materials for lead, titanium, and zirconium are also conceivable, for example, titanium tetrachloride (TiCl 4 ) aqueous solution may be considered as a starting material for titanium. In this case, precipitation of PbCl 2 is generated and coprecipitation occurs. Is not suitable because it becomes uneven. Lead nitrate, tetraisopropyl orthotitanate, and zirconium oxynitrate were the most suitable starting materials.

発明の効果 以上のように、本発明の方法によれば、従来の方法に比
べ、結合係数が著しく向上した、高性能な圧電セラミッ
クス粉末が得られ、工業的価値が大である。
EFFECTS OF THE INVENTION As described above, according to the method of the present invention, a high-performance piezoelectric ceramic powder having a significantly improved coupling coefficient can be obtained as compared with the conventional method, and the industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

第1図は、従来法の圧電セラミックス粉末の製造工程を
示すフローチャート図、第2図は本発明の一実施例の圧
電セラミックス粉末の製造方法を示すフローチャート図
である。
FIG. 1 is a flowchart showing a conventional method for producing a piezoelectric ceramic powder, and FIG. 2 is a flowchart showing a method for producing a piezoelectric ceramic powder according to an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】鉛,チタン,ジルコニウムの各元素からな
る複合物を共沈させ、これを仮焼した後に、この粉末を
水溶液に分散させ、それに硝酸マンガン水溶液を添加し
て沈でん剤にアンモニア水を用いて沈でんさせ、マンガ
ンを添加することを特徴とする圧電セラミックス粉末の
製造方法。
1. A complex of lead, titanium and zirconium elements is co-precipitated, calcined, and then the powder is dispersed in an aqueous solution. An aqueous solution of manganese nitrate is added thereto to add ammonia water to the precipitation agent. A method for producing a piezoelectric ceramic powder, which comprises depositing manganese and adding manganese.
【請求項2】鉛,チタン,ジルコニウムの各元素の出発
原料に、硝酸鉛,オルトチタン酸テトライソプロピル,
オキシ硝酸ジルコニウムを用い、沈でん剤としてアンモ
ニア水溶液を用いることを特徴とする特許請求の範囲第
1項記載の圧電セラミックス粉末の製造方法。
2. Lead nitrate, starting materials for each of the elements zirconium, lead nitrate, tetraisopropyl orthotitanate,
The method for producing a piezoelectric ceramic powder according to claim 1, wherein zirconium oxynitrate is used and an aqueous ammonia solution is used as a precipitation agent.
JP14642784A 1984-07-13 1984-07-13 Method for producing piezoelectric ceramic powder Expired - Lifetime JPH0649575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14642784A JPH0649575B2 (en) 1984-07-13 1984-07-13 Method for producing piezoelectric ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14642784A JPH0649575B2 (en) 1984-07-13 1984-07-13 Method for producing piezoelectric ceramic powder

Publications (2)

Publication Number Publication Date
JPS6126514A JPS6126514A (en) 1986-02-05
JPH0649575B2 true JPH0649575B2 (en) 1994-06-29

Family

ID=15407430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14642784A Expired - Lifetime JPH0649575B2 (en) 1984-07-13 1984-07-13 Method for producing piezoelectric ceramic powder

Country Status (1)

Country Link
JP (1) JPH0649575B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112007650B (en) * 2020-08-13 2023-02-03 石家庄铁道大学 Method for preparing porous cerium oxide-copper oxide composite material by chemical corrosion method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052092B2 (en) * 1981-05-19 1985-11-18 水澤化学工業株式会社 Manufacturing method of perovskite-type lead-containing composite oxide

Also Published As

Publication number Publication date
JPS6126514A (en) 1986-02-05

Similar Documents

Publication Publication Date Title
JP2598786B2 (en) Method for producing perovskite-based functional ceramic
US4990324A (en) Method for producing two-component or three-component lead zirconate-titanate
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
JPH0649575B2 (en) Method for producing piezoelectric ceramic powder
JPS6363511B2 (en)
JPH0425207B2 (en)
JPH11335825A (en) Sputtering target and its production
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPH0639331B2 (en) Method for producing piezoelectric ceramic powder
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JPH0159205B2 (en)
JPS62241825A (en) Production of porcelain of lead titanate zirconate-lead niobate manganate type
JPH06651B2 (en) Method for producing piezoelectric ceramic powder
JPH0262496B2 (en)
JPS63117914A (en) Production of metal oxide powder for ptc-thermistor
JPS63239125A (en) Production of perovskite ceramic powder containing zirconium
JPH0818867B2 (en) Method for producing perovskite ceramics containing zirconium
JPH06652B2 (en) Method for producing piezoelectric ceramic powder
JPS6221759A (en) Manufacture of ferroelectric ceramic by multi-stage wet process
JPH032819B2 (en)
JPH09301769A (en) Production of piezoelectric porcelain composition
JPS61127624A (en) Production of perovskite type oxide solid
JPS6325223A (en) Production of ceramic raw material powder
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JPS632808A (en) Production of powder of easily-sinterable raw material for perovskite solid solution