JPH0297893A - Heat exchanger for manufacturing supercooled water - Google Patents

Heat exchanger for manufacturing supercooled water

Info

Publication number
JPH0297893A
JPH0297893A JP24879288A JP24879288A JPH0297893A JP H0297893 A JPH0297893 A JP H0297893A JP 24879288 A JP24879288 A JP 24879288A JP 24879288 A JP24879288 A JP 24879288A JP H0297893 A JPH0297893 A JP H0297893A
Authority
JP
Japan
Prior art keywords
water
tube
hollow body
coil
coil tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24879288A
Other languages
Japanese (ja)
Inventor
Hironori Inada
稲田 裕紀
Takeshi Mannen
萬年 毅
Koichi Endo
光一 遠藤
Yukio Kurosaki
黒崎 幸夫
Isao Hasegawa
功 長谷川
Fumihiro Baba
文啓 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Construction Co Ltd
Toyo Engineering Corp
Original Assignee
Mitsui Construction Co Ltd
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Construction Co Ltd, Toyo Engineering Corp filed Critical Mitsui Construction Co Ltd
Priority to JP24879288A priority Critical patent/JPH0297893A/en
Publication of JPH0297893A publication Critical patent/JPH0297893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To average the temperature of water to be cooled and prevent the freezing of the same surely by arranging a coil tube in a shell type hollow body so as to show a spiral configuration without any part of straight line. CONSTITUTION:A coil tube 3 is arranged in a shell type hollow body 2 so as to show a spiral configuration without any part of straight line so that predetermined spaces are secured from an inner tube 4 and an outer tube 5 while the whole of the outer peripheral surface of the tube is brought into contact with refrigerant or brine. The inner surface of the coil tube 3 is formed so as to have the configuration of a smooth flow passage having smoothness and connecting parts of the coil tubes 3 to each other are provided only in the outside of the shell type hollow body 2. According to this method, whirling flow toward the center of the tube is generated in water to be cooled in the coil tube 3 and the temperatures of the water are averaged in any parts in the section of the tube 3 whereby the freezing of the water to be cooled may be prevented surely.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷房負荷用に利用される氷蓄熱システムにお
ける過冷却水製造用熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat exchanger for producing supercooled water in an ice heat storage system used for cooling loads.

(従来の技術) 近年、氷蓄熱システムが、従来の水蓄熱システムに替わ
るものとして種々提案されて来ている。
(Prior Art) In recent years, various ice heat storage systems have been proposed as an alternative to conventional water heat storage systems.

該氷蓄熱システムは、夜間電力を利用して夜の間に蓄え
た熱エネルギーを昼間の空気調和用等に活用して、省エ
ネルギー化を図ろうとするものであり、水が氷になる時
の凝固熱を利用するものであるため、従来の水の温度変
化だけを利用した水蓄熱システムに比較して、容積当り
の蓄熱能力を飛躍的に向上させることができ、換言すれ
ば、蓄熱スペースを格段に小型化することが可能となる
The ice heat storage system aims to save energy by using nighttime electricity to store thermal energy for air conditioning during the day. Because it uses heat, it can dramatically improve the heat storage capacity per volume compared to conventional water heat storage systems that only use temperature changes in water. This makes it possible to downsize the device.

しかして、現在の氷蓄熱システムは、生成される氷の性
状により、固体水を利用する、いわゆるソリッドアイス
方式と、流動性を有する粒状(結晶状)の氷を利用する
、いわゆるリキッドアイス方式とに大別されている。
Current ice heat storage systems are divided into two types, depending on the nature of the ice produced: the so-called solid ice system, which uses solid water, and the so-called liquid ice system, which uses fluid granular (crystalline) ice. It is broadly divided into

このうち、リキッドアイス方式では、エチレングリコー
ル等の水溶液を使用し、溶液中の水分を凍結させる方法
が一般的であるが、この方法では、氷の析出とともに残
された溶液の濃度が上昇するため、時間の経過とともに
濃度の高い不凍液を凍結させるといった運転な余偽なく
される問題がある。
Among these methods, the liquid ice method generally uses an aqueous solution such as ethylene glycol to freeze the water in the solution, but with this method, the concentration of the remaining solution increases as the ice precipitates. However, there is a problem in that the highly concentrated antifreeze solution freezes over time, making it difficult to operate.

よって、結果的に冷凍システムの成績係数は低下し、ま
た、水充填率にも限界を生じる。
Therefore, as a result, the coefficient of performance of the refrigeration system decreases, and there is also a limit to the water filling rate.

そこで、被冷却水を0℃以下になるまで冷却して過冷却
状態の水を作り、これを利用して製氷率を高める手段が
提案されている。
Therefore, a method has been proposed in which the water to be cooled is cooled to 0° C. or lower to produce supercooled water and this is used to increase the ice making rate.

かかる過冷却水の製造手段としては、特開昭63−14
063号に開示されたものがある。
A means for producing such supercooled water is disclosed in Japanese Patent Application Laid-open No. 63-14.
There is one disclosed in No. 063.

(発明が解決しようとする課題) この過冷却水製造システムは、被冷却水を過冷却温度に
まで冷却する熱交換器と、過冷却を解消して氷にする装
置と、蓄水槽を備えており、ここで前記熱交換器として
、第5図及び第6図に示すものが開示されている。
(Problem to be Solved by the Invention) This supercooled water production system includes a heat exchanger that cools water to be cooled to a supercooling temperature, a device that eliminates supercooling and turns it into ice, and a water storage tank. Here, as the heat exchanger, those shown in FIGS. 5 and 6 are disclosed.

第5図に示したものは二m管型熱交換器であり、第6図
に示したものは、シェルチューブ型熱交換器であるが、
これらには、以下の欠点がある。
The one shown in Figure 5 is a 2m tube type heat exchanger, and the one shown in Figure 6 is a shell tube type heat exchanger.
These have the following drawbacks.

■、いずれも、熱交換器内での内側コイル30が直線状
になっているため、第7図に示すように、コイル30内
での被冷却水の流れは、中央部の流速が最も速く、管壁
に近くなるにつれて流速が減少するという速度勾配Vが
生じ、いわゆる層流域を形成してしまう。
In both cases, the inner coil 30 in the heat exchanger is linear, so as shown in Figure 7, the flow rate of the water to be cooled in the coil 30 is fastest in the center. , a velocity gradient V occurs in which the flow velocity decreases as it approaches the pipe wall, forming a so-called laminar region.

よって、図示のような温度勾配′「が発現し、最も低温
となる管壁部分から徐々に氷が成長し、コイル30内で
結氷してしまう事態となる。
As a result, a temperature gradient ``'' as shown in the figure develops, and ice gradually grows from the tube wall portion where the temperature is the lowest, resulting in freezing inside the coil 30.

■、単位交換熱量に対する伝熱面積が大きくなるため、
熱交換器自体を大型化する必要がある。
■Because the heat transfer area increases per unit amount of heat exchanged,
It is necessary to increase the size of the heat exchanger itself.

本発明は、かかる従来の課題を解決しつる過冷却水製造
用熱交換器を提供することを目的とするものである。
An object of the present invention is to provide a heat exchanger for producing supercooled water that solves the conventional problems.

(課題を解決するための手段) 上記目的を達成するため、本発明に係る過冷却水製造用
熱交換器は、シェル状中空体と、該シェル状中空体内に
配設されるコイルチューブとからなり、シェル状中空体
内には冷凍機で0℃以下に冷却された冷媒もしくはブラ
インを流動させて。
(Means for Solving the Problems) In order to achieve the above object, a heat exchanger for producing supercooled water according to the present invention includes a shell-shaped hollow body and a coil tube disposed inside the shell-shaped hollow body. A refrigerant or brine cooled to below 0°C by a refrigerator is made to flow inside the shell-shaped hollow body.

前記コイルチューブ内を流動する被冷却水を冷却し、該
コイルチューブの出口での水温な0℃以下の過冷却状態
にする熱交換器であって、前記コイルチューブは、前記
シェル状中空体内において直線部のない螺旋形状に配設
されることにより、コイルチューブ内での被冷却水の氷
結を有効に防止し、熱交換率を高めたことを特徴とする
ものである。
The heat exchanger cools the water to be cooled flowing in the coil tube and brings the water temperature at the outlet of the coil tube into a supercooled state of 0° C. or less, wherein the coil tube cools the water flowing in the shell-shaped hollow body. By being arranged in a helical shape without straight parts, the cooling water is effectively prevented from freezing within the coil tube, and the heat exchange rate is increased.

声た、前記コイルチューブの内面を平滑性を有するもの
とし、該コイルチューブ相互の接続部分は、前記シェル
状中空体の外部にのみ設けて熱交換部での接続を無くシ
、かつ、前記接続部分を、コイルチューブ内部を流れる
水が局部的な渦流領域を生じない滑らかな流路形状に形
成することにより、過冷却水をさらに安定して形成する
ことができるものである。
The inner surface of the coil tubes is smooth, and the connection portions between the coil tubes are provided only on the outside of the shell-like hollow body to eliminate connections at the heat exchange part. By forming the portion into a smooth flow path shape in which the water flowing inside the coil tube does not produce local vortex regions, supercooled water can be formed more stably.

(実施例) 以下1本発明の好適な実施例を図面により説明する。(Example) A preferred embodiment of the present invention will be described below with reference to the drawings.

第1図乃至第4図は、本発明の一実施例を示ずものであ
り、本実施例に係る過冷却水製造用熱交換器lは、シェ
ル状中空体2と、該シェル状中空体2内に配設されるコ
イルチューブ3とからなる、いわゆるシェルアンドコイ
ルチューブ型のものである。
1 to 4 do not show one embodiment of the present invention, and the heat exchanger l for producing supercooled water according to the present embodiment includes a shell-shaped hollow body 2 and the shell-shaped hollow body It is of the so-called shell and coil tube type, consisting of a coil tube 3 disposed inside the coil tube 2.

シェル状中空体2は、本実施例では第1図及び第2図に
示すように同心固状に配置された円筒形状の内管4と、
外管5及び上下端縁を閉鎖する蓋体6及び蓋体7により
閉鎖空間として画成されており、該シェル状中空体2内
に前記コイルチューブ3が配設されている6 コイルチューブ3は、第1図に示すように前記シェル状
中空体2内において直線部のない螺旋形状に配設されて
おり、かつ、第2図に示すように、前記内管4及び外管
5のいずれからも所定間隔をおいて配設されることによ
り、チューブ外周面全面が後述する冷媒もしくはブライ
ンに接触しつるようになっている。
In this embodiment, the shell-shaped hollow body 2 includes a cylindrical inner tube 4 arranged in a concentric solid manner as shown in FIGS. 1 and 2;
A closed space is defined by an outer tube 5 and a lid 6 and a lid 7 that close the upper and lower edges, and the coil tube 3 is disposed inside the shell-shaped hollow body 2. , as shown in FIG. 1, is arranged in a spiral shape without a straight part in the shell-like hollow body 2, and as shown in FIG. The tubes are arranged at predetermined intervals so that the entire outer peripheral surface of the tube comes into contact with the refrigerant or brine, which will be described later.

また、コイルチューブ3の内面は、押出成形鋼管と同程
度以上の平滑性を有し、該コイルチューブ3相互の接続
部分は、前記シェル状中空体2の外部にのみ設けて、該
シェル状中空体2内での熱交換部での接続を無くしてい
る。
Further, the inner surface of the coil tube 3 has smoothness equal to or higher than that of an extruded steel pipe, and the mutual connection portions of the coil tubes 3 are provided only on the outside of the shell-shaped hollow body 2. Connection at the heat exchange part within the body 2 is eliminated.

さらに、前記接続部分は、第3図(a)もしくは第3図
(b)に示すように、ねじ接合を避けて接続管8との差
し込み形式の接合手段を採用し、チューブ3と接続管8
との接続端面間のスパンEは、チューブ3の内径りの1
72以上とし、また、被冷却水に接する接続端面は、4
5度以下のデーバー面に形成することにより、コイルチ
ューブ3内部を流れる被冷却水が1局部的な渦流領域を
生じないような滑らかな流路形状に形成されている。
Furthermore, as shown in FIG. 3(a) or FIG. 3(b), the connecting portion employs a plug-in type connecting means for connecting the tube 3 and the connecting tube 8, avoiding screw connection.
The span E between the connecting end faces is 1 of the inner diameter of the tube 3.
72 or more, and the connection end surface in contact with the water to be cooled is 4
By forming the coil tube 3 to have a Dever surface of 5 degrees or less, the water to be cooled flowing inside the coil tube 3 is formed into a smooth flow path shape so that no local vortex region is generated.

しかして、第1図に示すように、夜間の製氷時には、冷
凍機9で一6℃程度に冷却されたエチレングリコール等
のブラインを、ポンプ10により送給管IIを介して上
部の入口12から送り込み、下部の出口13から戻し管
14を介して冷凍機9に戻すことによりシェル状中空体
2内を流動させて、前記コイルチューブ3内を流動する
被冷却水を冷却し、該コイルチューブ3の出口での水温
を一3℃程度の過冷却状態にする。
As shown in FIG. 1, when making ice at night, brine such as ethylene glycol, which has been cooled to about -6°C by a refrigerator 9, is pumped from the upper inlet 12 via a feed pipe II by a pump 10. The water to be cooled flowing in the coil tube 3 is cooled by being fed into the shell-shaped hollow body 2 by returning it to the refrigerator 9 from the lower outlet 13 via the return pipe 14, and cooling the water flowing in the coil tube 3. The water temperature at the outlet is supercooled to about -3°C.

過冷却水は1本体上部の出口15から送り管16を介し
て蓄水槽17に送られて、ここで所定の過冷却解消装置
18により結氷させられて、シャーベット状アイスとし
て蓄氷槽17内に積層される。
The supercooled water is sent from the outlet 15 at the top of the main body to the water storage tank 17 via the feed pipe 16, where it is frozen by a predetermined supercooling elimination device 18 and stored in the ice storage tank 17 as sherbet-like ice. Laminated.

また、蓄氷槽17の下部からポンプ19により戻し管2
0を介して本体下部の入口21から被冷却水をコイルチ
ューブ3内に循環させて、上記と同様の過冷却化を継続
するものである。
In addition, a return pipe 2 is connected to the bottom of the ice storage tank 17 by a pump 19.
The water to be cooled is circulated into the coil tube 3 from the inlet 21 at the bottom of the main body through the coil tube 3 to continue supercooling as described above.

かかる構成からなる本実施例においては、前記コイルチ
ューブ3が、前記シェル状中空体2内において直線部の
ない螺旋形状に配設されているため、第4図に示すよう
にコイルチューブ3内の被冷却水には、管中心に向かう
回転流が生じ、よって上記した従来例のように層流域が
発生することがない。
In this embodiment having such a configuration, the coil tube 3 is disposed in the shell-like hollow body 2 in a spiral shape without a straight line, so that the coil tube 3 has a spiral shape as shown in FIG. A rotational flow toward the center of the tube is generated in the water to be cooled, so that a laminar region does not occur as in the conventional example described above.

従って、被冷却水の水温はチューブ3断面内のいずれの
部分でも平均化され、上記従来例のように温度勾配を生
じないため、被冷却水の氷結を確実に防止することがで
きる。
Therefore, the temperature of the water to be cooled is averaged at any part within the cross section of the tube 3, and no temperature gradient occurs as in the above-mentioned conventional example, so that freezing of the water to be cooled can be reliably prevented.

また、コイルチューブ3内で被冷却水が、上記した如く
回転流をなしながら流動するため、被冷却水は均一に管
壁を介して伝熱作用を受ける。
Further, since the water to be cooled flows in the coil tube 3 while forming a rotational flow as described above, the water to be cooled is uniformly subjected to heat transfer through the tube wall.

よって、上記従来例のように管壁付近の水のみが偏って
伝熱作用を受けるものに比較して、熱交換率が格段に向
−トするため、熱交換器自体を小型化することができる
ものである。
Therefore, compared to the above-mentioned conventional example in which only the water near the tube wall receives the heat transfer action unevenly, the heat exchange rate is significantly improved, making it possible to downsize the heat exchanger itself. It is possible.

さらに、前記コイルチューブ3の内面を平滑性を有する
ものとし、該コイルチューブ3相互の接続部分は、前記
シェル状中空体2の外部にのみ設けて熱交換部での接続
を無<シ、かつ、前記接続部分を、コイルチューブ3内
部を流れる水が局部的な渦流領域を生じない滑らかな流
路形状に形成することにより、過冷却水をさらに安定し
た状態で形成することができる。
Furthermore, the inner surface of the coil tube 3 is made smooth, and the connection portion between the coil tubes 3 is provided only on the outside of the shell-shaped hollow body 2, so that there is no connection at the heat exchange part, and By forming the connecting portion into a smooth flow path shape in which the water flowing inside the coil tube 3 does not produce local vortex regions, supercooled water can be formed in a more stable state.

なお、上記実施例では、シェル状中空体2を円筒形状の
内管4と外管5との間に形成される中空形状に設定した
例を示しており、コイルチューブ3の螺旋形状の曲率が
比較的大きい場合には、かかる形状とすることが小川の
冷媒もしくはブラインにより熱交換を行なうことができ
て合理的であるが、本発明はこれに限定されるものでは
なく、特に、コイルチューブ3の螺旋形状の曲率が小さ
い場合には、111なる円筒形状のものであってもよく
、また、コイルチューブ3を覆うことができれば1円筒
形状のものに限らない。
In the above embodiment, the shell-like hollow body 2 is set to have a hollow shape formed between a cylindrical inner tube 4 and an outer tube 5, and the curvature of the spiral shape of the coil tube 3 is When the coil tube 3 is relatively large, it is reasonable to use such a shape because heat exchange can be performed using a stream refrigerant or brine, but the present invention is not limited to this, and in particular, the coil tube 3 If the curvature of the spiral shape is small, it may be a cylindrical shape such as 111, and it is not limited to a cylindrical shape as long as it can cover the coil tube 3.

また1本実施例でいう過冷却水としては、純粋な水の他
に、高分子増粘材としての分子量In、 000以上の
ポリビニルピロリドン(PVP)を0.3〜1.5重量
%添加したものであってもよい。
In addition to pure water, the supercooled water used in this example contains 0.3 to 1.5% by weight of polyvinylpyrrolidone (PVP) with a molecular weight of In, 000 or more as a polymeric thickener. It may be something.

さらに、冷媒もしくはブラインの材質等も限定されない
等、本発明の要旨を逸脱しない範囲内で種々の変形例が
可能なことは言うまでもない。
Furthermore, it goes without saying that various modifications can be made without departing from the scope of the present invention, such as the material of the refrigerant or brine being not limited.

(発明の効果) 本発明は上述した如く構成されており、コイルチューブ
をシェル状中空体内において直線部のない螺旋形状に配
設することにより、被冷却水には、管中心に向かう回転
流が生じ、よって、被冷却水の水温はデユープ断面内の
いずれの部分でも平均化され、被冷却水の氷結を確実に
防止することができる。
(Effects of the Invention) The present invention is constructed as described above, and by arranging the coil tube in a spiral shape with no straight parts in the shell-like hollow body, the water to be cooled has a rotational flow toward the center of the tube. Therefore, the temperature of the water to be cooled is averaged at any part within the duplex cross section, and freezing of the water to be cooled can be reliably prevented.

また、上記した回転流の作用により、被冷却水は均一に
管壁を介して伝熱作用を受けるため、熱交換率が格段に
向上し、熱交換器自体を小型化することができるもので
ある。
In addition, due to the above-mentioned rotational flow, the water to be cooled receives heat transfer evenly through the pipe walls, significantly improving the heat exchange efficiency and making it possible to downsize the heat exchanger itself. be.

さらに、コイルチューブの内面を平滑性を有するものと
し、該コイルチューブ相互の接続部分は、前記シェル状
中空体2の外部にのみ設け、かつ、前記接続部分を、コ
イルチューブ内部を流れる水が局部的な渦流領域を生じ
ない滑らかな流路形状に形成することにより、過冷却水
をさらに安定した状態で形成することができるものであ
る。
Furthermore, the inner surfaces of the coil tubes are made smooth, and the connecting portions between the coil tubes are provided only on the outside of the shell-shaped hollow body 2, and the connecting portions are connected to local areas where water flowing inside the coil tubes is provided. By forming the flow path in a smooth shape that does not generate any vortex region, supercooled water can be formed in a more stable state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る過冷却水製造用熱交換器の一実施
例を示す概念図、第2図は第1図の八−Δ線断面図、第
3図(a)及び第3図(b)は各々コイルチューブの接
続部分の構成を示す説明図、第4図(a)及び第4図(
b)は各々コイルチューブ内の被冷却水の状態を示す説
明図、第5図は及び第6図は各々従来の過冷却水製造m
熱交換器の例を示す概念図、第7図は従来の被冷却水の
状態を示す説明図である。 1・・・過冷却水製造用熱交換器、 2・・・シェル状中空体、 3・・・コイルチューブ、 4・・・内管、      5・・・外管、8・・・接
続管、     9・・・冷凍機、10.19・・・ポ
ンプ、 17・・・蓄氷槽、    18・・・過冷却解消装置
。 特許出願人 東洋エンジニアリンング株式会社(外1名
Fig. 1 is a conceptual diagram showing an embodiment of the heat exchanger for producing supercooled water according to the present invention, Fig. 2 is a sectional view taken along line 8-∆ of Fig. 1, Fig. 3(a) and Fig. 3 (b) is an explanatory diagram showing the configuration of the connection part of the coil tube, Fig. 4(a) and Fig. 4(
b) is an explanatory diagram showing the state of the water to be cooled in the coil tube, and Figures 5 and 6 are diagrams showing conventional supercooled water production m.
A conceptual diagram showing an example of a heat exchanger, and FIG. 7 is an explanatory diagram showing the state of conventional water to be cooled. DESCRIPTION OF SYMBOLS 1... Heat exchanger for producing supercooled water, 2... Shell-shaped hollow body, 3... Coil tube, 4... Inner tube, 5... Outer tube, 8... Connecting tube, 9... Refrigerator, 10.19... Pump, 17... Ice storage tank, 18... Supercooling elimination device. Patent applicant: Toyo Engineering Co., Ltd. (1 other person)

Claims (2)

【特許請求の範囲】[Claims] (1)シェル状中空体と、該シェル状中空体内に配設さ
れるコイルチューブとからなり、シェル状中空体内には
冷凍機で0℃以下に冷却された冷媒もしくはブラインを
流動させて、前記コイルチューブ内を流動する被冷却水
を冷却し、該コイルチューブの出口での水温を0℃以下
の過冷却状態にする熱交換器であって、前記コイルチュ
ーブは、前記シェル状中空体内において直線部のない螺
旋形状に配設されていることを特徴とする過冷却水製造
用熱交換器。
(1) Consisting of a shell-shaped hollow body and a coil tube disposed inside the shell-shaped hollow body, a refrigerant or brine cooled to 0°C or less by a refrigerator is made to flow inside the shell-shaped hollow body, and the above-mentioned A heat exchanger that cools water to be cooled flowing in a coil tube and brings the water temperature at the outlet of the coil tube into a supercooled state of 0° C. or less, wherein the coil tube is arranged in a straight line in the shell-shaped hollow body. A heat exchanger for producing supercooled water, characterized in that it is arranged in a helical shape with no parts.
(2)前記コイルチューブの内面は、平滑性を有し、該
コイルチューブ相互の接続部分は、前記シェル状中空体
の外部にのみ設けられており、前記接続部分は、コイル
チューブ内部を流れる水が局部的な渦流領域を生じない
滑らかな流路形状に形成されていることを特徴とする特
許請求の範囲第1項に記載の過冷却水製造用熱交換器。
(2) The inner surface of the coil tube has smoothness, and the connecting portion between the coil tubes is provided only on the outside of the shell-shaped hollow body, and the connecting portion is connected to water flowing inside the coil tube. 2. The heat exchanger for producing supercooled water according to claim 1, wherein the heat exchanger is formed into a smooth flow path shape that does not cause local vortex regions.
JP24879288A 1988-10-01 1988-10-01 Heat exchanger for manufacturing supercooled water Pending JPH0297893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24879288A JPH0297893A (en) 1988-10-01 1988-10-01 Heat exchanger for manufacturing supercooled water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24879288A JPH0297893A (en) 1988-10-01 1988-10-01 Heat exchanger for manufacturing supercooled water

Publications (1)

Publication Number Publication Date
JPH0297893A true JPH0297893A (en) 1990-04-10

Family

ID=17183466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24879288A Pending JPH0297893A (en) 1988-10-01 1988-10-01 Heat exchanger for manufacturing supercooled water

Country Status (1)

Country Link
JP (1) JPH0297893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579267U (en) * 1992-03-23 1993-10-29 株式会社三浦研究所 Water pipe shape of heat exchanger for supercooled water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314063A (en) * 1986-06-30 1988-01-21 新菱冷熱工業株式会社 Supercooling type ice heat accumulator and supercooling water production heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314063A (en) * 1986-06-30 1988-01-21 新菱冷熱工業株式会社 Supercooling type ice heat accumulator and supercooling water production heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579267U (en) * 1992-03-23 1993-10-29 株式会社三浦研究所 Water pipe shape of heat exchanger for supercooled water

Similar Documents

Publication Publication Date Title
US4403645A (en) Compact storage of seat and coolness by phase change materials while preventing stratification
JPH01225897A (en) Heat accumulator with vessel for heat-accumulating medium and method of accumulating heat
JPS6314063A (en) Supercooling type ice heat accumulator and supercooling water production heat exchanger
CN215477246U (en) Multi-temperature-zone cold plate and refrigerated container
JPH0297893A (en) Heat exchanger for manufacturing supercooled water
CN211782261U (en) Intermittent operation heat exchanger
CN107107708A (en) Compact exchanger for injecting low-temperature transport indirectly
KR100514947B1 (en) Ice container for thermal storage apparatus
CN210197542U (en) External ice melting type cold accumulation ice tank
KR20060081293A (en) An energy exchanging coupler and a slim water-purifier providing cool and hot water comprising the same
CN214581935U (en) Evaporator with evaporation outer tube and refrigeration equipment
CN220892667U (en) Ice storage type quick cooling module and water purification equipment
JP2000180082A (en) Cold storage heat exchanger
KR0140522Y1 (en) Ice storage device of room cooler system
JPS62147271A (en) Manufacture of supercooling water
JP2004233009A (en) Operation control method of ice storage type water cooler
CN214581936U (en) Evaporator and refrigeration equipment
CN216481724U (en) Novel ice-melt coil pipe structure of inner spiral elliptical coil pipe
JPH0763486A (en) Heat exchanger for subcooled water
JPH0297834A (en) Super cooling type ice heat accumulation system
JP2551817B2 (en) Refrigeration system using ice heat storage
CN2572262Y (en) Ice-water supply refrigerator set
JP3837613B2 (en) Ice making heat exchanger
JPH0131903Y2 (en)
JPH0399173A (en) Heat exchanger integral type thermal accumulator