JPH0647821B2 - Construction method of continuous underground wall and steel panel for continuous underground wall construction - Google Patents

Construction method of continuous underground wall and steel panel for continuous underground wall construction

Info

Publication number
JPH0647821B2
JPH0647821B2 JP20970189A JP20970189A JPH0647821B2 JP H0647821 B2 JPH0647821 B2 JP H0647821B2 JP 20970189 A JP20970189 A JP 20970189A JP 20970189 A JP20970189 A JP 20970189A JP H0647821 B2 JPH0647821 B2 JP H0647821B2
Authority
JP
Japan
Prior art keywords
steel
box
continuous underground
underground wall
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20970189A
Other languages
Japanese (ja)
Other versions
JPH0376922A (en
Inventor
真之 沖本
徹士 園田
進 鶴岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20970189A priority Critical patent/JPH0647821B2/en
Publication of JPH0376922A publication Critical patent/JPH0376922A/en
Publication of JPH0647821B2 publication Critical patent/JPH0647821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、連続地中壁の構築工法及びその壁材として使
用する鋼製パネルに関する。
The present invention relates to a construction method for a continuous underground wall and a steel panel used as a wall material for the construction method.

【従来の技術】[Prior art]

従来の一般の連続地中壁工法では、先行エレメントと後
行エレメントについてそれぞれ次のような作業が必要で
あった。 先行エレメント 先行エレメントの掘削。 インターロッキングパイプ及びジョイントパイプの建
込み。 鉄筋カゴの建込み。 コンクリートの打設。 後行エレメント 後行エレメントの掘削。 ジョイントボックスの引き抜き。 鉄筋カゴの建込み。 コンクリートの打設。
In the conventional general continuous underground wall construction method, the following work was required for each of the leading element and the trailing element. Leading element Drilling the leading element. Installation of interlocking pipes and joint pipes. Reinforcement basket construction. Placing concrete. Trailing element Drilling trailing element. Pulling out the joint box. Reinforcement basket construction. Placing concrete.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

そのため、次のような問題点があった。 (1)大深度の立杭を構築する場合、例えば鉄筋カゴの寸
法が幅1m、長さ6.3m、高さ50m程度となると、その
建込みのために、150tクラスの大型クレーンが必要で
あった。 (2)150tクラスの大型クレーンを使用する場合、100m
×200m程度の作業ヤードが必要であった。 (3)鉄筋カゴを組みたてるためのヤードとして、生材置
場,生材加工置場,鉄筋カゴ組立架台,鉄筋カゴ仮置場
等が必要なことから、役4500m2程度確保する必要があっ
た。 (4)泥水中でコンクリートを打ち継ぐので、水平継手付
近の止水性の確保が難しかった。 (5)設計上、掘削時に支保工の設置が必要であった。 (6)立杭掘削時、底盤に溜まった水を処理する排水設備
が必要であり、ポンプを掘削状況に合わせて移動しなけ
ればならず、作業性が悪かった。 (7)地上からボーリングしての底盤地盤改良では、施工
精度や土質状況により時々ボイリング,ヒービィングの
問題が発生することがあった。 (8)工事現場にて鉄筋加工及び鉄筋カゴの製作を行うの
で、現場毎に鉄筋工などの熟練工を集める必要があっ
た。 (9)鉄筋コンクリートのため、設計上立杭の壁厚がかな
り厚くなる傾向があった。 本発明は、大深度の連続壁を上記のような問題なく能率
的にかつ簡単にしかも作業性良く構築できるようにする
ことを目的とする。
Therefore, there were the following problems. (1) When constructing a pile with a large depth, for example, if the size of the reinforced basket is 1 m in width, 6.3 m in length, and 50 m in height, a large crane of 150 t class is required for the construction. It was (2) 100m when using a 150t class large crane
A working yard of about × 200m was required. (3) As a yard for constructing a reinforcing bar basket, a raw material storage area, a raw material processing storage area, a reinforcing bar basket assembly stand, a reinforcing bar basket temporary storage area, etc. were required, so it was necessary to secure a role of about 4,500 m 2 . (4) Since concrete is spliced in muddy water, it was difficult to secure water stop near the horizontal joint. (5) Due to the design, it was necessary to install support work during excavation. (6) When excavating the vertical piles, a drainage system for treating the water accumulated on the bottom was required, and the pump had to be moved according to the excavation conditions, resulting in poor workability. (7) In the improvement of the bottom ground by boring from the ground, sometimes problems of boiling and heaving occurred depending on the construction accuracy and soil condition. (8) Reinforcing bar processing and manufacturing of reinforcing bar baskets are performed at the construction site, so it was necessary to collect skilled workers such as reinforcing bar workers at each site. (9) Due to the reinforced concrete, the wall thickness of the vertical pile tended to be considerably thicker by design. An object of the present invention is to make it possible to construct a large-depth continuous wall efficiently, easily, and with good workability without the above problems.

【課題を解決するための手段】[Means for Solving the Problems]

本発明の構築工法では、壁材として縦長の鋼製パネルを
使用する。この鋼製パネルは、中空二重壁構造、つまり
内外の鋼板とその間の複数枚の鋼リブとで箱形をなし、
この箱形内部に軽量充填材を充填、または空洞部を形成
して浮力を持たせてある。この鋼製パネルを掘削溝の泥
水中に浮かせた状態で、鋼製パネル相互の鋼板の左右両
端及び上下両端を溶接等で連結することにより、鋼製パ
ネルを左右及び上下に順次継ぎ足しながら沈降させ、所
望の形体の鋼製二重壁体にして所定深度まで沈設した
後、該鋼製二重壁体の外周と上記掘削溝の内壁との間
に、コンクリートを打設またはその間の泥水を固化して
固定する。 鋼製パネルの継ぎ足しは千鳥状にすることが好ましい。 所定深度まで沈設後、鋼製パネルの箱形内部を除く内外
の鋼板の間にコンクリートを打設することができる。 内外の鋼板とその間の複数枚の鋼リブとで箱状部を形成
するとともに、この箱状部外へ突出する外側の鋼板に開
口部を設ければ、鋼製二重壁体の外周と掘削溝の内壁と
の間に、この開口部を通じてコンクリートを打設するこ
とができる。 鋼製パネルの内外の鋼板の左右両側縁に継手部を設ける
ことができる。
In the construction method of the present invention, a vertically long steel panel is used as the wall material. This steel panel has a hollow double wall structure, that is, a box shape with steel plates inside and outside and a plurality of steel ribs between them,
The box-shaped interior is filled with a lightweight filler, or a cavity is formed to give buoyancy. With this steel panel floating in the muddy water of the excavation trench, the left and right ends and the upper and lower ends of the steel plates of the steel panels are connected by welding etc. After forming a steel double wall body of a desired shape to a predetermined depth, placing concrete between the outer periphery of the steel double wall body and the inner wall of the excavation groove or solidifying muddy water between them. And fix it. The steel panels are preferably staggered. After sunk to a predetermined depth, concrete can be poured between the steel plates inside and outside the box-shaped inside of the steel panel. If a box-shaped part is formed by the inner and outer steel plates and a plurality of steel ribs between them, and if an opening is provided in the outer steel plate protruding outside this box-shaped part, the outer circumference of the steel double wall body and excavation Concrete can be poured through the opening between the groove and the inner wall. Joints can be provided on the left and right edges of the steel plate inside and outside the steel panel.

【作用】[Action]

鋼製パネルは、軽量充填材を充填するところまで工場で
製作し、現場では組立作業を要することなくそのまま建
込むことができる。鋼製パネルは、軽量充填材または中
空部により浮力を与えられているので、泥水中に浮かせ
て重量を軽減し、小型のクレーンを使用して簡便に施工
できる。鋼製パネル相互は、その内外の鋼板を溶接等に
より連結できるため、施工性が非常に良く、また打ち継
ぎ部の止水性も良い。中空二重壁構造の鋼製パネルとコ
ンクリートとの剛性相乗効果により、構造性能も良好に
なる。
Steel panels can be manufactured at the factory up to the point where they are filled with lightweight filler, and can be installed as they are without any assembly work on site. Since the steel panel is given buoyancy by the lightweight filler or hollow part, it can be floated in muddy water to reduce the weight and can be easily installed using a small crane. Since the steel panels can be connected to each other by welding the steel plates inside and outside thereof, the workability is very good, and the water stopping property of the splice joint is also good. The structural performance is also improved due to the synergistic effect of the rigidity of the hollow double-walled steel panel and concrete.

【実施例】【Example】

以下、本発明の実施例を図面に基づいて詳細に説明す
る。 第2図は本発明の工法において使用する鋼製パネルの一
例の斜視図である。先ず、この鋼製パネル1から説明す
ると、それは二枚の鋼矢板と角鋼管とを一体化したよう
な形態になっている。すなわち、左右両側縁に断面U字
状の継手部2をそれぞれ有する内外二枚の縦長の鋼板
(鋼矢板)3,4と、これと同じ上下長さの左右2枚の
鋼リブ5とを井桁状に一体成型して、中央に箱形部(角
鋼管)6、その左右に凹部7を形成し、箱形部6内に、
補強及び浮力を与えるための発泡コンクリート8を充填
したものである。鋼製パネル1を左右に継ぎ足したとき
円筒形になるように、外側の鋼板4の幅員は内側の鋼板
3より大きくなっている。図に示す鋼製パネル1では、
外側の鋼板4の左右両側部に、多数の開口部9が上下に
所定の間隔をおいて設けられている。この開口部9は、
後述するように左右の凹部7に充填されるコンクリート
を外部へ流出させるためのもので、これは全ての鋼製パ
ネル1に設ける必要はなく、全く設けていない鋼製パネ
ルや左右のいずれか一方側だけ設けた鋼製パネルもある
ものとする。 なお、発泡コンクリート8は多数の独立気泡を含むコン
クリートであって、例えば発泡剤を泡で作り、それとセ
メントミルクとを混練して箱形部6内で硬化させること
により容易に作ることができる。発泡コンクリート8で
はなく、通常のコンクリートを用いた場合には、それに
中空部10を形成して浮力を持たせる。また、同図では箱
形部6が一つのものを例示したが、第8図及び第10図に
示すように左右に複数連設したものでも良い。いずれの
形態の鋼製パネル1も工場で製作され、適宜の長さにし
て現場に持ち込まれる。 第3図は本発明の工法の作業手順の一例を示す説明図、
第1図はその途中の過程を詳細に示す斜視図である。第
3図において、(a)のようにパワーショベル11等で後記
ガイドウォールのための事前掘削を行い、(b)及び(c)の
ように掘削機12で孔の掘削を繰り返し、(d)のように泥
水13が入った所定深さのリング状の溝14を掘設する。 (d)のように鋼製パネル1をクレーン15で吊持した状態
で、鋼製パネル1同士の継手部2を溶接して鋼製パネル
1を左右に順次止水連結し、最下段の円筒形二重胴エレ
メント161を形成する。そしてこれをクレーン15で吊持
したまま泥水13中に浮かべる。円周方向に隣接する鋼製
パネル1相互は、それらの凹部7を連続させて縦長の空
洞を形成するが、図の例では、開口部9のある鋼製パネ
ル1と、それが無いまたは片側だけある鋼製パネル1と
を併用することから、開口部9のある空洞17とそれが無
い空洞18とができる。最下段の円筒形二重胴エレメント
161に限っては、開口部9の無い空洞17の下端を密閉し
ておく。 次に、最下段の円筒形二重胴エレメント161の鋼製パネ
ル1の上端に、(e)のように2段目の鋼製パネル1の下
端を溶接し、さらに2段目でも同様にクレーン15で鋼製
パネル1を吊持したまま継手部2においても左右に連結
して、2段目の円筒形二重胴エレメント162を継ぎ足
し、2段の円筒形二重胴エレメント161,162が連続した
円筒形の鋼製二重壁体である二重胴殻16を構成する。こ
の場合、上下の鋼製パネル1の継ぎ目は強度を考慮して
千鳥配列になるように、しかも開口部9のある空洞17と
それが無い空洞18とがそれぞれ別々に上下に連続するよ
うにする。 開口部9が無い空洞18中に注水して上記二重胴殻16を、
(f)のように所要深さまでガイドリング19(第1図)で
案内して沈降させ、この状態で3段目の円筒形二重胴エ
レメント163を継ぎ足し、以下同様の作業を繰り返して
(h)のように、設計段数の円筒形二重胴エレメントによ
る二重胴殻16を所定深度まで沈設する。なお、二重胴殻
16の重量が、その自重だけで泥水13中に自然に沈設して
いく重さの場合には、例えばエアーパッカ等により外部
から浮力を与えるか、またはガイドリング19に支持して
泥水13中に浮かせた状態に保持し、継ぎ足し作業を行
う。また、第2図に示すような中空部10を設けた鋼製パ
ネルについては、この中空部10に注水して沈降させるこ
とができる。この場合は、開口部9の無い空洞18は必ず
しも必要ではない。 上記の如く所定深度までの沈降が終了したら、開口部9
が無い空洞18中の水を排水し、必要に応じてその空洞18
中に第4図のようにコンクリート20を打設し、剛性の強
化を図る。なお、21はガイドウォールである。また、開
口部9のある空洞17中にトレミー管22からコンクリート
を注入し、そのコンクリートを開口部9を通じて流出さ
せ、二重胴殻16と溝14の内壁との間及び空洞17内に第5
図のようにコンクリート23を打設するか、またはこれら
の中の泥水を固化させ、二重胴殻16を地中に固定する。
これによって、鋼製の二重壁構造をなす全体円筒形の連
続地中壁24が構築される。 次に、第6図に示すようにこの連続地中壁24の所要箇所
に残しておいた空間部(空洞)25から、地盤改良用の水
平ボーリング装置26及び地上への配管27を設置し、連続
地中壁24で囲まれた底盤28の地盤改良を行う。 この後、第7図に示すように連続地中壁24で囲まれた地
盤を地上から掘削する。この場合、連続地中壁24の鋼製
内壁に垂直連続排土装置(トレリフタ)29及び自動掘削
機30を取り付けて無人施工することができる。また、底
盤28の水の処理に関しては、空間部25内に排水ポンプ31
を設置し、連続地中壁24の鋼製内壁に設けたストレーナ
32を通して吸い出す。さらに、連続地中壁24の鋼製内壁
には、エレベータ33や階段等を設けることもできる。 上記の実施例では、リング状の連続した溝14を掘削した
後、その中に、円筒形に連結した鋼製パネル1を順次上
に継ぎ足しながら沈設したが、溝を始めからリング状に
連続させないで円周分割して掘削し、その掘削した溝に
所定深度まで鋼製パネル1を沈設した後、その溝の掘削
と鋼製パネル1の沈設を交互に繰り返して最終的に円筒
形に連続させる方法もある。 第8図及び第9図はその一例で、所要の幅員の溝34を掘
削した後、その溝34内にクレーンで吊持した第1番目の
鋼製パネル1を挿入し、これを泥水中に浮かせて例え
ばガイドリング35で所要の深さに固定しておき、次の第
2番目の鋼製パネル1を継手部2において左側または
右側に継ぎ、同じ要領で第3番目の鋼製パネル1を継
ぐ。このようにして連結された3枚の鋼製パネル1
を1エレメントとして、その上に次のエレメントを
順次継ぎ足す。所定深さまで沈設したら、両側の鋼製パ
ネル1,1の継手部2付近にモルタルジャケット36
を設置し、該モルタルジャケット36で囲まれた間隙37の
泥水を固化させる。これによって1区画分の鋼製二重壁
体が構成される。モルタルジャケット36の遮蔽具38は、
吊治具39、吊ロープ40、クレーンフック41を使用して泥
水が固化するまで吊持しておく。泥水固化後、次の隣接
する溝を掘削し、この溝内において上記と同様に鋼製パ
ネル1〜1を連結し、さらに上に継ぎ足す。この場
合、既に設置されている1区画分の鋼製二重壁体と継手
部2で連結する。以下、溝の掘削と鋼製パネル1〜1
の連結・継ぎ足しを交互に繰り返し、円筒形に連続し
た連続地中壁を構築する。 第10図及び第11は同様に円周分割による方法であるが、
第8図及び第9図に示した例とは継手部2の処理が異な
る。すなわち、両端の鋼製パネル1,1の継手部2
にグリース等を詰めてここでは泥水固化が生じないよう
にしておき、1区画分の鋼製二重壁体を構成後、その全
周の泥水42を固化させる。鋼製二重壁体を固定した後、
第11図のように両端の鋼製パネル1,1の継手部2
について、それをガイドとしてジェットクリーナ等の洗
浄機43を取り付け移動させ、該継手部2の周囲の泥水固
化材を撤去する。 なお、溝の掘削時に何等かのトラブルで掘削部をそのま
まの状態で長時間維持する必要がある場合、または掘削
部が崩壊しやすい場合には、撹拌によりゲル状態を解放
する性質のゲル化剤(いわゆるケミカルゲル薬)を使用
して泥水をゲル化して安定させると良い。そのゲル化泥
水は適時に撹拌機で撹拌して元の泥水に戻す。この場
合、撹拌機は鋼製二重壁体に取り付けることができる。 なお、本発明は全体円筒形の連続地中壁を構築する場合
に限らず、矩形や楕円形などの他の形状の連続地中壁を
構築する場合にも広く適用できるものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 is a perspective view of an example of a steel panel used in the construction method of the present invention. First, the steel panel 1 will be described. It has a form in which two steel sheet piles and a square steel pipe are integrated. That is, two vertically elongated steel plates (steel sheet piles) 3 and 4 each having a joint portion 2 having a U-shaped cross section on both left and right edges, and two steel ribs 5 on the left and right having the same vertical length are arranged in parallel. In a box shape, a box-shaped part (square steel pipe) 6 is formed in the center, and recesses 7 are formed on the left and right sides of the box-shaped part 6.
It is filled with foamed concrete 8 for giving reinforcement and buoyancy. The width of the outer steel plate 4 is larger than that of the inner steel plate 3 so that when the steel panel 1 is added to the left and right, the steel plate 4 has a cylindrical shape. In the steel panel 1 shown in the figure,
A large number of openings 9 are vertically provided at predetermined intervals on both left and right sides of the outer steel plate 4. This opening 9 is
As will be described later, the concrete filled in the left and right recesses 7 is for flowing out to the outside. This does not have to be provided on all the steel panels 1, and either the steel panels not provided at all or the left or right Some steel panels are provided only on the side. The foam concrete 8 is a concrete containing a large number of closed cells, and can be easily prepared by, for example, forming a foaming agent from foam, kneading it with cement milk, and curing it in the box-shaped portion 6. When ordinary concrete is used instead of the foamed concrete 8, a hollow portion 10 is formed in the concrete to give buoyancy. Further, although one box-shaped portion 6 is illustrated in the figure as an example, a plurality of box-shaped portions 6 may be connected to the left and right as shown in FIGS. 8 and 10. The steel panel 1 in any of the forms is manufactured in a factory, brought to an appropriate length in the field. FIG. 3 is an explanatory view showing an example of a work procedure of the construction method of the present invention,
FIG. 1 is a perspective view showing in detail the process in the middle thereof. In FIG. 3, as shown in (a), pre-excavation for the guide wall described later is performed by the power shovel 11, etc., and as shown in (b) and (c), the excavator 12 is repeatedly excavated, and (d) A ring-shaped groove 14 having a predetermined depth and containing muddy water 13 is excavated as described above. In the state where the steel panel 1 is suspended by the crane 15 as shown in (d), the joint portions 2 of the steel panels 1 are welded to each other, and the steel panels 1 are sequentially connected to the right and left, and the bottommost cylinder is connected. Form a double-barrel element 16 1 . Then, it is suspended in the crane 15 and floated in the muddy water 13. The steel panels 1 adjacent to each other in the circumferential direction are formed by connecting the recesses 7 to each other to form a vertically long cavity, but in the example shown in the drawing, the steel panel 1 having the opening 9 and the steel panel 1 having no opening or one side. Since the steel panel 1 which has only one of them is used together, a cavity 17 having the opening 9 and a cavity 18 having no opening 9 can be formed. Bottom cylindrical double body element
Only for 16 1 , the lower end of the cavity 17 having no opening 9 is sealed. Next, the lower end of the second steel panel 1 is welded to the upper end of the steel panel 1 of the lowermost cylindrical double-barrel element 16 1 as shown in (e), and the same applies to the second stage. While the steel panel 1 is being hung by the crane 15, the joint portion 2 is also connected to the left and right, and the cylindrical double-barrel element 16 2 in the second stage is added to add the cylindrical double-barrel element 16 1 in the second stage. 16 2 constitutes a double shell 16 which is a continuous cylindrical steel double wall body. In this case, the seams of the upper and lower steel panels 1 are arranged in a zigzag arrangement in consideration of strength, and the cavities 17 with the openings 9 and the cavities 18 without the openings 9 are respectively continuous in the vertical direction. . The double shell 16 is filled with water by pouring into the cavity 18 without the opening 9.
As shown in (f), the guide ring 19 (Fig. 1) is guided to the required depth to sink, and in this state, the cylindrical double-barrel element 16 3 of the third stage is added, and the same work is repeated.
As shown in (h), the double shell 16 formed by the cylindrical double shell element having the designed number of steps is sunk to a predetermined depth. The double shell
If the weight of 16 is such that it will naturally sink in the muddy water 13 only by its own weight, for example, give buoyancy from the outside with an air packer, or support it on the guide ring 19 and let it float in the muddy water 13. Keep it in the upright position and perform additional work. Further, with respect to the steel panel provided with the hollow portion 10 as shown in FIG. 2, water can be poured into the hollow portion 10 to settle it. In this case, the cavity 18 without the opening 9 is not always necessary. When the settling to the predetermined depth is completed as described above, the opening 9
Drain the water in the empty cavity 18 and, if necessary, the cavity 18
Concrete 20 is placed inside as shown in Fig. 4 to strengthen the rigidity. Reference numeral 21 is a guide wall. Further, concrete is poured from the tremie pipe 22 into the cavity 17 having the opening 9, the concrete is caused to flow out through the opening 9, and the concrete is injected between the double shell 16 and the inner wall of the groove 14 and in the cavity 17.
Concrete 23 is poured as shown in the figure, or muddy water in these is solidified, and the double shell 16 is fixed in the ground.
As a result, a continuous cylindrical underground wall 24 having a steel double wall structure is constructed. Next, as shown in FIG. 6, a horizontal boring device 26 for ground improvement and a pipe 27 to the ground are installed from a space portion (cavity) 25 left at a required location of the continuous underground wall 24, Ground improvement of the bottom 28 surrounded by the continuous underground wall 24. After this, as shown in FIG. 7, the ground surrounded by the continuous underground wall 24 is excavated from the ground. In this case, unmanned construction can be performed by attaching the vertical continuous earth discharging device (trerelifter) 29 and the automatic excavator 30 to the steel inner wall of the continuous underground wall 24. Regarding the treatment of water on the bottom plate 28, a drainage pump 31 is installed in the space 25.
The strainer installed on the inner steel wall of the continuous underground wall 24
Aspirate through 32. Further, an elevator 33, stairs, or the like can be provided on the steel inner wall of the continuous underground wall 24. In the above-mentioned embodiment, after the ring-shaped continuous groove 14 was excavated, the steel panels 1 connected in a cylindrical shape were successively sunk into the groove 14, but the groove was not continuous in the ring shape from the beginning. After excavating by dividing the circumference with the steel panel 1 to a predetermined depth in the excavated groove, the excavation of the groove and the deposition of the steel panel 1 are repeated alternately to finally make a cylindrical shape. There is also a method. Fig. 8 and Fig. 9 show an example of this. After excavating a groove 34 having a required width, the first steel panel 11 suspended by a crane is inserted into the groove 34, and the first steel panel 11 is inserted into muddy water. And fix it to the required depth with, for example, a guide ring 35, and connect the next second steel panel 1 2 to the left or right side at the joint portion 2, and in the same way the 3rd steel panel Take 1 to 3 . In this way, the linked three steel panel 1 1 -
1 3 as 1 element, sequentially subjoin the following elements thereon. After sinking to a predetermined depth, both sides of the steel panels 1 1, 1 3 of the joint portion 2 mortar around the jacket 36
Is installed to solidify the muddy water in the gap 37 surrounded by the mortar jacket 36. This constitutes a steel double wall for one section. The shield 38 of the mortar jacket 36 is
The suspension jig 39, the suspension rope 40, and the crane hook 41 are used and suspended until the muddy water solidifies. After mud caking and drilling the next adjacent groove, this in the same manner as described above connecting the steel panel 1 1 to 1 3 in the groove, further subjoin above. In this case, the already-installed steel double wall body for one section is connected by the joint portion 2. Below, trench excavation and steel panels 1 1 to 1
The continuous connection and addition of 3 are repeated alternately to build a continuous underground wall in a cylindrical shape. Similarly, FIGS. 10 and 11 show a method by circumferential division,
Processing of the joint portion 2 is different from the example shown in FIGS. 8 and 9. That is, the steel panels at both ends 1 1, 1 3 of the joint section 2
Then, grease or the like is filled therein to prevent solidification of muddy water here, and after the steel double wall body for one section is constructed, the muddy water 42 around the entire circumference is solidified. After fixing the steel double wall,
As shown in Fig. 11, the joint parts 2 of the steel panels 1 1 and 1 3 at both ends
With respect to the above, the cleaning machine 43 such as a jet cleaner is attached and moved using it as a guide, and the muddy water solidifying material around the joint portion 2 is removed. When it is necessary to maintain the excavated part as it is for a long time due to some trouble during excavation of the trench, or when the excavated part is likely to collapse, a gelling agent that releases the gel state by stirring (So-called chemical gel medicine) should be used to gel and stabilize mud water. The gelled mud is stirred with a stirrer at appropriate times to return it to the original mud. In this case, the stirrer can be attached to the steel double wall. The present invention is not limited to the case of constructing a continuous underground wall having an overall cylindrical shape, but can be widely applied to the case of constructing a continuous underground wall having another shape such as a rectangle or an ellipse.

【発明の効果】【The invention's effect】

本発明の効果を以下に列記する。 重量のある鉄筋カゴの代わりに中空二重壁構造の鋼製
パネルを使用し、これを泥水中に浮かせて継ぎ足してい
くので、従来は150tクラスのクレーンが必要であった
ところ、50tクラスのクレーンでも作業が可能であり、
大深度の連続地中壁を能率的に施工でき、かつ作業スペ
ースも小さくて済む。 鋼製パネルは工場で製作でき、しかも泥水中への沈降
に伴い順次継ぎ足すことができるので、鉄筋カゴの現場
組立のような大きな作業スペースは不要で、その分だけ
でも作業スペースを2〜3割程度縮小できる。 構築された壁の中空部を利用して排水設備や底盤改良
用水平ボーリング設備を設置できる。 鋼製パネルは工場で製作するので、均一な品質の壁体
ができる。 継手部は完全溶接できるので、連壁として完全な止水
性が確保できる。 鋼製パネルの製作は現場作業とは別工程でできるの
で、工事現場での工程を約2分の1に短縮できる。 階段やエレベータ等の昇降設備を、連続地中壁の鋼製
内壁を利用して正確かつ確実に取り付けることができ
る。 壁・躯体継手がある場合、所定の位置に配置できる。 壁にかかる応力を鋼製連壁の円周方向にも伝達させ、
構造物全体で応力を受ける形とし、切梁・腹起しを使用
しないで、短期間で掘削ができる。
The effects of the present invention are listed below. A hollow double-walled steel panel is used instead of a heavy reinforced steel basket, and this is floated in muddy water to be replenished, so a crane of 150t class was conventionally required. But you can work,
It is possible to efficiently construct a continuous underground wall with a large depth, and the work space is small. Steel panels can be manufactured at the factory and can be added one by one as they settle in muddy water, so there is no need for a large work space such as on-site assembly of the reinforcing bar basket. It can be reduced by about 50%. The hollow part of the constructed wall can be used to install drainage equipment and horizontal boring equipment for improving the bottom plate. Steel panels are manufactured at the factory, so walls of uniform quality are produced. Since the joint part can be completely welded, it is possible to secure complete waterproofing as a connecting wall. Since the steel panel can be manufactured as a separate process from the on-site work, the process at the construction site can be reduced to about half. Elevating equipment such as stairs and elevators can be installed accurately and reliably using the steel inner wall of the continuous underground wall. If there is a wall / frame joint, it can be placed in place. The stress applied to the wall is also transmitted in the circumferential direction of the steel connecting wall,
The whole structure will be stressed, and excavation can be done in a short period of time without using a girder or a bulge.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の工法の一例の斜視図、第2図は本発明
による鋼製パネルの一例の斜視図、第3図(a)〜(h)は本
発明の工法の作業手順の一例を示す説明図、第4図はそ
れにおけるコンクリート打設状態の断面図、第5図はコ
ンクリート打設及び泥水固化後の状態を示す平面図、第
6図は連続地中壁構築後の底盤の地盤改良状態を示す断
面図、第7図は立杭堀削状態を示す断面図、第8図及び
第9図は本発明の工法の他の例の平面図及び断面図、第
10図及び第11図はさらに別の例の平面図である。 1……鋼製パネル、2……継手部、3,4……内外の鋼
板、5……鋼リブ、6……箱形部、8……発泡コンクリ
ート、9……開口部、10……中空部、13……泥水、14,
34……溝。
FIG. 1 is a perspective view of an example of the construction method of the present invention, FIG. 2 is a perspective view of an example of a steel panel according to the present invention, and FIGS. 3 (a) to (h) are examples of work procedures of the construction method of the present invention. Fig. 4 is a cross-sectional view of the concrete pouring state therein, Fig. 5 is a plan view showing the state after concrete pouring and mud solidification, and Fig. 6 is a bottom plate after continuous underground wall construction. Sectional view showing a ground improvement state, FIG. 7 is a sectional view showing a vertical pile excavation state, FIGS. 8 and 9 are plan views and sectional views of another example of the method of the present invention,
10 and 11 are plan views of still another example. 1 ... steel panel, 2 ... joint part, 3,4 ... inside and outside steel plates, 5 ... steel rib, 6 ... box part, 8 ... foam concrete, 9 ... opening part, 10 ... Hollow part, 13 …… Muddy water, 14,
34 …… Groove.

フロントページの続き (72)発明者 鶴岡 進 東京都港区北青山2丁目5番8号 株式会 社間組内 (56)参考文献 特開 昭63−70713(JP,A)Front Page Continuation (72) Inventor Susumu Tsuruoka 2-5-8 Kita-Aoyama, Minato-ku, Tokyo Intra-company group (56) Reference JP-A-63-70713 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】内外の鋼板とその間の複数枚の鋼リブとで
箱形をなす縦長の鋼製パネルの箱形内部に軽量充填材を
充填、または空洞部を形成して浮力を持たせ、該鋼製パ
ネルを掘削溝の泥水中に浮かせた状態で、鋼製パネル相
互の鋼板の左右両端及び上下両端を溶接等で連結するこ
とにより、鋼製パネルを左右及び上下に順次継ぎ足しな
がら沈降させ、所望の形体の鋼製二重壁体にして所定深
度まで沈設した後、該鋼製二重壁体の外周と上記掘削溝
の内壁との間に、コンクリートを打設またはその間の泥
水を固化することを特徴とする連続地中壁の構築工法。
1. A light filling material is filled into a box-shaped interior of a vertically long steel panel having a box shape made of inner and outer steel plates and a plurality of steel ribs therebetween, or a hollow portion is formed to give buoyancy, In a state where the steel panel is floated in the muddy water of the excavation groove, the left and right ends and the upper and lower ends of the steel plates of the steel panels are connected by welding or the like, so that the steel panel is settled while sequentially adding the left and right and the upper and lower sides. After the steel double-walled body having a desired shape is laid down to a predetermined depth, concrete is placed between the outer periphery of the steel double-walled body and the inner wall of the excavation groove or the muddy water between them is solidified. Construction method of continuous underground wall, which is characterized by
【請求項2】鋼製パネルを千鳥状に継ぎ足しながら沈降
させることを特徴とする請求項1記載の連続地中壁の構
築工法。
2. The method for constructing a continuous underground wall according to claim 1, wherein the steel panels are added while staggered in a staggered manner.
【請求項3】鋼製二重壁体にして所定深度まで沈設した
後、鋼製パネルの箱形内部を除く内外の鋼板の間にコン
クリートを打設することを特徴とする請求項1または2
に記載の連続地中壁の構築工法。
3. A steel double wall body, which is sunk to a predetermined depth, and then concrete is placed between the steel plates inside and outside the box-shaped inside of the steel panel.
Construction method of continuous underground wall described in.
【請求項4】内外の鋼板とその間の複数枚の鋼リブとで
箱状部を形成するとともに、この箱状部外へ突出する外
側の鋼板に開口部を設けた縦長の鋼製パネルを使用し、
その箱状部に軽量充填材を充填、または空洞部を形成し
て浮力を持たせ、該鋼製パネルを掘削溝の泥水中に浮か
せた状態で、鋼製パネル相互の鋼板の左右両端及び上下
両端を溶接等で連結することにより、鋼製パネルを左右
及び上下に順次継ぎ足しながら沈降させ、所望の形体の
鋼製二重壁体にして所定深度まで沈設した後、該鋼製二
重壁体の外周と上記掘削溝の内壁との間に、上記開口部
を通じてコンクリートを打設することを特徴とする連続
地中壁の構築工法。
4. A vertically long steel panel in which a box-shaped portion is formed by inner and outer steel plates and a plurality of steel ribs between them, and an opening is formed in the outer steel plate protruding outside the box-shaped portion. Then
The box-shaped part is filled with a lightweight filler, or a hollow part is formed to give buoyancy, and the steel panel is floated in the muddy water of the excavation trench, and the left and right ends of the steel panel and the top and bottom of the steel plate By connecting both ends by welding or the like, steel panels are successively added to the left and right and top and bottom while sinking to form a steel double-walled body of a desired shape, and after being laid down to a predetermined depth, the steel double-walled body A method for constructing a continuous underground wall, characterized in that concrete is placed through the opening between the outer circumference and the inner wall of the excavation trench.
【請求項5】縦長の内外二枚の鋼板を複数枚の鋼リブで
連結して箱状部を形成するとともに、この箱状部外へ突
出する外側の鋼板に開口部を設け、この箱状部内に軽量
充填材を充填しまたは空洞部を形成して浮力を持たせ、
上記内外の鋼板の左右両側縁に継手部を設けたことを特
徴とする連続地中壁構築用鋼製パネル。
5. A box-shaped portion is formed by connecting two vertically long steel plates inside and outside with a plurality of steel ribs, and an opening is formed in an outer steel plate protruding outside the box-shaped portion. Filling the inside with a lightweight filler or forming a cavity to give buoyancy,
A steel panel for constructing a continuous underground wall, characterized in that joint portions are provided on both left and right edges of the inner and outer steel plates.
JP20970189A 1989-08-15 1989-08-15 Construction method of continuous underground wall and steel panel for continuous underground wall construction Expired - Fee Related JPH0647821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20970189A JPH0647821B2 (en) 1989-08-15 1989-08-15 Construction method of continuous underground wall and steel panel for continuous underground wall construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20970189A JPH0647821B2 (en) 1989-08-15 1989-08-15 Construction method of continuous underground wall and steel panel for continuous underground wall construction

Publications (2)

Publication Number Publication Date
JPH0376922A JPH0376922A (en) 1991-04-02
JPH0647821B2 true JPH0647821B2 (en) 1994-06-22

Family

ID=16577205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20970189A Expired - Fee Related JPH0647821B2 (en) 1989-08-15 1989-08-15 Construction method of continuous underground wall and steel panel for continuous underground wall construction

Country Status (1)

Country Link
JP (1) JPH0647821B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163906A (en) * 2012-02-10 2013-08-22 Giken Seisakusho Co Ltd Steel pipe pile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649524U (en) * 1992-12-02 1994-07-08 房夫 坂野 Connecting wall built on the near line

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163906A (en) * 2012-02-10 2013-08-22 Giken Seisakusho Co Ltd Steel pipe pile

Also Published As

Publication number Publication date
JPH0376922A (en) 1991-04-02

Similar Documents

Publication Publication Date Title
CN114319396A (en) Construction method of bottomless box cofferdam suitable for underwater complex geological conditions
CN111676893A (en) Temporary wharf structure and construction method thereof
CN113957887B (en) Pile-wall integrated construction method of core barrel
JPH0647821B2 (en) Construction method of continuous underground wall and steel panel for continuous underground wall construction
KR20220065461A (en) WIRE STRUCTURE FOR STAGGERED LAPPING IN SLURRY WALL, SLURRY WALL and CONSTRUCTION METHOD FOR THE SAME
JPS5829922A (en) Constructing method for underground outer wall
KR101219451B1 (en) Concrete structure and construction method for the same, constructing method of underground wall as a retaining structural wall used in the same
CN112942312B (en) T-shaped underground diaphragm wall construction process
JPH11217824A (en) Execution method of underground impervious wall
JP7341928B2 (en) Construction method for underground structures
JP2571426B2 (en) Construction method of retaining wall
JPH01315520A (en) Underground outer wall constructing method for superstructure
CN216075159U (en) Safety device for local pit of foundation pit
JP7096469B1 (en) Small cross-section underground continuous wall
KR102371284B1 (en) Slurry wall, construction method for the same and wire mesh assembly
JP4159148B2 (en) Construction method of shaft
JP2603307B2 (en) Retaining method for the upper part of the continuous underground wall
CN117431929A (en) Construction process for controlling deformation of I-steel joint
JPH06108459A (en) Construction of underground continuous wall
JPS6320968B2 (en)
CN115743468A (en) Dock wall structure and dock
CN113373936A (en) Assembly type structure and construction method thereof
JPH06194485A (en) Construction of nuclear power plant building
CN111827267A (en) Underground continuous wall construction method
CN117605043A (en) Deep foundation pit supporting method for elevation-variable limited area

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees