JPH0615942B2 - Ice storage device for heat storage - Google Patents

Ice storage device for heat storage

Info

Publication number
JPH0615942B2
JPH0615942B2 JP62102994A JP10299487A JPH0615942B2 JP H0615942 B2 JPH0615942 B2 JP H0615942B2 JP 62102994 A JP62102994 A JP 62102994A JP 10299487 A JP10299487 A JP 10299487A JP H0615942 B2 JPH0615942 B2 JP H0615942B2
Authority
JP
Japan
Prior art keywords
water
ice
heat storage
cooler
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62102994A
Other languages
Japanese (ja)
Other versions
JPS63271074A (en
Inventor
孝夫 岡田
時雄 小此木
利雄 林
栄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP62102994A priority Critical patent/JPH0615942B2/en
Publication of JPS63271074A publication Critical patent/JPS63271074A/en
Publication of JPH0615942B2 publication Critical patent/JPH0615942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,空調用氷蓄熱を行う場合の製氷装置に関す
る。
The present invention relates to an ice making device for storing ice heat for air conditioning.

〔従来の技術並びに問題点〕[Conventional technology and problems]

氷蓄熱空調システムにおける氷製造法は,大別すれば,
間接熱交換方式と直接熱交換方式が従来より知られてい
る。間接熱交換方式は,製氷用伝熱管(熱交換器)を用
いる方法であり,伝熱管内(外)に低温の冷媒(ブライ
ン,フレオン等)を流し,管外(内)に氷を生成する方
法である。他方の直接熱交換方式は,冷媒ガスを水中に
直接吹き込む方式である。
The ice production method in the ice heat storage air conditioning system is roughly classified as follows.
The indirect heat exchange method and the direct heat exchange method are conventionally known. The indirect heat exchange method is a method that uses a heat transfer tube (heat exchanger) for ice making. A low-temperature refrigerant (brine, freon, etc.) is flown inside (outside) the heat transfer tube to generate ice outside (inside) the tube. Is the way. The other direct heat exchange method is a method in which the refrigerant gas is blown directly into the water.

伝熱管による間接方式では,被冷却液が水の場合,生成
した氷は管壁に着氷して生長する。この場合,氷の熱伝
導率は悪いので着氷の厚みが増すほど氷の生長速度が遅
くなるという欠点がある。氷の生長を促進するためには
冷媒温度も着氷の厚みが増すほど下げる必要があり,こ
のために冷凍機の成績係数(COP)が下がる欠点をもつ。
また,水槽内での氷の充填率(IPF)を大きくするには伝
熱管のピッチを細かくすることが必要となり,ひいては
水中に浸漬する伝熱管の相対容積が増大することにな
り,氷蓄熱のための有効容積の減少を来すことになる。
したがって,蓄熱効率は普通の蓄熱水槽(冷水蓄熱)に
比べて格段によくなるというわけのものでもない。
In the indirect method using a heat transfer tube, when the liquid to be cooled is water, the generated ice will grow on the tube wall. In this case, since the thermal conductivity of ice is poor, the growth rate of ice becomes slower as the thickness of ice accretion increases. In order to promote the growth of ice, it is necessary to lower the temperature of the refrigerant as the thickness of ice formation increases, which has the drawback of lowering the coefficient of performance (COP) of the refrigerator.
In addition, in order to increase the filling rate (IPF) of ice in the water tank, it is necessary to make the pitch of the heat transfer tubes fine, which in turn increases the relative volume of the heat transfer tubes immersed in water, which results in the accumulation of ice heat. Will result in a reduction in effective volume.
Therefore, the heat storage efficiency is not much better than that of an ordinary heat storage water tank (cold water heat storage).

このため,伝熱管方式ではあるが,管壁に着氷させない
方式として,被冷却液にエチレングリコール等の不凍液
を混ぜる方式が最近注目されている。この方式では伝熱
面に着氷することなくシヤーベット状の氷が被冷却液の
液中に生成する。このため,氷の充填率(IPF)を30〜60
%にまで高めることができる。しかし,氷の生成に伴っ
て被冷却液中のエチレングリコール濃度が高くなるので
冷媒温度はこれに伴って−10〜−20℃程度へと徐々に下
げなければならない。このため,冷凍機の成績係数(CO
P)が低下するという問題がある。さらに,伝熱管表面は
例えば鏡面仕上げを施したような滑らかなものを使用し
なければ管壁に着氷するので,熱交換器は自ずと高価な
ものになる。
For this reason, although it is a heat transfer tube method, a method of mixing an antifreeze liquid such as ethylene glycol with a liquid to be cooled has recently attracted attention as a method of preventing ice from accumulating on the pipe wall. In this system, sheer-bed-like ice is generated in the liquid to be cooled without icing on the heat transfer surface. For this reason, the ice filling factor (IPF) is 30-60
It can be increased to%. However, the concentration of ethylene glycol in the liquid to be cooled increases with the formation of ice, so the refrigerant temperature must be gradually lowered to around -10 to -20 ° C. Therefore, the coefficient of performance of the refrigerator (CO
There is a problem that P) decreases. In addition, the surface of the heat transfer tube will be iced on the tube wall unless a smooth surface such as a mirror finish is used, which makes the heat exchanger expensive.

一方,直接熱交換方式では,冷媒温度は0℃近くの温度
で使用できるので,冷凍機の成績係数は上がる。また,
金属の伝熱面を持たないので着氷による氷塊の発生はな
く,従って氷充填率は50〜60%程度となる。しかし冷媒
ガス中に水が入り,フロンと水とが反応して腐食性の塩
素ガスを発生するという問題が生ずる。
On the other hand, in the direct heat exchange method, the refrigerant temperature can be used at a temperature near 0 ° C, so the coefficient of performance of the refrigerator increases. Also,
Since there is no metal heat transfer surface, ice lumps do not occur due to ice accretion, so the ice filling rate is about 50-60%. However, there is a problem that water enters the refrigerant gas and the CFC reacts with the water to generate corrosive chlorine gas.

本発明は,かような問題点をもつ従来の製氷法に代わる
新規な蓄熱用製氷装置の開発を目的としてなされたもの
である。
The present invention has been made for the purpose of developing a new ice-storage device for heat storage, which is an alternative to the conventional ice-making method having such problems.

〔発明の構成〕[Structure of Invention]

前記の目的を達成せんとする本発明の要旨とするところ
は,蓄熱水槽と,この蓄熱水槽の水層の外に設置した冷
却器と,該蓄熱水槽の水の一部を該冷却器に給水する給
水管路と,該冷却器を出た水を該蓄熱水槽に流出させる
経路と,からなる蓄熱用製氷装置であって,該冷却器
が,冷媒がその中を通過する容器と,この容器内を上下
方向に貫通するように配置された冷却管とからなり,こ
の冷却管の上方の端部を水容器内に開口すると共にこの
水容器に前記の給水管路を接続したことを特徴とする蓄
熱用製氷装置を提供するものである。
The gist of the present invention to achieve the above object is to provide a heat storage water tank, a cooler installed outside the water layer of the heat storage water tank, and a part of the water of the heat storage water tank to the cooler. An ice making device for heat storage, comprising: a water supply pipe line for discharging the water from the cooler; and a path for letting water out of the cooler flow out to the heat storage water tank, the cooler being a container through which a refrigerant passes, and this container. A cooling pipe arranged so as to penetrate through the inside in a vertical direction, and an upper end of the cooling pipe is opened into the water container, and the water supply pipe is connected to the water container. The present invention provides a heat storage ice making device.

すなわち本発明は,蓄熱水槽内の水の一部を槽外に設置
した冷却器で0℃以下にまで強制冷却するものである
が,この冷却器では氷が実質的に生成しない状態の過冷
却水を作り,冷却器を出てから氷を析出させることに特
徴がある。このために冷却器の冷却管内を定常状態の連
続流れが形成されるように水を流し,冷却器を出たあと
は過冷却水から氷が析出できる状態変化を起こさせるも
のである。
That is, according to the present invention, a part of the water in the heat storage water tank is forcibly cooled to 0 ° C. or lower by a cooler installed outside the tank, but this cooler does not substantially generate ice. The feature is that water is made and ice is deposited after it leaves the cooler. For this reason, water is caused to flow in the cooling pipe of the cooler so that a steady-state continuous flow is formed, and after leaving the cooler, a state change in which ice can precipitate from the supercooled water occurs.

以下に図面を参照しながら本発明の内容を具体的に説明
する。
The contents of the present invention will be specifically described below with reference to the drawings.

第1図は本発明を実施する装置の例を示した機器配置系
統図であり,1は蓄熱水槽,2は槽内の水,3は冷却
器,4は蓄熱水槽1から冷却器3への給水管路,5はそ
の管路に介装された給水ポンプである。冷却器3は図示
の例では冷凍サイクルにおける蒸発器を使用しており,
このために,圧縮機6,凝縮器7,膨張弁8およびこの
冷却器3との間を冷媒配管することによってヒートポン
プが形成されている。
FIG. 1 is an equipment arrangement system diagram showing an example of an apparatus for carrying out the present invention. 1 is a heat storage water tank, 2 is water in the tank, 3 is a cooler, and 4 is a heat storage water tank 1 to a cooler 3. The water supply pipe, 5 is a water supply pump interposed in the pipe. In the illustrated example, the cooler 3 uses an evaporator in a refrigeration cycle,
For this purpose, a heat pump is formed by connecting refrigerant between the compressor 6, the condenser 7, the expansion valve 8 and the cooler 3.

第2図は,第1図の冷却器3を半身切り欠きの拡大図で
示したものである。第2図に見られるように,この冷却
器3は,冷媒がその中を通過する容器10と,この容器10
内を上下方向に貫通する複数本の冷却管11とからなって
いる。図示の例では容器10は軸を垂直にした円筒シエル
からなり,この円筒シエルの上板12と下板13を,垂直方
向の冷却管11が気密に貫通している。容器10は冷媒導入
口14と冷媒出口15を有した密閉容器である。各冷却管11
の上端と下端はいずれも開口しており,上端開口が冷却
管11への水取入れ口16,下端開口が冷却管11からの過冷
却水出口17となっている。
FIG. 2 is an enlarged view of the cooler 3 of FIG. 1 with a half-body cutout. As can be seen in FIG. 2, this cooler 3 comprises a container 10 through which the refrigerant passes and a container 10
It is composed of a plurality of cooling pipes 11 penetrating in the vertical direction. In the illustrated example, the container 10 is composed of a cylindrical shell with its axis vertical, and a vertical cooling pipe 11 penetrates airtightly through an upper plate 12 and a lower plate 13 of the cylindrical shell. The container 10 is a closed container having a refrigerant inlet 14 and a refrigerant outlet 15. Each cooling pipe 11
Both the upper end and the lower end are open, the upper end opening is the water intake 16 to the cooling pipe 11, and the lower end opening is the supercooled water outlet 17 from the cooling pipe 11.

冷媒容器10の上板12の上方には,水容器18が接続されて
いる。図示の例ではこの水容器18は冷媒容器10と同じ径
の円筒容器であり,この水容器18の中に冷却管11が実質
的な長さをもって延び出している。冷却管11が水容器18
内に延び出した部分は本発明において水の流れを定常化
するための助走路として機能する。水容器18には水導入
口19が比較的下方に,そしてオーバーフロー孔20が上部
に設けられている。冷却管11の上端の水取入れ口16が,
水容器18の水導入口19よりも上方で且つオーバーフロー
孔20よりも下方の位置となる関係をもってこれらが設置
される。
A water container 18 is connected above the upper plate 12 of the refrigerant container 10. In the illustrated example, the water container 18 is a cylindrical container having the same diameter as the refrigerant container 10, and the cooling pipe 11 extends into the water container 18 with a substantial length. Cooling pipe 11 is water container 18
The inwardly extending portion functions as a runway for stabilizing the water flow in the present invention. The water container 18 is provided with a water inlet 19 relatively downward and an overflow hole 20 at an upper portion. The water intake 16 at the upper end of the cooling pipe 11
These are installed so that they are located above the water inlet 19 of the water container 18 and below the overflow hole 20.

このように構成した冷却器3を,第1図のように蓄熱水
槽1の水面より上方の位置にセットし,給水管路4を水
容器18の水導入口19に接続したうえオーバーフロー孔20
からのオーバーフロー水を再び蓄熱水槽1に戻すように
オーバーフロー管21を取付ける。これによってポンプン
5を稼働して蓄熱水槽1内の水を水容器18に給水する
と,水容器18内では一定の液面を保ちつつ冷却管11内を
水が流下し,蓄熱水槽1に流出落下する。一方,冷媒容
器10の冷媒出口15は圧縮機6に接続し,圧縮機6,凝縮
器7および膨張弁8を経たうえ,その冷媒管路を冷媒容
器10の冷媒導入口14に接続してヒートポンプを形成す
る。凝縮器7には冷却水を通水して圧縮機6から吐出す
る高圧冷媒から抜熱して高圧冷媒を凝縮し,膨張弁8で
絞ったうえ冷媒容器10内に吐出気化させることによって
冷却管11を冷却する。ここでの冷却温度を適正に調節す
ることによって,冷却管11内を落下する水を零度℃以下
の温度に冷却する。
The cooler 3 configured as described above is set at a position above the water surface of the heat storage water tank 1 as shown in FIG. 1, and the water supply pipe line 4 is connected to the water introduction port 19 of the water container 18 and the overflow hole 20.
The overflow pipe 21 is attached so that the overflow water from 1 is returned to the heat storage water tank 1 again. As a result, when the pump 5 is operated to supply the water in the heat storage water tank 1 to the water container 18, the water flows down in the cooling pipe 11 while maintaining a constant liquid level in the water container 18, and flows out and falls into the heat storage water tank 1. To do. On the other hand, the refrigerant outlet 15 of the refrigerant container 10 is connected to the compressor 6, passes through the compressor 6, the condenser 7 and the expansion valve 8, and its refrigerant pipe line is connected to the refrigerant inlet port 14 of the refrigerant container 10 for heat pump. To form. Cooling water is passed through the condenser 7 to remove heat from the high-pressure refrigerant discharged from the compressor 6 to condense the high-pressure refrigerant. To cool. By appropriately adjusting the cooling temperature here, the water falling in the cooling pipe 11 is cooled to a temperature of 0 ° C. or less.

本発明においては,この冷却管11内を流れ落ちる水流を
連続した定常流とすることによって,零度℃以下ではあ
るが,氷への相変化を起こさずに冷却管11の外に流出さ
せる。すなわち,冷却管11では過冷却水を作るのであ
り,管壁に着氷させないようにして冷却管11から流出さ
せる。このためには,管内を流れる水が脈動したり部分
的に温度差が生じたりすることを出来るだけ避けること
が必要である。しがって,冷却管11内を流れ落ちる水の
流れを定常的にすると共に冷媒温度を適正に制御するこ
とが肝要である。前者の定常流を得るには,各冷却管11
の水導入口19を,液面が常時一定に維持される水容器18
内の液面下に開口させ,その開口の状態を適正にするこ
とによって達成できる。このためには,各冷却管11の上
端開口部にオリフイスを取付けるのも有益である。後者
の温度制御に関しては,これをより正確に行うには,冷
却管11内を流れ落ちる流量は定まる(装置条件例えば冷
却管11の開口の大きさ,その開口の水面からの距離,管
壁の表面状態等によって一定値に定まる)から,冷却管
11に導入される前の水温を検出し,この検出水温に応じ
て圧縮機6の回転数制御を行うようにするのが実際上は
便宜である。このような制御は,装置を構成してからそ
の運転状態を観察しながら適正に調整すればよく,この
ようなことは当業者ならば正確に行い得る。
In the present invention, the water flow flowing through the cooling pipe 11 is made to be a continuous steady flow so that the water flows out of the cooling pipe 11 without causing a phase change to ice, although the temperature is below 0 ° C. That is, supercooled water is produced in the cooling pipe 11, and it is made to flow out from the cooling pipe 11 without icing on the pipe wall. For this purpose, it is necessary to avoid pulsation of the water flowing in the pipe and partial temperature difference. Therefore, it is essential to make the flow of water flowing down in the cooling pipe 11 steady and to appropriately control the refrigerant temperature. To obtain the former steady flow, each cooling pipe 11
The water inlet 18 of the water container 18 whose liquid level is always kept constant
It can be achieved by opening below the liquid level inside and adjusting the state of the opening appropriately. For this purpose, it is useful to attach an orifice to the upper opening of each cooling pipe 11. Regarding the latter temperature control, in order to do this more accurately, the flow rate flowing down in the cooling pipe 11 is determined (device conditions such as the size of the opening of the cooling pipe 11, the distance of the opening from the water surface, the surface of the pipe wall). From a fixed value depending on the condition)
It is practically convenient to detect the water temperature before it is introduced into 11, and control the rotation speed of the compressor 6 according to the detected water temperature. Such control may be appropriately adjusted by observing the operating state of the device after the device is configured, and those skilled in the art can accurately perform such control.

なお,冷却器3は前記のように冷凍サイクルの蒸発器と
して機能させる場合のほか,冷凍機ブラインをこれに通
液して冷却するものであってもよい。この場合にはブラ
インの通液量と温度の制御を行って適正な冷却を行えば
よい。
In addition to the case where the cooler 3 functions as the evaporator of the refrigeration cycle as described above, the cooler 3 may be cooled by passing the refrigerator brine through it. In this case, the amount of brine passing and the temperature may be controlled for proper cooling.

このようにして,冷却管11からは0℃以下の過冷却水が
流出することになるが,本発明においては,この過冷却
水を蓄熱水槽1に流出させるさいに,または蓄熱水槽1
に戻した後で,この過冷却水から氷を析出させる相変化
を起こさせる。この相変化は過冷却状態にある水に物理
的な変化を与えるのが好ましい。この物理的変化として
は,各冷却管11から蓄熱水槽1の液面に過冷却水を落下
させるさいに生じる衝撃エネルギーを利用するのが最も
簡単であるが,これだけでは不十分である場合には,第
1図に示したように,蓄熱水槽1の水層2内に冷却器23
を挿入しておき,この冷却器23によって蓄熱水槽1内に
落下した過冷却水をさらに冷却するようにすればよい。
すなわち,冷却器23の管壁に予め間接方式により氷を生
成させておき,その氷に過冷却水を当てることによって
過冷却水を相変化させて氷を生成させる。
In this way, the supercooled water of 0 ° C. or less flows out from the cooling pipe 11, but in the present invention, when the supercooled water is allowed to flow into the heat storage water tank 1, or the heat storage water tank 1
After this, the phase change that causes ice to precipitate from this supercooled water occurs. This phase change preferably imparts a physical change to the supercooled water. As this physical change, it is easiest to use the impact energy generated when the supercooled water is dropped from each cooling pipe 11 to the liquid surface of the heat storage water tank 1, but if this is not enough, As shown in FIG. 1, a cooler 23 is provided in the water layer 2 of the heat storage water tank 1.
The cooling device 23 may be inserted in advance to further cool the supercooled water that has dropped into the heat storage water tank 1.
That is, ice is generated in advance on the pipe wall of the cooler 23 by an indirect method, and supercooled water is applied to the ice to change the phase of the supercooled water to generate ice.

槽内の冷却器23は,該冷却器3と共通の冷凍サイクルを
利用して冷却機能を付与することができる。すなわち,
凝縮器7から冷却器3の膨張弁8に至る冷媒液管路24か
ら分岐管25を採り,膨張弁26をこの分岐管25に介装した
うえ冷却器23に接続し,冷却器23から圧縮機6への吸込
管に接続すればよい。そのさい,管路24と分岐管25には
開閉弁27と28を取付けておき,冷媒液の通液量を制御で
きるようにしておく。
The cooler 23 in the tank can be provided with a cooling function by utilizing a refrigeration cycle common to the cooler 3. That is,
The branch pipe 25 is taken from the refrigerant liquid pipe 24 from the condenser 7 to the expansion valve 8 of the cooler 3, the expansion valve 26 is interposed in this branch pipe 25, and then connected to the cooler 23, and compressed from the cooler 23. It may be connected to the suction pipe to the machine 6. At that time, opening / closing valves 27 and 28 are attached to the pipe line 24 and the branch pipe 25 so that the amount of the refrigerant liquid can be controlled.

また,過冷却水から氷の核を発生させるために超音波を
利用することもできる。第3図はその具体例を示したも
のである。すなわち,超音波振動素子30を水層2の液面
近くに浸漬し,過冷却水が流下してくる方向に超音波を
発振させるようにしたものである。31は発振器を示す。
これによって各冷却管11から水層2に落下する過程の過
冷却水および水層2に落下した過冷却水に氷の核が無数
発生し,この無数の核を起点として過冷却水が相変化し
て氷が析出し,全体としては微細な氷の集合となる。な
お,第3図において第1図と同じ符号を付した要素は第
1図で説明したものと同じものである。
Ultrasonic waves can also be used to generate ice nuclei from supercooled water. FIG. 3 shows a specific example thereof. That is, the ultrasonic vibrating element 30 is immersed near the liquid surface of the water layer 2 to oscillate ultrasonic waves in the direction in which the supercooled water flows down. 31 indicates an oscillator.
As a result, innumerable ice nuclei are generated in the supercooled water in the process of falling from each cooling pipe 11 into the water layer 2 and the supercooled water falling in the water layer 2, and the supercooled water undergoes a phase change from these innumerable nuclei The ice then precipitates, forming a collection of fine ice as a whole. Elements in FIG. 3 that are given the same reference numerals as in FIG. 1 are the same as those described in FIG.

以上のようにして,本発明によると,伝熱管を利用した
製氷でありながら伝熱管に着氷を起こすことなく製氷で
き,しかもその氷は微細なシヤーベッド状となる。そし
て,水の連続的な流れを冷却するのであるから大量の氷
を作るのにも小型の冷却器でよく,且つその冷却温度は
−5℃付近でよいから冷凍機の成績係数が高くなり冷凍
機動力も少なくてすむ。したがって,非常に小型の装置
構成のもとで空調用蓄熱製氷が簡単に行えると共に既設
の蓄熱水槽に対してものそ蓄熱水槽の構造を改変するこ
となく簡単に製氷蓄熱水槽に変えることができ,その設
備費用や運転費用は非常に経済的であるという優れた効
果を発揮する。また空調機器などが稼働している間でも
製氷ができるし不凍液などを使用しない点でも有利な面
がある。
As described above, according to the present invention, even though the heat transfer tube is used for making ice, it can be made without causing ice formation on the heat transfer tube, and the ice becomes a fine shear bed. Since a continuous flow of water is cooled, a small cooler may be used to produce a large amount of ice, and the cooling temperature may be around -5 ° C, so the coefficient of performance of the refrigerator is high and the freezing is high. It requires less mobility. Therefore, the heat storage ice making for air-conditioning can be easily performed with a very small device configuration, and it can be easily changed to the ice storage heat storage water tank without modifying the structure of the existing heat storage water tank. It has an excellent effect that its equipment cost and operation cost are very economical. Moreover, there is an advantage in that ice can be made even while the air conditioners are operating and no antifreeze is used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製氷蓄熱を行う装置の例を示す機器配
置系統図,第2図は第1図の冷却器の一部切り欠き拡大
図,第3図は本発明の製氷蓄熱を行う装置の他の例を示
す機器配置系統図である。 1……蓄熱水槽,2……水層,3……冷却器,4……冷
却器への給水管路,5……給水ポンプ,6……圧縮機,
7……凝縮器,8……膨張弁,10……冷媒容器,11……
冷却管,16……冷却管への水導入口,17……冷却管から
の水出口,18……水容器,20……オーバーフロー孔,23
……槽内の冷却器,30……超音波振動素子。
FIG. 1 is an equipment arrangement system diagram showing an example of an apparatus for performing ice making heat storage of the present invention, FIG. 2 is an enlarged view of a part of the cooler shown in FIG. 1, and FIG. 3 is performing ice making heat storage of the present invention. It is a device arrangement system diagram which shows the other example of an apparatus. 1 ... Heat storage water tank, 2 ... Water layer, 3 ... Cooler, 4 ... Water supply pipeline to cooler, 5 ... Water supply pump, 6 ... Compressor,
7 ... condenser, 8 ... expansion valve, 10 ... refrigerant container, 11 ...
Cooling pipe, 16 ... Water inlet to cooling pipe, 17 ... Water outlet from cooling pipe, 18 ... Water container, 20 ... Overflow hole, 23
…… Cooler in the tank, 30 …… Ultrasonic vibration element.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蓄熱水槽と,この蓄熱水槽の水層の外に設
置した冷却器と,該蓄熱水槽の水の一部を該冷却器に給
水する給水管路と,該冷却器を出た水を該蓄熱水槽に流
出させる経路と,からなる蓄熱用製氷装置において,前
記の冷却器が,冷媒がその中を通過する容器と,該容器
内を上下方向に貫通するように配置された冷却管とから
なり,この冷却管の上方の端部を水容器内に開口すると
共にこの水容器に前記の給水管路を接続したことを特徴
とする蓄熱用製氷装置。
1. A heat storage water tank, a cooler installed outside the water layer of the heat storage water tank, a water supply pipe for supplying a part of the water in the heat storage water tank to the cooler, and the cooler. A heat storage ice-making device comprising: a path through which water flows out to the heat storage water tank, wherein the cooler is a container through which a refrigerant passes, and cooling arranged so as to vertically penetrate through the container. An ice making device for heat storage, comprising a pipe, the upper end of the cooling pipe being opened into a water container, and the water supply pipe being connected to the water container.
【請求項2】給水管路は水容器の下方に接続され,水容
器の上方にはオーバーフロー孔が設けられている特許請
求の範囲第1項記載の蓄熱用製氷装置。
2. The heat storage ice making device according to claim 1, wherein the water supply pipe line is connected to a lower portion of the water container, and an overflow hole is provided above the water container.
JP62102994A 1987-04-28 1987-04-28 Ice storage device for heat storage Expired - Lifetime JPH0615942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62102994A JPH0615942B2 (en) 1987-04-28 1987-04-28 Ice storage device for heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62102994A JPH0615942B2 (en) 1987-04-28 1987-04-28 Ice storage device for heat storage

Publications (2)

Publication Number Publication Date
JPS63271074A JPS63271074A (en) 1988-11-08
JPH0615942B2 true JPH0615942B2 (en) 1994-03-02

Family

ID=14342247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62102994A Expired - Lifetime JPH0615942B2 (en) 1987-04-28 1987-04-28 Ice storage device for heat storage

Country Status (1)

Country Link
JP (1) JPH0615942B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117329B2 (en) * 1990-09-19 1995-12-18 ダイキン工業株式会社 Ice making equipment
JP2532578Y2 (en) * 1991-05-17 1997-04-16 高砂熱学工業株式会社 Ice storage device for air conditioning
JP2548637B2 (en) * 1991-05-29 1996-10-30 高砂熱学工業株式会社 Operating method of supercooled water production equipment
JPH0590275U (en) * 1992-05-15 1993-12-10 三井造船株式会社 Ice maker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646127B2 (en) * 1986-06-30 1994-06-15 新菱冷熱工業株式会社 Supercooled ice heat storage device

Also Published As

Publication number Publication date
JPS63271074A (en) 1988-11-08

Similar Documents

Publication Publication Date Title
US4509344A (en) Apparatus and method of cooling using stored ice slurry
US4864831A (en) Ice storage refrigerating apparatus of direct contact type
CN106500421A (en) A kind of direct-type dynamic freezing of supercooled water system
CN106839824B (en) Control device of liquid cooling based on serpentine condenser
CN201569202U (en) Curtain falling type refrigeration controlling device for chiller
WO2017063475A1 (en) Direct-evaporation ice slurry circulation dynamic ice production device
JPH0615942B2 (en) Ice storage device for heat storage
CN104315635B (en) Medium- and small-sized high-temperature-difference double-working-condition dynamic ice-slurry cold storage air conditioner
CN206362036U (en) A kind of direct-type dynamic freezing of supercooled water system
CN112984883A (en) Static supercooled water snow making machine
JPH0621752B2 (en) Ice storage device for heat storage
JPH0794938B2 (en) Ice storage method and equipment for heat storage
CN104748469A (en) Double-operation butane ice-making device
JPH0615244Y2 (en) Supercooled water continuous production device
JPH04165277A (en) Ice making machinery for accumulating heat
CN214841855U (en) Static supercooled water snow making machine
CN215063039U (en) Ultrasonic static supercooled water snow making machine
JPH0438176Y2 (en)
W Ma et al. Review of recent patents on ice slurry generation
US1489641A (en) Apparatus for concentrating solutions
JP2548637B2 (en) Operating method of supercooled water production equipment
JPH03244986A (en) Ice manufacture device for heat storage
JPH09159331A (en) Ice making method and device and warm-water heat accumulating method that uses excess heat of ice making as heat source
JPH0438178Y2 (en)
JPH0615243Y2 (en) Ice storage device for air conditioning