JPH0646127B2 - Supercooled ice heat storage device - Google Patents

Supercooled ice heat storage device

Info

Publication number
JPH0646127B2
JPH0646127B2 JP61151706A JP15170686A JPH0646127B2 JP H0646127 B2 JPH0646127 B2 JP H0646127B2 JP 61151706 A JP61151706 A JP 61151706A JP 15170686 A JP15170686 A JP 15170686A JP H0646127 B2 JPH0646127 B2 JP H0646127B2
Authority
JP
Japan
Prior art keywords
water
ice
storage tank
heat exchanger
supercooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61151706A
Other languages
Japanese (ja)
Other versions
JPS6314063A (en
Inventor
健 橋本
嘉夫 岩本
和美 沢田
秀修 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP61151706A priority Critical patent/JPH0646127B2/en
Publication of JPS6314063A publication Critical patent/JPS6314063A/en
Publication of JPH0646127B2 publication Critical patent/JPH0646127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions
    • F28D7/087Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions assembled in arrays, each array being arranged in the same plane

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、過冷却水を利用した氷蓄熱槽による空調シス
テムおよび工業用冷却システム用の氷蓄熱装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to an ice storage device for an air conditioning system and an industrial cooling system by an ice storage tank using supercooled water.

(従来の技術) 空調システム等に用いられている従来の氷蓄熱装置は、
槽内に製氷用コイルを充填し、コイル内に冷媒やエチレ
ングリコール等のブラインを循環させ、コイル表面に着
氷させて蓄熱する方式を採用しているが、 a)氷が断熱作用を示すため、氷の成長に従い冷媒蒸発
温度を下げなければならず、冷凍機の効率が低下する b)製氷厚さに限界があるため槽全体に製氷できず、槽
のコンパクト化が図れない c)槽内が自然対流のため水のバイパスが生じ、完全に
解氷し終る前に取出冷水温度が上昇してしまう 等の問題点がある。
(Prior Art) A conventional ice heat storage device used in an air conditioning system or the like is
A method is used in which the ice-making coil is filled in the tank, and a refrigerant such as a refrigerant or ethylene glycol is circulated in the coil to accumulate ice on the coil surface to store heat. , The refrigerant evaporation temperature must be lowered as the ice grows, and the efficiency of the refrigerator decreases. B) Since the ice making thickness is limited, it is not possible to make ice in the entire tank and the tank cannot be made compact c) In the tank However, there is a problem that due to natural convection, a water bypass occurs and the temperature of the extracted cold water rises before the ice is completely thawed.

そこで氷を0℃以下になるまで冷却して過冷却状態の水
を作り、これを利用して製氷率を高める試みが提案され
ている。従来の過冷却水の製造方法としては静置法が最
も一般的である。これは水を静止させたままゆっくりと
過冷却状態まで冷却していく方法であるが、 a)水への伝熱が自然対流のみであるため冷却効率が低
い b)過冷却状態が不安定なため振動等のわずかな刺激で
過冷却状態が破れてしまう c)一度氷結してしまうと氷と水の共存状態になり、冷
却を続行しても氷が伝熱面から成長するだけでもはや過
冷却温度には到らない 等の問題点がある。
Therefore, an attempt has been proposed to cool the ice to 0 ° C. or lower to produce water in a supercooled state, and use this to increase the ice making rate. The stationary method is the most common method for producing conventional supercooled water. This is a method of slowly cooling the water to a supercooled state while keeping it still stationary. A) The cooling efficiency is low because heat transfer to water is only natural convection. B) The supercooled state is unstable. Therefore, a slight stimulus such as vibration will break the supercooled state. C) Once frozen, the ice and water will coexist, and even if cooling is continued, the ice will only grow from the heat transfer surface and will no longer be overheated. There are problems such as not reaching the cooling temperature.

特開昭54−102648号公報には、凝固点降下剤を
添加した希薄な水溶液を冷却装置ならびに撹拌機を具備
した製氷容器内に充填し、撹拌しながら過冷却状態に冷
却した後、撹拌を中断することによって水溶液内部に多
数のフレークアイスを生成する方法が提案されている
が、凝固点降下剤の作用と撹拌作用とを組合せて容器内
全体を過冷却状態に到達させるものであり、凝固点降下
剤の混入による悪影響が発生するという欠点がある。ま
た撹拌羽根の周囲が氷結するので運転が断続的になり効
率が低下する欠点がある。
In JP-A-54-102648, a dilute aqueous solution to which a freezing point depressant is added is filled in an ice making container equipped with a cooling device and a stirrer, and the mixture is cooled to a supercooled state while stirring, and then the stirring is interrupted. Although a method of producing a large number of flake ices in an aqueous solution has been proposed, it is intended to combine the action of a freezing point depressant and the stirring action to reach a supercooled state in the entire container. However, there is a drawback in that the adverse effect of the mixture of Further, since the periphery of the stirring blade is frozen, the operation is intermittent and the efficiency is lowered.

実開昭54−102747号公報には、二重管式の熱交
換器が記載されている。
Japanese Utility Model Laid-Open No. 54-102747 discloses a double-tube heat exchanger.

(発明が解決しようとする課題) 本発明の目的は、効率の良い方法で過冷却水を結氷させ
ることができ、冷凍機運転効率が高くかつ製氷率の高い
氷蓄熱装置を提供することにある。
(Problem to be Solved by the Invention) An object of the present invention is to provide an ice heat storage device capable of freezing supercooled water by an efficient method, having a high refrigerator operation efficiency, and a high ice making rate. .

(課題を解決するための手段) 本発明の前述した目的は、冷凍機で冷却された冷媒また
はブラインを流す外側構造体と水を流す内側構造体とか
ら成り、前記冷媒またはブラインを0℃以下に保って水
を冷却し前記内側構造体の出口での水温を0℃以下にす
る過冷却水製造熱交換器と、断熱性を有する蓄氷槽と、
前記熱交換器の出口からの過冷却水を前記蓄氷槽の上部
に案内して放出する過冷却水放出管と、前記蓄氷槽の底
部付近から水を前記熱交換器の内側構造体の入口へと案
内する戻り管と、該戻り管の途中に配置した水循環ポン
プと、冷媒またはブラインを前記冷凍機及び前記熱交換
器の外側構造体へと循環させる配管系と、空調機その他
の負荷及び冷水ポンプを含む冷水循環回路であって、前
記蓄氷槽の底部付近から冷水の供給を受けられるように
連通している冷水循環回路とを備えて成る過冷却式氷蓄
熱装置によって達成される。
(Means for Solving the Problems) The above-mentioned object of the present invention comprises an outer structure for flowing a refrigerant or brine cooled by a refrigerator and an inner structure for flowing water, and the refrigerant or brine is kept at 0 ° C. or lower. A subcooled water manufacturing heat exchanger that keeps water at 0 ° C. to cool the water to bring the water temperature at the outlet of the inner structure to 0 ° C. or less;
A supercooled water discharge pipe that guides and discharges supercooled water from the outlet of the heat exchanger to the upper part of the ice storage tank, and water from the vicinity of the bottom of the ice storage tank of the inner structure of the heat exchanger. A return pipe guiding to the inlet, a water circulation pump arranged in the middle of the return pipe, a piping system for circulating a refrigerant or brine to the outside structure of the refrigerator and the heat exchanger, and an air conditioner and other loads And a chilled water circulation circuit including a chilled water pump, the chilled water circulation circuit communicating with the chilled water circulation circuit so that the chilled water can be supplied from near the bottom of the ice storage tank. .

(作用) かかる構成により、水循環ポンプによって蓄氷槽から引
き抜かれた0℃付近の冷水は熱交換器内で−3℃程度ま
で冷却されて過冷却水となり、蓄氷槽の上部に移送され
放出されるが、その際落下の衝撃を受けて氷結する。か
くして過冷却水の顕熱分は氷の潜熱に代えられて蓄熱さ
れる。かかる氷結方法によれば、従来の氷蓄熱装置より
も製氷率が高められ、冷凍機の効率が上昇してシステム
全体をコンパクトに作ることが可能になる。
(Operation) With this configuration, the cold water around 0 ° C drawn out from the ice storage tank by the water circulation pump is cooled to about -3 ° C in the heat exchanger to become supercooled water, which is transferred to the upper portion of the ice storage tank and discharged. However, at that time, it is frozen due to the impact of the fall. Thus, the sensible heat of the supercooled water is stored in place of the latent heat of ice. According to such an icing method, the ice making rate is increased as compared with the conventional ice heat storage device, the efficiency of the refrigerator is increased, and the entire system can be made compact.

本発明の他の特徴及び利点は、添付図面の実施例を参照
した以下の記載により明らかとなろう。
Other features and advantages of the present invention will be apparent from the following description with reference to the embodiments of the accompanying drawings.

(実施例) 第1図及び第2図は、本発明の好適な実施例による過冷
却式氷蓄熱装置の深夜製氷時(第1図)と昼間運転時
(第2図)の系統図である。このシステムは全体とし
て、過冷却水製造部と蓄氷部と熱負荷部とで構成されて
いる。過冷却水製造部は、冷凍機10で冷却されたエチ
レングリコール等のブラインを流す外側コイル11と水
を流す内側コイル12とから成る二重管型熱交換器1
3、ブライン循環ポンプ14、制御弁15を含んでい
る。蓄氷部は、断熱壁を有する蓄氷槽20、熱交換器1
3の出口からの過冷却水を蓄氷槽の上部まで移送して放
出する過冷却水放出管21、蓄氷槽の底部付近から水を
熱交換器の入口へと移送する戻り管22及びその途中に
ある水循環ポンプ23を含んでいる。蓄氷槽の上部に
は、必要に応じて結氷状態制御用の回転レーキ装置40
と駆動用モータ41、水受け皿42を取付ける。蓄氷槽
の下部には、氷核と冷水とを分離するためのストレーナ
24(例えば100メッシュ以上)を取付けることが好
ましい。熱負荷部は、空調機30その他の負荷と冷水ポ
ンプ31、制御弁32を含んでいる。
(Embodiment) FIG. 1 and FIG. 2 are system diagrams of a supercooling type ice heat storage device according to a preferred embodiment of the present invention during midnight ice making (FIG. 1) and during daytime operation (FIG. 2). . This system as a whole is composed of a supercooled water production section, an ice storage section, and a heat load section. The supercooled water production unit is a double-tube heat exchanger 1 including an outer coil 11 for flowing brine cooled by the refrigerator 10 such as ethylene glycol and an inner coil 12 for flowing water.
3, a brine circulation pump 14 and a control valve 15 are included. The ice storage unit includes an ice storage tank 20 having a heat insulating wall and a heat exchanger 1.
3, a supercooled water discharge pipe 21 for transferring and discharging supercooled water from the outlet of the ice storage tank to the upper part of the ice storage tank, a return pipe 22 for transferring water from near the bottom of the ice storage tank to the inlet of the heat exchanger, and It includes a water circulation pump 23 on the way. If necessary, a rotary rake device 40 for controlling a frozen state is provided on the top of the ice storage tank.
A drive motor 41 and a water tray 42 are attached. A strainer 24 (for example, 100 mesh or more) for separating ice nuclei and cold water is preferably attached to the lower part of the ice storage tank. The heat load unit includes a load of the air conditioner 30 and other components, a chilled water pump 31, and a control valve 32.

第1図に示す深夜の製氷時には、冷凍機10を運転して
ブラインの温度を−6℃まで下げて熱交換器13内に送
り込む。一方、蓄氷槽20の底部から引き抜かれた0℃
付近の水は熱交換器内でブラインによって冷却され、−
3℃の過冷却水になり、蓄氷槽の上部まで移送されて放
出管21から落下させられる。落下の衝撃により過冷却
水は結氷してシャーベット状になる。冷凍機10及びポ
ンプ14,23の運転を続行することにより、蓄氷槽内
にはシャーベット状の氷が積層し製氷率は60%以上に
まで高められる。また、従来の氷蓄熱装置のように伝熱
コイル表面に着氷することがないので、冷凍機の冷媒蒸
発温度を下げる必要がなく、冷凍機は常に一定の高い成
績係数で運転できる。
At the time of ice making at midnight shown in FIG. 1, the refrigerator 10 is operated to lower the temperature of the brine to −6 ° C. and send it into the heat exchanger 13. On the other hand, 0 ℃ pulled out from the bottom of the ice storage tank 20
Water in the vicinity is cooled by brine in the heat exchanger,
It becomes supercooled water of 3 ° C, is transferred to the upper part of the ice storage tank, and is dropped from the discharge pipe 21. Due to the impact of falling, the supercooled water freezes to form a sherbet. By continuing the operation of the refrigerator 10 and the pumps 14 and 23, sherbet-like ice is accumulated in the ice storage tank, and the ice making rate is increased to 60% or more. Further, unlike the conventional ice heat storage device, the surface of the heat transfer coil is not iced, so that it is not necessary to lower the refrigerant evaporation temperature of the refrigerator, and the refrigerator can always be operated with a constant high coefficient of performance.

第2図に示す昼間の運転時(解氷時)には、蓄氷槽20
の底部から引き抜いた0℃付近の水を空調機30その他
の負荷へと送り込む。槽内は均一に製氷されているの
で、氷がなくなる終期まで一定温度の冷水を取出すこと
ができる。蓄氷槽内に十分に氷がある場合には冷凍機1
0は停止しており、空調機の入口水温を7℃、出口水温
を12℃とすると、熱交換器13内を通過した後の二次
側返水は12℃の温度で蓄氷槽の上部から落下させられ
る。このとき回転レーキ装置40の内部通路を通って散
水するようにすれば、蓄氷槽内の氷を一様に融解させる
ことができる。蓄氷槽内の氷の量が負荷に対して充分で
ない場合には、昼間でも冷凍機を運転し、熱交換器にお
いて二次側返水を9℃程度まで冷却した後に蓄氷槽の上
部から落下させる。冷凍機10は昼間は冷水製造運転で
良く、熱交換器入口でのブライン温度を3℃、出口での
温度を6℃程度に設定することができ、蒸発温度が高く
なるので高効率の運転が可能である。
During the daytime operation (at the time of thawing ice) shown in FIG. 2, the ice storage tank 20
The water near 0 ° C drawn from the bottom of the air conditioner is sent to the air conditioner 30 and other loads. Since the inside of the tank is ice-made evenly, it is possible to take out cold water at a constant temperature until the end of the ice disappearance. If there is sufficient ice in the ice storage tank, refrigerator 1
0 is stopped, and assuming that the inlet water temperature of the air conditioner is 7 ° C and the outlet water temperature is 12 ° C, the secondary side return water after passing through the inside of the heat exchanger 13 is at a temperature of 12 ° C and is above the ice storage tank. Be dropped from. At this time, if water is sprinkled through the internal passage of the rotary rake device 40, the ice in the ice storage tank can be uniformly melted. If the amount of ice in the ice storage tank is not sufficient for the load, operate the refrigerator even during the day, cool the secondary side return water to about 9 ° C in the heat exchanger, and then from the top of the ice storage tank. Let it fall. The refrigerator 10 can be used for cold water production operation in the daytime, and the brine temperature at the heat exchanger inlet can be set to 3 ° C. and the outlet temperature can be set to about 6 ° C., and the evaporation temperature becomes high, resulting in high efficiency operation. It is possible.

第3図、第4図は、本発明の氷蓄熱装置における過冷却
水製造用の熱交換器の好適な例を表しており、第3図は
二重管型熱交換器、第4図はシエルアンドチューブ型熱
交換器を示している。
3 and 4 show a preferred example of a heat exchanger for producing supercooled water in the ice heat storage device of the present invention. FIG. 3 is a double tube heat exchanger, and FIG. A shell-and-tube heat exchanger is shown.

伝熱表面上で凍結させずに安定して過冷却水を製造する
ためには、 a)伝熱面が押出成形銅管と同程度以上の平滑性を有す
る b)伝熱部分では伝熱管どうしの接続等を一切行なわ
ず、伝熱部分以外で接続を行なう c)接続部分は水の滞流や偏流による局部的な渦流領域
が発生しにくい構造とする 等が必要である。
In order to stably produce supercooled water without freezing on the heat transfer surface, a) the heat transfer surface has a smoothness equal to or higher than that of the extruded copper tube. B) In the heat transfer part, heat transfer tubes are connected to each other. Connections other than heat transfer are not performed at all, and connections are required. C) The connection must have a structure that makes it difficult for local eddy current regions to occur due to stagnant or uneven flow of water.

第3図に示す熱交換器13は、内側構造体12が平行す
る複数列のチューブの端部が円弧状に形成されている屈
曲チューブで作られ、外側構造体11が屈曲チューブの
外周を包囲するコイル状の中空体で作られている。内側
チューブ12は押出成形銅管で作られ、その内面は平滑
である。内側チューブどうしの接続部分51,52は外
側構造体との伝熱部50(端部を除く中央部)には存在
せず該伝熱部から離れた位置に設けられている。接続部
分51,52は拡大部分A及びBに示すような滑らかな
流路計状に形成されている。すなわちAでは内側チュー
ブの端面が45度以下のテーパ面にカットされ、端面間
の距離が内径Dの1/2倍より大きく取られ、その外側に
スリーブ55が嵌装されている。Bでは内側チューブの
内側にスリーブ56が嵌入され、スリーブ56の両端は
45度以下のテーパ面にカットされ、スリーブ56の内
側平行部分の長さが内径Dの1/2倍より大きく取られて
いる。内側チューブ12とスリーブ55,56とはロウ
付け等により溶着されている。
The heat exchanger 13 shown in Fig. 3 is made of a bent tube in which the ends of a plurality of rows of tubes in which the inner structure 12 is parallel are formed in an arc shape, and the outer structure 11 surrounds the outer circumference of the bent tube. It is made of a coiled hollow body. Inner tube 12 is made of extruded copper tubing and its inner surface is smooth. The connecting portions 51 and 52 of the inner tubes do not exist in the heat transfer portion 50 (the central portion excluding the end portions) with the outer structure, but are provided at positions apart from the heat transfer portion. The connecting portions 51 and 52 are formed in a smooth flow path shape as shown in the enlarged portions A and B. That is, in A, the end surface of the inner tube is cut into a taper surface of 45 degrees or less, the distance between the end surfaces is set to be larger than 1/2 times the inner diameter D, and the sleeve 55 is fitted on the outer side. In B, the sleeve 56 is fitted inside the inner tube, both ends of the sleeve 56 are cut into tapered surfaces of 45 degrees or less, and the length of the inner parallel portion of the sleeve 56 is set to be larger than 1/2 times the inner diameter D. There is. The inner tube 12 and the sleeves 55 and 56 are welded by brazing or the like.

第4図に示す熱交換器60は、外側構造体11がシエル
状の中空体で作られ、その内部が互い違いに仕切られて
いる点を除けば、第3図の熱交換器13と類似の構造で
ある。チューブの接続部分53は第3図の拡大部分Aま
たはBのように形成されている。
The heat exchanger 60 shown in FIG. 4 is similar to the heat exchanger 13 of FIG. 3 except that the outer structure 11 is made of a shell-shaped hollow body, and the inside is staggered. It is a structure. The connecting portion 53 of the tube is formed like the enlarged portion A or B in FIG.

かくして、第3図、第4図に示す熱交換器を用いれば、
伝熱表面上で凍結させることなく安定して過冷却水を製
造することができる。
Thus, by using the heat exchanger shown in FIGS. 3 and 4,
Supercooled water can be stably produced without freezing on the heat transfer surface.

第5図は、蓄氷槽20の上部に取付けた回転レーキ装置
40の作用を表わすための図である。第1図に示した深
夜製氷時において、矢印E方向から過冷却水が導入され
放出管21から落下させられるが、放出管21は水平首
振り機構(図示せず)によってR方向にセットされてお
り、過冷却水は中央の水受け皿42には入らず直接槽内
の液面へと落下する。第2図に示した昼間運転時におい
て、放出管21は水平首振り機構によってL方向にセッ
トされており、9℃の二次側返水は中央の水受け皿42
に入ってから回転子43の内部通路を通り、散水孔45
から槽内の液面へと散水される。回転子43は、筒状部
材に傾斜させた板状片を接合したかき取り羽根(ブレー
ド)状に作られている。矢印F方向には水循環ポンプ2
3が配置され、矢印G方向には冷水ポンプ31が配置さ
れて、ストレーナ24を通過した冷水を所定の方向に移
送する。
FIG. 5 is a diagram showing the operation of the rotary rake device 40 attached to the upper portion of the ice storage tank 20. During the midnight ice making shown in FIG. 1, supercooled water is introduced from the direction of arrow E and dropped from the discharge pipe 21, but the discharge pipe 21 is set in the R direction by a horizontal swing mechanism (not shown). Therefore, the supercooled water does not enter the central water tray 42 and directly drops to the liquid surface in the tank. During the daytime operation shown in FIG. 2, the discharge pipe 21 is set in the L direction by the horizontal swing mechanism, and the secondary side return water at 9 ° C. is the central water pan 42.
After entering, it passes through the internal passage of the rotor 43,
Water is sprinkled on the surface of the tank. The rotor 43 is formed in the shape of a scraping blade (blade) in which a slanted plate piece is joined to a tubular member. Water circulation pump 2 in the direction of arrow F
3 is arranged, and a cold water pump 31 is arranged in the direction of arrow G to transfer the cold water passing through the strainer 24 in a predetermined direction.

回転レーキ装置40は次のようにして結氷状態を制御す
ることができる。
The rotary rake device 40 can control the frozen state as follows.

a)過冷却水落下部分で突起状に成長した氷を水平方向
に切断し、表面を平坦にする。
a) The ice that has grown in a protruding shape at the falling portion of the supercooled water is cut horizontally to make the surface flat.

b)できた氷を槽内に均一に分散化させる。b) Disperse the resulting ice evenly in the bath.

c)シャーベット状アイスを連続的に圧縮して製氷率を
増大させる。
c) Sherbet-like ice is continuously compressed to increase the ice making rate.

d)回転軸の途中にトルク検出素子を設けて、回転トル
クの増大から蓄氷終了を検知し、冷凍機を停止させる。
d) A torque detecting element is provided in the middle of the rotating shaft to detect the end of ice storage from the increase of the rotating torque and stop the refrigerator.

e)解氷時には散水孔から二次側返水を全体に散布し
て、均一な解氷を行なわせる。
e) At the time of thawing, the secondary side return water is sprinkled over the entire water through the water sprinkling holes to perform uniform thawing.

本発明による氷蓄熱方式(レーキ使用時)を従来方式と
比較すると次のようになった。
The ice heat storage method (when using a rake) according to the present invention is compared with the conventional method as follows.

(発明の効果) 以上詳細に説明した如く、本発明の過冷却式氷蓄熱装置
によれば次のような利点が得られる。
(Effects of the Invention) As described in detail above, according to the supercooling type ice heat storage device of the present invention, the following advantages can be obtained.

1)伝熱面には着氷しないので、冷媒蒸発温度を低下さ
せることなく常に一定の高い成績係数で冷凍機を運転す
ることができる。
1) Since the heat transfer surface is not iced, the refrigerator can always be operated with a constant high coefficient of performance without lowering the refrigerant evaporation temperature.

2)伝熱面では水が流動状態にあるので伝熱効率が非常
に良く、冷却時間が大幅に短縮できる。
2) On the heat transfer surface, since water is in a fluid state, the heat transfer efficiency is very good and the cooling time can be greatly shortened.

3)流動状態で作った過冷却水は静置法で作ったものに
比べて氷結しにくいので、移送することが可能になり、
蓄熱槽内で製氷することができる。
3) Supercooled water made in a fluid state is less likely to freeze than water made by the static method, so it is possible to transfer it.
Ice can be made in the heat storage tank.

4)製氷率を従来の40%以下から60%以上にまで高
めることができ、蓄熱槽がコンパクトになる。
4) The ice making rate can be increased from the conventional 40% or less to 60% or more, and the heat storage tank becomes compact.

5)蓄熱槽内で均一に製氷できるので、解氷時には氷が
なくなる終期まで一定温度の冷水を取出すことができ
る。
5) Since ice can be made uniformly in the heat storage tank, it is possible to take out cold water at a constant temperature until the end of the ice disappearance when the ice is thawed.

【図面の簡単な説明】[Brief description of drawings]

第1図はブラインを用いた場合の実施例による本発明の
氷蓄熱装置の製氷時を表わす系統図、第2図は冷水製造
時を表わす系統図、第3図は過冷却水製造用の熱交換器
として用いる二重管型熱交換器の縦断面図、第4図はシ
エルアンドチューブ型熱交換器の縦断面図、第5図は蓄
熱槽の一部破断斜視図である。 10……冷凍機、11……外側構造体 12……内側構造体、13……熱交換器 14……ブラインポンプ、20……蓄氷槽 21……放出管、22……戻り管 23……水循環ポンプ、24……ストレーナ 30……空調機、31……冷水ポンプ 40……回転レーキ、50……伝熱部分
FIG. 1 is a system diagram showing an ice heat storage device of the present invention according to an embodiment in which brine is used, when making ice, FIG. 2 is a system diagram showing when cold water is produced, and FIG. 3 is heat for producing supercooled water. FIG. 4 is a vertical sectional view of a double-tube heat exchanger used as an exchanger, FIG. 4 is a vertical sectional view of a shell-and-tube heat exchanger, and FIG. 5 is a partially cutaway perspective view of a heat storage tank. 10 ... Refrigerator, 11 ... Outer structure 12 ... Inner structure, 13 ... Heat exchanger 14 ... Brine pump, 20 ... Ice storage tank 21 ... Discharge pipe, 22 ... Return pipe 23 ... … Water circulation pump, 24 …… Strainer 30 …… Air conditioner, 31 …… Cold water pump 40 …… Rotary rake, 50 …… Heat transfer part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 秀修 東京都新宿区四谷2丁目4番地 新菱冷熱 工業株式会社内 (56)参考文献 特開 昭61−165533(JP,A) 実開 昭54−102747(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Aoki 2-4, Yotsuya, Shinjuku-ku, Tokyo Within Shinryo Corporation (56) References JP-A-61-165533 (JP, A) 54-102747 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】冷凍機で冷却された冷媒またはブラインを
流す外側構造体と水を流す内側構造体とから成り、前記
冷媒またはブラインを0℃以下に保って水を冷却し前記
内側構造体の出口での水温を0℃以下にする過冷却水製
造熱交換器と、 断熱性を有する蓄氷槽と、 前記熱交換器の出口からの過冷却水を前記蓄氷槽の上部
に案内して放出する過冷却水放出管と、 前記蓄氷槽の底部付近から水を前記熱交換器の内側構造
体の入口へと案内する戻り管と、 該戻り管の途中に配置した水循環ポンプと、 冷媒またはブラインを前記冷凍機及び前記熱交換器の外
側構造体へと循環させる配管系と、 空調機その他の負荷及び冷水ポンプを含む冷水循環回路
であって、前記蓄氷槽の底部付近から冷水の供給を受け
られるように連通している冷水循環回路とを備えること
を特徴とする過冷却式氷蓄熱装置。
1. An outer structure for flowing a refrigerant or brine cooled by a refrigerator and an inner structure for flowing water, wherein the refrigerant or brine is kept at 0 ° C. or lower to cool the water to cool the inner structure. A supercooled water manufacturing heat exchanger that keeps the water temperature at the outlet below 0 ° C., an ice storage tank having heat insulating properties, and supercooled water from the outlet of the heat exchanger is guided to the upper part of the ice storage tank. A supercooled water discharge pipe for discharging, a return pipe for guiding water from near the bottom of the ice storage tank to the inlet of the inner structure of the heat exchanger, a water circulation pump arranged in the middle of the return pipe, and a refrigerant. Or a cold water circulation circuit including a piping system that circulates brine to the outside structure of the refrigerator and the heat exchanger, an air conditioner and other loads, and a cold water pump, and cool water from near the bottom of the ice storage tank. Cold water circulation circuit communicating so that it can be supplied Supercooling type ice thermal storage apparatus comprising: a.
【請求項2】前記蓄氷槽の下方部分に氷核と冷水を分離
するためのストレーナが設けられている特許請求の範囲
第1項記載の装置。
2. The device according to claim 1, wherein a strainer for separating ice nuclei and cold water is provided in a lower portion of the ice storage tank.
JP61151706A 1986-06-30 1986-06-30 Supercooled ice heat storage device Expired - Fee Related JPH0646127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61151706A JPH0646127B2 (en) 1986-06-30 1986-06-30 Supercooled ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61151706A JPH0646127B2 (en) 1986-06-30 1986-06-30 Supercooled ice heat storage device

Publications (2)

Publication Number Publication Date
JPS6314063A JPS6314063A (en) 1988-01-21
JPH0646127B2 true JPH0646127B2 (en) 1994-06-15

Family

ID=15524487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61151706A Expired - Fee Related JPH0646127B2 (en) 1986-06-30 1986-06-30 Supercooled ice heat storage device

Country Status (1)

Country Link
JP (1) JPH0646127B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621752B2 (en) * 1987-03-04 1994-03-23 高砂熱学工業株式会社 Ice storage device for heat storage
JPH0615942B2 (en) * 1987-04-28 1994-03-02 高砂熱学工業株式会社 Ice storage device for heat storage
JPH01114682A (en) * 1987-10-29 1989-05-08 Takasago Thermal Eng Co Ltd Ice making method and device for accumulating heat
JPH01120022U (en) * 1988-02-08 1989-08-15
JP2523349B2 (en) * 1988-03-19 1996-08-07 高砂熱学工業株式会社 Ice storage and cooling equipment for multi-storey buildings
JPH01148536U (en) * 1988-03-31 1989-10-16
JPH0734267Y2 (en) * 1988-06-11 1995-08-02 高砂熱学工業株式会社 Ice storage device for air conditioning
JPH0641063Y2 (en) * 1988-08-24 1994-10-26 高砂熱学工業株式会社 Ice storage device for air conditioning
JPH0297893A (en) * 1988-10-01 1990-04-10 Toyo Eng Corp Heat exchanger for manufacturing supercooled water
JP2649078B2 (en) * 1988-12-19 1997-09-03 高砂熱学工業株式会社 Heat storage type cooling and heating method
JPH0375428A (en) * 1989-08-17 1991-03-29 Sekisui Koji Kk Ice-cold-heat storage apparatus
JP2755775B2 (en) * 1990-04-17 1998-05-25 株式会社東芝 Subcooler
JPH062032U (en) * 1992-06-12 1994-01-14 株式会社三浦研究所 Anti-freezing device for heat exchanger for supercooled water
JP6057154B2 (en) * 2012-09-28 2017-01-11 パナソニックIpマネジメント株式会社 Heat exchanger
JP6480103B2 (en) * 2014-02-14 2019-03-06 高砂熱学工業株式会社 Ice storage tank, ice making system, and ice making method
JP6542814B2 (en) * 2017-01-26 2019-07-10 高砂熱学工業株式会社 Ice storage tank and sherbet ice ice making system
JP6542815B2 (en) * 2017-01-26 2019-07-10 高砂熱学工業株式会社 Ice storage tank and sherbet ice ice making system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112855A (en) * 1974-04-17 1976-01-31 Sumitomo Bakelite Co JUSHI SEIBUTSU
JPS54102747U (en) * 1977-12-29 1979-07-19
JPS56111002A (en) * 1980-02-07 1981-09-02 Hitachi Plant Eng & Constr Co Ltd Refrigerating treatment
US4480445A (en) * 1983-01-21 1984-11-06 Vladimir Goldstein Thermal storage heat exchanger systems of heat pumps
US4509344A (en) * 1983-12-08 1985-04-09 Chicago Bridge & Iron Company Apparatus and method of cooling using stored ice slurry
US4584843A (en) * 1984-11-05 1986-04-29 Chicago Bridge & Iron Company Method and apparatus of storing ice slurry and its use for cooling purposes

Also Published As

Publication number Publication date
JPS6314063A (en) 1988-01-21

Similar Documents

Publication Publication Date Title
JPH0646127B2 (en) Supercooled ice heat storage device
KR100296653B1 (en) Heat exchanger for ice making apparatus in cooling system
JP3547386B2 (en) Heat storage coil device
US4185467A (en) Icemaker liquid refrigerant defrost system
JP3290765B2 (en) Heat pipe type super cooling ice making equipment
JPH08152162A (en) Internally melting type ice heat storage tank
RU2814476C1 (en) Water cooling method and device for its implementation
CN205561366U (en) Adopt direct expansion formula subcooling water -ice thick liquid manufacturing installation of ammonia refrigeration system
JPH0438176Y2 (en)
JP2911710B2 (en) Prevention method of ice freezing heat exchanger for ice storage in supercooled ice making method
CN220018269U (en) Environment-friendly high-efficiency multifunctional heat exchange device
JP2002098490A (en) Heat storage tank and refrigeration cycle device having the same, and air conditioner equipped with the same
JP3000907B2 (en) Operation control method of ice storage type chiller
JP3837613B2 (en) Ice making heat exchanger
JP2508299B2 (en) Ice heat storage device
JP3365371B2 (en) Ice storage device
JPH0438179Y2 (en)
JPH04129039U (en) Unfreezing device for double cylinder coil type heat exchanger
JP2548637B2 (en) Operating method of supercooled water production equipment
JP2816779B2 (en) Method and apparatus for defrosting heat exchanger for supercooled water
US3309891A (en) Salt water ice making machine
JP2003004263A (en) Internally melting ice-thermal-storage apparatus and operation thereof
JPH06323700A (en) Ice sprout breaker of ice accumulating tank
JP2755775B2 (en) Subcooler
JP3337017B2 (en) Heat storage device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees