JPH06652B2 - Method for producing piezoelectric ceramic powder - Google Patents

Method for producing piezoelectric ceramic powder

Info

Publication number
JPH06652B2
JPH06652B2 JP59245101A JP24510184A JPH06652B2 JP H06652 B2 JPH06652 B2 JP H06652B2 JP 59245101 A JP59245101 A JP 59245101A JP 24510184 A JP24510184 A JP 24510184A JP H06652 B2 JPH06652 B2 JP H06652B2
Authority
JP
Japan
Prior art keywords
titanium
piezoelectric ceramic
nitric acid
ceramic powder
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59245101A
Other languages
Japanese (ja)
Other versions
JPS61122125A (en
Inventor
猛 飯野
みゆき 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59245101A priority Critical patent/JPH06652B2/en
Publication of JPS61122125A publication Critical patent/JPS61122125A/en
Publication of JPH06652B2 publication Critical patent/JPH06652B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフイルタや点火栓等に用いられる、スズアンチ
モン酸チタン酸ジルコン酸鉛よりなる圧電セラミックス
粉末の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a piezoelectric ceramic powder made of lead zirconate titanate tin antimonate for use in filters, spark plugs and the like.

従来の構成とその問題点 従来のスズアンチモン酸チタン酸ジルコン酸鉛よりなる
圧電セラミックス粉末は、第1にフロチャートを示すよ
うに、1でPbO,TiO2,ZrO2,SnO2,Sb2O3の各種酸化物
粉末を目的組成に応じて配合し、湿式ボールミルで混合
し、2で乾燥させ、3で仮焼して固相反応させ、4で湿
式のボールミルで粉砕し、5で乾燥させて製造する。こ
の方法の欠点は、組成の均質度合がミクロな観点からす
ると悪く、粉末径も比較的大きく、1μm以下にするこ
とは困難なことである。このため、焼結体を薄板に加工
したとき、薄板の強度が不十分であった。
Conventional structure and its problems Conventional piezoelectric ceramic powders of lead tin antimonate titanate zirconate have the following 1st PbO, TiO 2 , ZrO 2 , SnO 2 , Sb 2 O as shown in the flow chart. Various oxide powders of 3 are blended according to the intended composition, mixed in a wet ball mill, dried in 2, calcined in 3 to cause solid phase reaction, pulverized in 4 in a wet ball mill and dried in 5. To manufacture. The drawbacks of this method are that the degree of homogeneity of the composition is poor from the microscopic point of view, and the powder diameter is also relatively large and it is difficult to reduce the particle diameter to 1 μm or less. Therefore, when the sintered body was processed into a thin plate, the strength of the thin plate was insufficient.

ところがフイルタとして用い場合、共振周波数がMHz帯
になると厚みたて振動や厚みすべり振動を用いる。この
場合、共振周波数は材料定数と素子の厚みで決まり、共
振周波数が高周波となればなるほど素子の厚みを薄くす
ることが要求される。例えば周波数定数が950Hz・m
の材料では、4.5MHzの共振周波数を得るのに素子厚みは
約210μmとなる。
However, when used as a filter, when the resonance frequency is in the MHz band, vertical thickness vibration and thickness shear vibration are used. In this case, the resonance frequency is determined by the material constant and the thickness of the element, and the higher the resonance frequency, the thinner the element is required to be. For example, the frequency constant is 950Hz ・ m
With the above material, the element thickness is about 210 μm to obtain a resonance frequency of 4.5 MHz.

このため、均質で微粒子の圧電セラミックス粉末が要求
されている。均質で微粒子を作る方法として、共沈法と
アルコキシド法が知られている。共沈法ではPZTやPLZT
の合成については、すでに文献などで公知であるが、成
分が多くなるほど合成が困難となる。またアルコキシド
法では、一度各成分の金属アルコキシドを合成しなけれ
ばならないので、製法が煩雑となり実用的でない。
Therefore, there is a demand for a homogeneous and fine-grained piezoelectric ceramic powder. The coprecipitation method and the alkoxide method are known as homogeneous methods for producing fine particles. PZT or PLZT in the coprecipitation method
Although the synthesis of is already known in the literature, etc., the more components, the more difficult the synthesis becomes. Further, in the alkoxide method, since the metal alkoxide of each component has to be synthesized once, the manufacturing method is complicated and not practical.

発明の目的 本発明は共沈法により、均質で粉末粒径の小さいスズア
ンチモン酸チタン酸ジルコン酸鉛よりなる圧電セラミッ
クス粉末の製造方法を提供することを目的とする。
OBJECT OF THE INVENTION It is an object of the present invention to provide a method for producing a piezoelectric ceramics powder made of lead tin antimonate titanate titanate zirconate, which is homogeneous and has a small particle size, by a coprecipitation method.

発明の構成 上記目的を達成するため本発明は、酢酸鉛,オキシ硝酸
チタニウム,オキシ硝酸ジルコニウム,酢酸第1スズの
混合硝酸水溶液から、沈殿剤としてアンモニア水溶液を
用いて、Pb、Ti,Zr,Snの各元素からなる複合物を共沈
させる過程で、酸化アンチモンを添加混合し、沈殿物を
生成させた後、沈殿物を過,洗浄し、乾燥させ、55
0℃〜800℃で仮焼することを特徴とする圧電セラミ
ックス粉末の製造方法である。ここでオキシ硝酸チタニ
ウムは、チタンテトラプロポキシドまたはチタンテトラ
ブトキシドに硝酸水溶液を加えて作るか、または四塩化
チタンをアンモニア水で水酸化チタンとし、これに硝酸
水溶液を加えて作る。
In order to achieve the above-mentioned object, the present invention uses Pb, Ti, Zr, Sn from a mixed nitric acid aqueous solution of lead acetate, titanium oxynitrate, zirconium oxynitrate, and stannous acetate using an aqueous ammonia solution as a precipitant. In the process of co-precipitating the complex consisting of the respective elements, the antimony oxide is added and mixed to form a precipitate, which is then washed, dried and dried.
A method for producing a piezoelectric ceramic powder, which comprises calcination at 0 ° C to 800 ° C. Here, titanium oxynitrate is produced by adding an aqueous nitric acid solution to titanium tetrapropoxide or titanium tetrabutoxide, or titanium tetrachloride is made into titanium hydroxide with aqueous ammonia and then added with an aqueous nitric acid solution.

実施例の説明 以下、本発明の一実施例を第2図のフローチャートを用
いて説明する。
Description of Embodiments An embodiment of the present invention will be described below with reference to the flowchart of FIG.

出発原料は目的の組成になるように秤量して、下記の処
理を行う。6で酢酸鉛Pb(CH3COO)2・3H2Oおよびオキシ
硝酸ジルコニウムZrO(NO3)2・2H2Oは純水に溶かし、チ
タンテトラプロポキシドTi(OC3H7)4を5倍に希釈した硝
酸水溶液に混合し、オキシ硝酸チタニウムTiO(NO3)2
液とし、酢酸第1スズを5倍に希釈した硝酸水溶液に溶
かす。これらを硝酸水溶液中に加えて撹拌し、共沈用混
合硝酸水溶液とする。この水溶液のPHはおよそ1であ
る。また7で酸化アンチモンSb2O3を目的の組成分秤量
しておく。反応槽にミキサーを用いて、希釈したアンモ
ニア水8を入れて強く撹拌しながら、酸化アンチモンの
粉末を添加し、9で共沈用混合硝酸水溶液および沈殿剤
のアンモニア水溶液を、反応槽中の液のPHが7〜8の範
囲になるように調節しながら添加する。この操作で得た
沈殿物を10で過,洗浄した後、純水中に分散させ1
1で噴霧乾燥させた。この粉末を12で600℃の温度で
2時間仮焼し、13で湿式ボールミルで粉砕し14で乾
燥させてスズアンチモン酸チタン酸ジルコン酸鉛よりな
る圧電セラミックス粉末を作製した。この方法による沈
殿物の粒子は、粉末で添加している酸化アンチモン以外
の部分では100Åオーダーで非常に微粒子となってい
る。このため反応性が良く、550℃付近の仮焼温度で
ペロブスカイトの単一相の結晶構造となることがX線解
析により確認された。従来法ではペロブスカイトの単一
相の結晶構造となる仮焼温度はおよそ850℃であっ
た。また粉末の平均粒径も0.8μmと従来法の場合の
1.6μmに較べて小さくなっている。
The starting material is weighed so as to have a desired composition and subjected to the following treatment. 6 lead acetate Pb (CH 3 COO) 2 · 3H 2 O and zirconium oxynitrate ZrO (NO 3) 2 · 2H 2 O were dissolved in pure water, titanium tetrapropoxide Ti (OC 3 H 7) 4 to 5 times It is mixed with a nitric acid aqueous solution diluted to 1 to prepare a titanium oxynitrate TiO (NO 3 ) 2 solution, and stannous acetate is dissolved in a 5 times diluted nitric acid aqueous solution. These are added to a nitric acid aqueous solution and stirred to obtain a mixed nitric acid aqueous solution for coprecipitation. The pH of this aqueous solution is about 1. Also, in step 7, antimony oxide Sb 2 O 3 is weighed out in a desired composition. Using a mixer, add diluted ammonia water 8 to the reaction tank, and while stirring vigorously, add antimony oxide powder, and at 9, add the mixed nitric acid aqueous solution for coprecipitation and the ammonia aqueous solution of the precipitating agent to the liquid in the reaction tank. Add pH while adjusting so that it is in the range of 7-8. The precipitate obtained by this operation is washed with 10 times, and then dispersed in pure water.
Spray dried at 1. This powder was calcined at 12 at 600 ° C. for 2 hours, pulverized at 13 by a wet ball mill and dried at 14, to prepare a piezoelectric ceramic powder made of lead tin antimonate titanate zirconate. The particles of the precipitate obtained by this method are extremely fine on the order of 100 Å except for the antimony oxide added as a powder. Therefore, it was confirmed by X-ray analysis that the reactivity was good and that the perovskite had a single-phase crystal structure at a calcination temperature near 550 ° C. In the conventional method, the calcination temperature at which the perovskite has a single-phase crystal structure was about 850 ° C. The average particle size of the powder is 0.8 μm, which is smaller than the average particle size of 1.6 μm in the conventional method.

次に本発明の方法および従来法で、組成を変えてスズア
ンチモン酸チタン酸ジルコン酸鉛の粉末をつくり、これ
らの焼結体より厚み200μmにスライスした薄板を作
り、三点曲げによる抗折強度を比較した。この結果を下
表に示す。本発明の方法による粉末を用いた場合、焼結
体の抗折強度が向上する。
Next, according to the method of the present invention and the conventional method, powders of lead zirconate titanate antimonate titanate having different compositions were prepared, and a thin plate sliced to a thickness of 200 μm from these sintered bodies was prepared. Were compared. The results are shown in the table below. When the powder according to the method of the present invention is used, the bending strength of the sintered body is improved.

本発明の方法で、アンチモンは酸化物の粉末で添加して
いるが、酸化アンチモンの融点が656℃と低いため、
仮焼の比較的低い温度でも反応し易いことに着目し酸化
物で添加した。
In the method of the present invention, antimony is added as an oxide powder, but since the melting point of antimony oxide is as low as 656 ° C,
Oxide was added because it was easy to react even at a relatively low temperature of calcination.

本実施例ではオキシ硝酸チタニウムTiO(NO3)2をチタン
テトラプロポキシドから作ったが、チタンテトラブトキ
シドに硝酸水溶液を加えて作るか、または四塩化チタン
をアンモニア水で水酸化チタンとし、これに硝酸水溶液
を加えて作っても同様な結果が得られる。また仮焼温度
は、550℃より低い場合には仮焼による反応が十分で
はなく、800℃より高い場合には粒子径の成長が大き
く、反応性が低下し共沈法より微粒子を作るという目的
にそぐわなくなる。
In this example, titanium oxynitrate TiO (NO 3 ) 2 was made from titanium tetrapropoxide, but it was made by adding an aqueous nitric acid solution to titanium tetrabutoxide, or titanium tetrachloride was made into titanium hydroxide with aqueous ammonia, and this Similar results can be obtained by adding an aqueous nitric acid solution. If the calcination temperature is lower than 550 ° C, the reaction due to calcination is not sufficient, and if it is higher than 800 ° C, the particle size grows large, the reactivity decreases, and fine particles are produced by the coprecipitation method. Will not fit in.

発明の効果 以上述べたように、本発明の方法により作成したスズア
ンチモン酸チタン酸ジルコン酸鉛の粉末は微粒子であ
り、これより得られる焼結体は、従来法のものに比べ抗
折強度が強く、高周波用フィルタのように薄板として用
いる用途には効果が大きい。
Effects of the Invention As described above, the powder of lead tin antimonate titanate zirconate powder produced by the method of the present invention is fine particles, and the sintered body obtained from this has a bending strength higher than that of the conventional method. It is strong and effective for use as a thin plate such as a high frequency filter.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来法の圧電セラミックス粉末の製造工程を示
すフローチャート、第2図は本発明の実施例の圧電セラ
ミックス粉末の製造工程を示すフローチャートである。
FIG. 1 is a flow chart showing a conventional process for producing piezoelectric ceramic powder, and FIG. 2 is a flow chart showing a process for producing piezoelectric ceramic powder according to an embodiment of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酢酸鉛,オキシ硝酸チタニウム,オキシ硝
酸ジルコニウム,酢酸第1スズの混合硝酸水溶液から、
沈殿剤としてアンモニア水溶液を用いて、Pb、Ti,Zr,
Snの各元素からなる複合物を共沈させる過程で、酸化ア
ンチモンを添加混合し、沈殿物を生成させた後、沈殿物
を過,洗浄し、乾燥させ、550℃〜800℃で仮焼
することを特徴とする圧電セラミックス粉末の製造方
法。
1. From a mixed nitric acid aqueous solution of lead acetate, titanium oxynitrate, zirconium oxynitrate, and stannous acetate,
Using an aqueous ammonia solution as a precipitant, Pb, Ti, Zr,
In the process of co-precipitating a complex consisting of Sn elements, antimony oxide is added and mixed to form a precipitate, which is then washed, dried, and calcined at 550 ° C to 800 ° C. A method for producing a piezoelectric ceramic powder, comprising:
【請求項2】オキシ硝酸チタニウムをチタンテトラプロ
ポキシドまたはチタンテトラブトキシドに硝酸水溶液を
加えて作るか、または四塩化チタンをアンモニア水で水
酸化チタンとし、これに硝酸水溶液を加えて作ることを
特徴とする特許請求の範囲第(1)項記載の圧電セラミ
ックス粉末の製造方法。
2. Titanium oxynitrate is produced by adding an aqueous nitric acid solution to titanium tetrapropoxide or titanium tetrabutoxide, or titanium tetrachloride is made into titanium hydroxide with aqueous ammonia and then added with an aqueous nitric acid solution. The method for producing a piezoelectric ceramic powder according to claim (1).
JP59245101A 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder Expired - Lifetime JPH06652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59245101A JPH06652B2 (en) 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245101A JPH06652B2 (en) 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder

Publications (2)

Publication Number Publication Date
JPS61122125A JPS61122125A (en) 1986-06-10
JPH06652B2 true JPH06652B2 (en) 1994-01-05

Family

ID=17128625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245101A Expired - Lifetime JPH06652B2 (en) 1984-11-20 1984-11-20 Method for producing piezoelectric ceramic powder

Country Status (1)

Country Link
JP (1) JPH06652B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU676299B2 (en) 1993-06-28 1997-03-06 Akira Fujishima Photocatalyst composite and process for producing the same

Also Published As

Publication number Publication date
JPS61122125A (en) 1986-06-10

Similar Documents

Publication Publication Date Title
JPS63156057A (en) Manufacture of high density perovskite ceramics
JPH03153557A (en) Production of source powder of lead perovskite structure ceramics
JPH06652B2 (en) Method for producing piezoelectric ceramic powder
JPH06651B2 (en) Method for producing piezoelectric ceramic powder
JPH0159967B2 (en)
JPS63151672A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JPS6363511B2 (en)
JPH0769645A (en) Production of lead-containing multiple oxide
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JPH0262496B2 (en)
JPS63151673A (en) Manufacture of lead zirconate titanate base piezoelectric ceramic
JP2722680B2 (en) Method for producing aluminum titanate sintered body
JP3041411B2 (en) Method for producing raw material powder for piezoelectric ceramics
JP3085587B2 (en) Method for producing piezoelectric porcelain composition
KR960004400B1 (en) Process for the preparation of ba1-x pbx tio3
JPH0639331B2 (en) Method for producing piezoelectric ceramic powder
JPH0649575B2 (en) Method for producing piezoelectric ceramic powder
JP2533305B2 (en) Manufacturing method of dielectric resonator material
JP2899755B2 (en) Method for producing PZT powder
JPS62138354A (en) Manufacture of readily sinterable lead-containing oxide powder
JP2866416B2 (en) Method for producing perovskite-type composite oxide powder
JPS6385015A (en) Production of lead-containing compound oxide solid solution of perovskite type
JPS61127624A (en) Production of perovskite type oxide solid
JPS60246222A (en) Production of titanate zirconate-type perovskite ceramic powder
JPS62162623A (en) Production of fine powder of lead titanate zirconate