JPH0644979A - Fuel cell exhaust heat utilizing system - Google Patents

Fuel cell exhaust heat utilizing system

Info

Publication number
JPH0644979A
JPH0644979A JP4199685A JP19968592A JPH0644979A JP H0644979 A JPH0644979 A JP H0644979A JP 4199685 A JP4199685 A JP 4199685A JP 19968592 A JP19968592 A JP 19968592A JP H0644979 A JPH0644979 A JP H0644979A
Authority
JP
Japan
Prior art keywords
heat
fuel cell
hot water
steam
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4199685A
Other languages
Japanese (ja)
Other versions
JP3426620B2 (en
Inventor
Hiroaki Yoda
裕明 依田
Kenji Machizawa
健司 町沢
Kyoji Kono
恭二 河野
Atsuhiro Ishida
宏洋 石田
Kunihiro Nishizaki
邦博 西崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Gas Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Gas Co Ltd filed Critical Hitachi Ltd
Priority to JP19968592A priority Critical patent/JP3426620B2/en
Publication of JPH0644979A publication Critical patent/JPH0644979A/en
Application granted granted Critical
Publication of JP3426620B2 publication Critical patent/JP3426620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To perform effective utilization and proper processing of exhaust heat by providing an absorbing cold water machine of utilizing steam as a heat source and a heat radiating system for radiating surplus heat of the steam to the outside. CONSTITUTION:Vapor exhaust heat from a fuel cell D is converted into heat by an absorbing cold machine of a fuel cell exhaust heat utilizing system S and consumed in a room cooling load 67. Here is decreased the room cooling load, and when detected a cold water temperature decreased by a cold water temperature detector 90, a vapor bypass solenoid valve 71 is opened simultaneously with interrupting a vapor supply solenoid valve 70, to further open a shutoff electric motor valve 74 of a cooling water pipe 62 connected to a vapor radiating heat exchanger 50, and to transmit heat of vapor to a cooling water side radiated to the atmosphere by a cooling tower 69. When the cold water temperature rises by again increasing the room cooling load, the solenoid valve 71 is closed by a signal from the detector 90 and also opening the solenoid valve 70, to perform resetting to the before-mentioned cycle. In this way, exhaust heat vapor can be effectively utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池の排熱利用シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a system for utilizing exhaust heat of a fuel cell.

【0002】[0002]

【従来の技術】燃料電池(例としてリン酸型燃料電池)
は都市ガス等を改質して得られる水素ガス(H2)と空
気中の酸素(O2)をリン酸溶液中に隔てて設けた陰極
と陽極それぞれに供給して発電を行なうシステムであ
る。このような燃料電池にあっては、陰極からリン酸溶
液中を移動してきた水素イオン(H+)が陽極において
生成された水酸イオ ン(OH-)と反応して水(H2
O)が生成し、これに伴って反応熱が発生する。従っ
て、発電を継続して行なうためには冷却する必要があ
り、一般的には水冷により、その熱を除去している。こ
の排熱温度レベルは100℃以上で最高180℃にもな
るので、気液分離装置を介することによって4〜8kg/c
m2Gの飽和水蒸気が取り出される。
2. Description of the Related Art Fuel cells (eg phosphoric acid fuel cells)
Is a system that supplies hydrogen gas (H 2 ) obtained by reforming city gas and the like and oxygen (O 2 ) in the air to a cathode and an anode provided separately in a phosphoric acid solution to generate electricity. . In such a fuel cell, hydrogen ions (H +) moving in the phosphoric acid solution from the cathode react with hydroxide ions (OH-) generated at the anode to generate water (H2
O) is generated and reaction heat is generated accordingly. Therefore, it is necessary to cool in order to continuously generate power, and the heat is generally removed by water cooling. Since this exhaust heat temperature level reaches a maximum of 180 ° C at 100 ° C or higher, it is possible to use a gas-liquid separation device to obtain 4-8kg / c.
m 2 G of saturated steam is taken out.

【0003】一方、水素ガスは都市ガス中のメタン(C
H4)を上記水蒸気の一部と混合させてバーナで加熱す
ることにより水素ガス(H2)を主成分とする原料ガス
として生成される。この際バーナから高温の排ガスが出
るが、この排ガスから、冷却水で排熱回収を行なうこと
により、一般に60℃〜85℃の温水が得られる。
On the other hand, hydrogen gas is methane (C
H4) is mixed with a part of the water vapor and heated by a burner to generate hydrogen gas (H2) as a raw material gas containing the main component. At this time, high-temperature exhaust gas is emitted from the burner, but by collecting exhaust heat from this exhaust gas with cooling water, hot water of 60 to 85 ° C. is generally obtained.

【0004】このようにして燃料電池での発電を行ない
ながら、外部へ水蒸気および温水として取り出される熱
量の総量は、都市ガスを燃焼させて得られる熱量の約4
0%にも相当する(一方、発電エネルギーとしては、そ
の約40%)ため、排熱の有効利用が熱利用率を高める
ためには必要不可欠なことである。
The total amount of heat extracted as steam and hot water to the outside while generating electricity by the fuel cell in this manner is about 4 times the amount of heat obtained by burning city gas.
Since it corresponds to 0% (on the other hand, about 40% of the generated energy), effective use of exhaust heat is essential for increasing the heat utilization rate.

【0005】[0005]

【発明が解決しようとする課題】今まで、この排熱の利
用方法として、吸収式冷凍機の熱源に用いるなどが検討
されてきたが、排熱の一部の利用にとどまっていた。ま
た、燃料電池の運転に必要な排熱処理システムも検討さ
れていないのが実状で、排熱利用と排熱処理機能を兼ね
備えたシステムが開発されていないため、燃料電池発電
システムとして高効率熱利用の課題は未達成の状況にあ
る。
Up to now, as a method of utilizing this exhaust heat, it has been studied to use it as a heat source of an absorption chiller, but it has been limited to utilizing a part of the exhaust heat. In addition, the exhaust heat treatment system necessary for operating the fuel cell has not been studied, and a system having both exhaust heat utilization and exhaust heat treatment functions has not been developed. Challenges have not been achieved.

【0006】本発明は、燃料電池発電システムの総合効
率を高めるための排熱の有効利用とともに、燃料電池の
円滑な運転に必要不可欠な排熱処理機能も兼ね備えた排
熱利用システムの提供を目的としている。
An object of the present invention is to provide an exhaust heat utilization system which has an effective utilization of exhaust heat for enhancing the overall efficiency of a fuel cell power generation system and an exhaust heat treatment function essential for smooth operation of a fuel cell. There is.

【0007】[0007]

【課題を解決するための手段】本発明は、燃料電池の冷
却系から発生する水蒸気を熱源として利用する燃料電池
排熱利用システムにおいて、上記水蒸気を熱源として利
用する吸収式冷温水機と、水蒸気の余剰熱を外部へ放熱
するための放熱系とを備えた(請求項1)。
DISCLOSURE OF THE INVENTION The present invention relates to an exhaust heat utilization system for a fuel cell in which steam generated from a cooling system of a fuel cell is used as a heat source, and an absorption chiller-heater using the steam as a heat source. And a heat radiation system for radiating the excess heat of the above to the outside (claim 1).

【0008】更に本発明は、燃料電池の冷却系から発生
する温水を熱源として利用する燃料電池排熱利用システ
ムにおいて、上記温水を熱源として利用する給湯系と、
温水の余剰熱を外部へ放熱するための放熱系とを備えた
こと(請求項2)。
Furthermore, the present invention is a fuel cell exhaust heat utilization system that uses hot water generated from a cooling system of a fuel cell as a heat source, and a hot water supply system that uses the hot water as a heat source.
A heat radiation system for radiating the excess heat of the warm water to the outside is provided (claim 2).

【0009】更に本発明は、燃料電池の冷却系から発生
する水蒸気を熱源として利用する燃料電池排熱利用シス
テムにおいて、上記水蒸気を熱源として利用する給湯系
と、水蒸気の余剰熱を外部へ放熱するための放熱系とを
備えた(請求項3)。
Further, according to the present invention, in a fuel cell exhaust heat utilization system that uses steam generated from a cooling system of a fuel cell as a heat source, a hot water supply system that uses the steam as a heat source and excess heat of the steam are radiated to the outside. And a heat dissipating system (claim 3).

【0010】更に本発明は、燃料電池の冷却系から発生
する水蒸気及び温水を熱源として利用する燃料電池排熱
利用システムにおいて、上記温水及び水蒸気を熱源とし
て利用する給湯系と、水蒸気及び温水の余剰熱を外部へ
放熱するための放熱系とを備えた(請求項4)。
Furthermore, the present invention is a fuel cell exhaust heat utilization system that uses steam and hot water generated from a cooling system of a fuel cell as a heat source, and a hot water supply system that uses the hot water and steam as a heat source, and excess steam and hot water. And a heat radiation system for radiating heat to the outside (claim 4).

【0011】更に本発明では、燃料電池の冷却系から発
生する水蒸気及び温水を熱源として利用する燃料電池排
熱利用システムにおいて、水蒸気を熱源として利用する
吸収式冷温水機と、温水及び/又は水蒸気を熱源として
利用する給湯系と、水蒸気及び温水の余剰熱を外部へ放
熱するための放熱系と、吸収式冷温水機及び給湯系それ
ぞれの負荷状態を検出する負荷状態検出手段とを備え、
負荷状態検出手段で検出したそれぞれの負荷状態に応じ
て、水蒸気及び温水の熱の吸収式冷温水機又は給湯系へ
の熱源としての利用と放熱系による外部への放熱処理と
を選択的に組合せて行えるようにしている(請求項
5)。
Further, according to the present invention, in a fuel cell exhaust heat utilization system using steam and hot water generated from a cooling system of a fuel cell as a heat source, an absorption chiller / heater using steam as a heat source and hot water and / or steam. A hot water supply system that uses as a heat source, a heat radiation system for radiating excess heat of steam and hot water to the outside, and a load state detection unit that detects the load state of each of the absorption chiller-heater and the hot water supply system,
Depending on the respective load states detected by the load state detecting means, the use of heat of water vapor and hot water as a heat source for the absorption chiller-heater or hot water supply system and the heat radiation process to the outside by the heat radiation system are selectively combined. (Claim 5).

【0012】また、本発明では、放熱系における外部へ
の放熱手段として吸収式冷温水機の冷却塔を利用するよ
うにしている(請求項6)。
Further, in the present invention, the cooling tower of the absorption chiller-heater is used as a heat radiating means to the outside in the heat radiating system (claim 6).

【0013】また、本発明では、吸収式冷温水機の高温
再生器での熱交換を経て凝縮した水蒸気のドレン水の温
度を検出するドレン水温度検出手段を設けていると共
に、ドレン水の燃料電池への回収路に放熱系と熱交換す
るための調温用熱交換器を設け、ドレン水温度検出手段
での検出温度が所定の温度以上である場合に、調温用熱
交換器に冷却水を通水させるようにしている(請求項
7)。また本発明では、高温再生器から排出されるドレ
ン水の熱を希溶液に与えて希溶液の予熱を行うと同時に
ドレン水の降温を行うドレンクーラーを設けるようにし
ている(請求項8)。
Further, according to the present invention, the drain water temperature detecting means for detecting the temperature of the drain water of the steam condensed through the heat exchange in the high temperature regenerator of the absorption chiller-heater is provided, and the fuel for the drain water is used. A temperature control heat exchanger for exchanging heat with the heat radiation system is installed in the recovery path to the battery, and when the temperature detected by the drain water temperature detection means is above a predetermined temperature, it is cooled by the temperature control heat exchanger. Water is passed through (claim 7). Further, according to the present invention, a drain cooler is provided for applying the heat of the drain water discharged from the high temperature regenerator to the dilute solution to preheat the dilute solution and at the same time lower the temperature of the drain water.

【0014】更に本発明では、高温再生器で発生した冷
媒蒸気の熱も給湯系の給湯の加熱に利用するようにして
いる(請求項9)。
Further, in the present invention, the heat of the refrigerant vapor generated in the high temperature regenerator is also utilized for heating the hot water supply of the hot water supply system (claim 9).

【0015】[0015]

【作用】本発明によれば、吸収式冷温水機が、燃料電池
の冷却系から発生する水蒸気を熱源として利用すると共
に、放熱系を介して水蒸気の余剰熱が外部へ放熱され、
排熱利用がはかられる(請求項1)。
According to the present invention, the absorption chiller-heater uses the steam generated from the cooling system of the fuel cell as a heat source, and the excess heat of the steam is radiated to the outside through the heat dissipation system.
Exhaust heat can be utilized (Claim 1).

【0016】本発明によれば、給湯系が、燃料電池の冷
却系から発生する温水を熱源として利用すると共に、放
熱系を介して温水の余剰熱が外部へ放熱され、排熱利用
がはかれる(請求項2)。
According to the present invention, the hot water supply system uses the hot water generated from the cooling system of the fuel cell as a heat source, and the surplus heat of the hot water is radiated to the outside through the heat radiation system, so that the exhaust heat can be used ( Claim 2).

【0017】本発明によれば、給湯系が燃料電池の冷却
系から発生する水蒸気を熱源として利用すると共に、放
熱系を介して、水蒸気の余剰熱が外部へ放熱され、排熱
利用がはかれる(請求項3)。
According to the present invention, the hot water supply system uses the steam generated from the cooling system of the fuel cell as a heat source, and the excess heat of the steam is radiated to the outside through the heat dissipation system, so that the exhaust heat can be used ( Claim 3).

【0018】本発明によれば、給湯系が燃料電池の冷却
系から発生する水蒸気及び温水を熱源として利用すると
共に、放熱系を介して、水蒸気及び温水の余剰熱が外部
へ放熱され、排熱利用がはかれる(請求項4)。
According to the present invention, the hot water supply system uses the steam and hot water generated from the cooling system of the fuel cell as a heat source, and the excess heat of the steam and hot water is radiated to the outside through the heat dissipation system to discharge the exhaust heat. It can be used (Claim 4).

【0019】本発明によれば、燃料電池の排熱を、吸収
式冷温水機を介することにより冷房及び暖房に、また給
湯系を介して給湯の加熱にと有効に利用することができ
る一方で、これらの利用を行えない状態においても、燃
料電池の安定的作動に不可欠である排熱処理を放熱系に
より行うことができる。つまり、本発明のシステムは、
冷房、暖房及び給湯という多目的な熱負荷の組合せ、及
びこれらとの外部放熱の選択的組合せ構造により、燃料
電池からの排熱の有効利用と、燃料電池の安定的作動と
を同時に実現しているものである(請求項5)。
According to the present invention, the exhaust heat of the fuel cell can be effectively used for cooling and heating by passing through the absorption chiller-heater and for heating the hot water supply through the hot water supply system. Even when these cannot be used, the exhaust heat treatment, which is essential for stable operation of the fuel cell, can be performed by the heat dissipation system. That is, the system of the present invention is
The combination of multi-purpose heat loads such as cooling, heating, and hot water supply, and the selective combination structure of these and external heat dissipation realizes effective use of exhaust heat from the fuel cell and stable operation of the fuel cell at the same time. (Claim 5).

【0020】また、本発明によれば、放熱系の放熱手段
に吸収式冷温水機の冷却塔を兼用したことにより、装置
全体の小型化を図れる(請求項6)。
Further, according to the present invention, since the heat radiating means of the heat radiating system also serves as the cooling tower of the absorption chiller-heater, the size of the entire apparatus can be reduced (claim 6).

【0021】また本発明によれば、燃料電池へ戻るドレ
ン水の温度を常に一定以下に保つことができるので、燃
料電池の作動安定性をより高めることができる(請求項
3)。
Further, according to the present invention, since the temperature of the drain water returning to the fuel cell can be always kept below a certain level, the operation stability of the fuel cell can be further enhanced (claim 3).

【0022】また本発明によれば、ドレン水に残ってい
る熱をも利用することができるので排熱の利用効率をよ
り高めることができる(請求項7)。
Further, according to the present invention, since the heat remaining in the drain water can be utilized as well, the utilization efficiency of exhaust heat can be further enhanced (claim 7).

【0023】更に本発明によれば、吸収式冷温水機の作
動中にあっても水蒸気の熱を間接的に給湯の加熱に利用
できるので、システム全体としての排熱利用効率を更に
向上させることができる(請求項8)。
Further, according to the present invention, the heat of the steam can be indirectly used for heating the hot water supply even during the operation of the absorption chiller-heater, so that the exhaust heat utilization efficiency of the entire system can be further improved. (Claim 8).

【0024】[0024]

【実施例】本発明の実施例を図1に示す。図の左側一点
鎖線内に燃料電池Dを示す。燃料電池は次のサイクルに
より構成されている。燃料電池本体1内には、電解液中
に陽極、陰極が多数直列に配列されて、原料の水素ガス
と空気とから直流発電が行なわれ、その直流電気は配線
によって直交流変換器2に導かれ、そこで交流に変換さ
れて出力される。燃料電池本体1は発電とともに発生す
る反応熱で高温になるため、冷却水ポンプ3によって冷
却水が送水され冷却される。冷却水は電池内での発生熱
によって加熱され、高温高圧水となって気液分離タンク
4に導かれる。ここで冷却水は沸騰して水蒸気が分離さ
れ、その一部は蒸気配管11を通って、原料ガスである
都市ガスを水素ガスを主成分とするガスに変換する改質
装置5に導かれる。ここで発生した排ガスは排熱熱交換
器6により温水として回収される。
FIG. 1 shows an embodiment of the present invention. The fuel cell D is shown in the one-dot chain line on the left side of the figure. The fuel cell is composed of the following cycles. A large number of anodes and cathodes are arranged in series in the electrolyte solution in the fuel cell main body 1 to generate DC power from the raw material hydrogen gas and air, and the DC electricity is conducted to the cross current converter 2 by wiring. Then, it is converted into alternating current and output. Since the fuel cell main body 1 is heated to a high temperature by reaction heat generated during power generation, cooling water is pumped by the cooling water pump 3 to be cooled. The cooling water is heated by the heat generated in the battery, becomes high-temperature high-pressure water, and is guided to the gas-liquid separation tank 4. Here, the cooling water is boiled to separate water vapor, and a part of the water is guided through a steam pipe 11 to a reformer 5 for converting city gas as a raw material gas into gas containing hydrogen gas as a main component. The exhaust gas generated here is recovered by the exhaust heat heat exchanger 6 as hot water.

【0025】一方、燃料電池から外部に導かれる水蒸気
は後に述べるように利用されてドレン水として再び配管
12からもどり、回収水タンク7内に排ガスの回収水を
混ぜ合わされた状態にして一時的に貯水された後、冷却
水循環ポンプ8によって、水質維持装置9を経由して気
液分離タンクに送られ、再び燃料電池本体へ冷却水とし
て送水される。このようなサイクルにより、発電が継続
して行なわれる。上述のようにして得られる燃料電池の
排熱は、水蒸気および温水として各々配管11および1
0より電池外へ取り出される。図1の右側が本発明の燃
料電池排熱利用システムSについてのフロー図で、その
一点鎖線内は一体化された装置ユニットUを示す。
On the other hand, the water vapor introduced from the fuel cell to the outside is utilized as described later and returns as drain water from the pipe 12 again, and the recovered water of the exhaust gas is mixed in the recovered water tank 7 temporarily. After the water is stored, it is sent by the cooling water circulation pump 8 to the gas-liquid separation tank via the water quality maintaining device 9 and again sent to the fuel cell main body as cooling water. With such a cycle, power generation is continued. The exhaust heat of the fuel cell obtained as described above is converted into steam and hot water by the pipes 11 and 1, respectively.
It is taken out from the battery from 0. The right side of FIG. 1 is a flow chart of the fuel cell exhaust heat utilization system S of the present invention, and the one-dot chain line shows the integrated device unit U.

【0026】まず、水蒸気排熱の利用方法について説明
する。水蒸気は主に吸収式冷温水機の駆動熱源として利
用され、冷房運転は以下のようにして実施される。冷房
運転時には冷暖切替弁72,73は閉じられている。吸
収器30で冷媒(水)により希釈された希溶液は溶液ポ
ンプ31によって低温溶液熱交換器32,高温溶液熱交
換器33を経て高温再生器34へ送り込まれ、そこで、
燃料電池から蒸気配管11および蒸気供給弁70を経て
供給された高温高圧蒸気(通常4〜8kg/cm2Gの飽和水
蒸気)によって加熱されて冷媒を蒸発させて濃縮され
る。また、低温溶液熱交換器32の出口から分岐して低
温再生器35へ送り込まれた希溶液は、高温再生器34
から発生した冷媒蒸気と熱交換して、二次冷媒蒸気を発
生して濃縮される。
First, a method of utilizing the waste heat of steam will be described. Steam is mainly used as a driving heat source for the absorption chiller-heater, and the cooling operation is performed as follows. During the cooling operation, the cooling / heating switching valves 72, 73 are closed. The diluted solution diluted with the refrigerant (water) in the absorber 30 is sent by the solution pump 31 to the high temperature regenerator 34 via the low temperature solution heat exchanger 32 and the high temperature solution heat exchanger 33, where
The fuel cell is heated by high-temperature high-pressure steam (usually saturated steam of 4 to 8 kg / cm 2 G) supplied from the fuel cell through the steam pipe 11 and the steam supply valve 70 to evaporate and condense the refrigerant. Further, the dilute solution branched from the outlet of the low temperature solution heat exchanger 32 and sent to the low temperature regenerator 35 has a high temperature regenerator 34.
The heat is exchanged with the refrigerant vapor generated from to generate a secondary refrigerant vapor, which is concentrated.

【0027】高温再生器34で濃縮された濃溶液は、高
温溶液熱交換器33を経た後、低温再生器35で濃縮さ
れた溶液と共に低温熱交換器32を通過し、吸収器30
内に散布される。一方、高温再生器34及び低温再生器
35で発生した冷媒蒸気の各々は、低温再生器35及び
凝縮器36で凝縮され、冷媒液となって蒸発器37内に
流下する。そしてそこで冷媒液は冷媒スプレイポンプ3
8によって蒸発器内に散布され、冷温水配管60内の冷
温水から蒸発熱を得て蒸発し、蒸発器37と吸収器30
とを連絡する蒸気通路を経て吸収器内の散布濃溶液に吸
収される。吸収器30で発生した冷媒の凝縮熱は、冷却
水配管61を循環する冷却水によって取り除かれる。な
お、冷却水は吸収器30を経て前述の凝縮器36を循環
し、低温再生器35で発生した冷媒蒸気の凝縮熱を奪っ
たのち、冷却塔69でこれらの凝縮熱を外気に放出し、
冷却される。この冷却水の循環はポンプ80により行な
われる。
The concentrated solution concentrated in the high temperature regenerator 34 passes through the high temperature solution heat exchanger 33, and then passes through the low temperature heat exchanger 32 together with the solution concentrated in the low temperature regenerator 35, and the absorber 30
Is sprayed inside. On the other hand, each of the refrigerant vapors generated in the high temperature regenerator 34 and the low temperature regenerator 35 is condensed in the low temperature regenerator 35 and the condenser 36, becomes a refrigerant liquid, and flows down into the evaporator 37. And there the refrigerant liquid is the refrigerant spray pump 3
8 is sprayed in the evaporator, and the heat of evaporation is obtained from the cold / hot water in the hot / cold water pipe 60 to evaporate, and the evaporator 37 and the absorber 30
It is absorbed by the sprayed concentrated solution in the absorber via the vapor passage that connects with. The heat of condensation of the refrigerant generated in the absorber 30 is removed by the cooling water circulating in the cooling water pipe 61. The cooling water circulates in the condenser 36 through the absorber 30 to remove the condensation heat of the refrigerant vapor generated in the low temperature regenerator 35, and then the cooling tower 69 releases the condensation heat to the outside air,
To be cooled. This cooling water is circulated by the pump 80.

【0028】一方、高温再生器34内での希溶液との熱
交換によって凝縮した水蒸気によるドレン水は希溶液の
予熱を行なうドレンクーラー39にて冷却された後、ド
レン水温度検出器93にて所定以上の温度が検出される
場合には、さらに冷却塔69を循環する冷却水の配管6
3に配設された遮断電動弁75が開いて調温用熱交換器
52により冷却され、ドレン流量調整弁77を経て燃料
電池側へもどされる。このようにして前述の水質維持装
置の耐熱温度を上まわることなく、ドレン水温が制御さ
れる。
On the other hand, the drain water by the steam condensed by the heat exchange with the dilute solution in the high temperature regenerator 34 is cooled by the drain cooler 39 for preheating the dilute solution, and then by the drain water temperature detector 93. When a temperature above a predetermined level is detected, the cooling water pipe 6 that further circulates through the cooling tower 69
The shut-off motor-operated valve 75 disposed in No. 3 is opened and cooled by the temperature adjusting heat exchanger 52, and is returned to the fuel cell side through the drain flow rate adjusting valve 77. In this way, the drain water temperature is controlled without exceeding the heat resistant temperature of the water quality maintenance device described above.

【0029】このようにして燃料電池からの蒸気排熱
は、燃料電池排熱利用システムの吸収式冷温水機により
冷熱に変換され、冷房負荷67にて消費される。ここ
で、冷房負荷が小さくなり、冷温水温度検出器90によ
り、冷水温度の低下を検出すると、蒸気供給電磁弁70
が遮断されると同時に蒸気バイパス電磁弁71が開き、
さらには、蒸気放熱用熱交換器50につながる冷却水配
管62の遮断電動弁74が開いて蒸気の熱は冷却水側へ
伝えられ、冷却塔にて大気へ放熱される。また、再び冷
房負荷が大きくなって冷水温度が上昇してくると、前述
の冷温水温度検出器90からの信号により蒸気バイパス
電磁弁71は閉じるととともに蒸気供給電磁弁70が開
き、前述のサイクルに復帰するので、燃料電池の運転を
阻害することなく、排熱蒸気を有効に利用することがで
きる。
In this way, the exhaust heat of steam from the fuel cell is converted into cold heat by the absorption chiller-heater of the fuel cell exhaust heat utilization system and consumed by the cooling load 67. Here, when the cooling load decreases and the cold / hot water temperature detector 90 detects a decrease in the cold water temperature, the steam supply solenoid valve 70
And the steam bypass solenoid valve 71 opens simultaneously,
Further, the shutoff motor valve 74 of the cooling water pipe 62 connected to the heat exchanger 50 for radiating steam is opened, the heat of the steam is transferred to the cooling water side, and is radiated to the atmosphere in the cooling tower. When the cooling load again increases and the cold water temperature rises, the steam bypass solenoid valve 71 is closed and the steam supply solenoid valve 70 is opened by the signal from the cold / hot water temperature detector 90. The exhaust heat steam can be effectively used without disturbing the operation of the fuel cell.

【0030】また、万一吸収式冷温水機が故障して運転
継続が困難になった場合においても蒸気バイパス電磁弁
71を開いて放熱させることができるため、燃料電池に
は全く支障を与えないことは明らかで、極めて信頼性の
高い排熱利用システムが得られる。
Even if the absorption chiller-heater malfunctions and it becomes difficult to continue the operation, the steam bypass solenoid valve 71 can be opened to radiate heat, so that the fuel cell is not hindered at all. Clearly, a very reliable exhaust heat utilization system is obtained.

【0031】次に冷房又は暖房運転を行なわない場合に
は、蒸気バイパス電磁弁71を開いて、排熱蒸気を給湯
用蒸気熱交換器51に通し、給湯としても利用すること
ができる。この場合にも、給湯負荷68が小さくなる
と、給湯配管65に配設された給湯温度検出器91から
の出力信号に基づいて前述の冷却水配管62の電動弁7
4を開き蒸気の熱を冷却塔69から外気へ放熱して処理
することができる。
Next, when the cooling or heating operation is not performed, the steam bypass solenoid valve 71 is opened, and the exhaust heat steam can be passed through the hot water supply steam heat exchanger 51 and used as hot water supply. Also in this case, when the hot water supply load 68 becomes smaller, the motor-operated valve 7 of the cooling water pipe 62 is based on the output signal from the hot water supply temperature detector 91 arranged in the hot water supply pipe 65.
4 can be opened and the heat of the steam can be radiated from the cooling tower 69 to the outside air for processing.

【0032】暖房運転時は冷暖切替弁72,73は開
に、また冷却水配管61の電動弁78は閉とされ、高温
再生器34で排熱蒸気により加熱されて発生した冷媒蒸
気は低温再生器内の蒸気配管、冷暖切替弁73を経由し
て蒸発器37内に流入し、そこで冷温水配管60の冷温
水を加熱して凝縮する。凝縮した冷媒液は、冷媒スプレ
イポンプ38で冷暖切替弁72を経て吸収器30に送り
込まれ、そこで高温再生器34及び低温再生器35から
送られて吸収器内で散布された濃溶液を希釈して希溶液
となり、再び溶液ポンプ31で高温再生器34及び低温
再生器35へ送られる。この暖房サイクルでは、吸収器
30、凝縮器36への冷却水の通水は電動弁78によっ
て遮断されており、吸収器,凝縮器での熱交換は行なわ
れない。ここで、暖房負荷が小さくなると、冷温水配管
にとりつけた冷温水温度検出器90からの信号によって
蒸気供給弁70が閉となると同時に、冷房運転時と同
様、冷却水側への放熱を行なうための蒸気バイパス弁7
1及び冷却水電動弁74が開となり、蒸気熱を冷却水へ
放熱する。つまり、本システムでは一般の吸収式冷温水
機と異なり、冷却塔69と冷却水ポンプ80は暖房運転
時にも運転されてその機能を排熱蒸気の余剰熱の処理の
ために発揮する。
During the heating operation, the cooling / heating switching valves 72 and 73 are opened, and the motor-operated valve 78 of the cooling water pipe 61 is closed, so that the refrigerant vapor heated by the exhaust heat steam in the high temperature regenerator 34 is regenerated at a low temperature. It flows into the evaporator 37 via the steam pipe in the device and the cooling / heating switching valve 73, where the cold / hot water in the cold / hot water pipe 60 is heated and condensed. The condensed refrigerant liquid is sent to the absorber 30 via the cooling / heating switching valve 72 by the refrigerant spray pump 38, where it is sent from the high temperature regenerator 34 and the low temperature regenerator 35 to dilute the concentrated solution dispersed in the absorber. It becomes a dilute solution and is sent again to the high temperature regenerator 34 and the low temperature regenerator 35 by the solution pump 31. In this heating cycle, the water flow of the cooling water to the absorber 30 and the condenser 36 is blocked by the motor-operated valve 78, and heat exchange is not performed in the absorber and the condenser. Here, when the heating load decreases, the steam supply valve 70 is closed by a signal from the cold / hot water temperature detector 90 attached to the cold / hot water pipe, and at the same time, heat is radiated to the cooling water side as in the cooling operation. Steam bypass valve 7
1 and the cooling water motor-operated valve 74 are opened to radiate steam heat to the cooling water. That is, in this system, unlike a general absorption chiller-heater, the cooling tower 69 and the cooling water pump 80 are operated even during the heating operation, and exert their functions for processing the surplus heat of the exhaust heat steam.

【0033】次に燃料電池からの排熱温水は、燃料電池
内の温水配管10から温水ポンプ83を駆動して取り出
され燃料電池排熱利用システムの給湯用温水熱交換器5
4に供給されてそこで給湯水と熱交換する。熱交換で加
熱された給湯水は給湯ポンプ81により給湯負荷68に
送水される。給湯の負荷が小さくなると給湯配管65に
とりつけられた給湯温度検出器92からの信号によって
冷却水遮断電動弁76が開き、冷却塔69からの冷却水
が冷却水配管64を介して温水放熱用熱交換器53に通
水され、そこでの熱交換により温水の熱が冷却水側へ放
熱される。
Next, the hot water discharged from the fuel cell is taken out from the hot water pipe 10 in the fuel cell by driving the hot water pump 83, and the hot water heat exchanger 5 for hot water supply of the fuel cell exhaust heat utilization system 5 is used.
No. 4, which exchanges heat with hot water. The hot water supply heated by heat exchange is sent to the hot water supply load 68 by the hot water supply pump 81. When the load of hot water supply becomes small, the cooling water cutoff electric valve 76 is opened by a signal from the hot water supply temperature detector 92 attached to the hot water supply pipe 65, and the cooling water from the cooling tower 69 passes through the cooling water pipe 64 to dissipate the heat for releasing hot water. Water is passed through the exchanger 53, and heat of the hot water is radiated to the cooling water side by heat exchange there.

【0034】また別の給湯方法として前述の給湯用蒸気
交換器51を介して得るものがある。この場合には、冷
房又は暖房負荷が小さい場合に間歇的に放熱側に供給さ
れる蒸気を利用するため、給湯配管65の途中に給湯タ
ンク(図示せず)を配して給湯を貯水することにより利
用することができる。さらに、給湯配管途中に配設され
た温度検出器91によって給湯温度が所定値を上まわる
と蒸気排熱は電動弁74が開いて冷却等へ放熱される。
この辺の状況は冷房又は暖房運転を行なう吸収式冷温水
機の負荷対応運転と全く同様であり、燃料電池の運転を
支障なく行なうためには必要不可欠な機能である。
As another hot water supply method, there is one obtained through the hot water supply steam exchanger 51 described above. In this case, in order to use the steam that is intermittently supplied to the heat radiation side when the cooling or heating load is small, arrange a hot water supply tank (not shown) in the hot water supply pipe 65 to store hot water. Can be used by Further, when the hot water supply temperature exceeds a predetermined value by the temperature detector 91 arranged in the middle of the hot water supply pipe, the steam exhaust heat is radiated to the cooling or the like by opening the electric valve 74.
The situation around here is exactly the same as the load-corresponding operation of the absorption chiller-heater that performs cooling or heating operation, and is an essential function for operating the fuel cell without any hindrance.

【0035】本発明の他の実施例を図2に示す。本実施
例が先の実施例と異なる点は給湯系にある。即ち、給湯
に対する加熱を温水及び水蒸気更には高温再生器34で
発生した冷媒蒸気の一部により直列的に行えるようにし
ている。つまり、給湯は給湯用温水熱交換器54、給湯
用蒸気熱交換器51及び冷媒蒸気熱交換器55で順次加
熱・昇温されるようになっている。
Another embodiment of the present invention is shown in FIG. This embodiment is different from the previous embodiments in the hot water supply system. That is, heating of the hot water supply can be performed in series with hot water, steam, and a part of the refrigerant vapor generated in the high temperature regenerator 34. That is, the hot water supply is sequentially heated and heated by the hot water supply hot water heat exchanger 54, the hot water supply steam heat exchanger 51, and the refrigerant vapor heat exchanger 55.

【0036】この場合には、吸収式冷温水機で水蒸気が
使用されている際、中にも水蒸気の熱を間接的に給湯系
に利用することができるので、より効率のよい排熱利用
を実現できる。以上本発明の実施例について説明した
が、本発明がこれらの実施例に限定されるものでないこ
とは勿論で、水蒸気及び温水との熱交換や吸収式冷温水
機のサイクル機構等は本発明の趣旨の範囲で自由に設計
変更することが可能である。
In this case, when steam is used in the absorption chiller-heater, the heat of the steam can be indirectly utilized in the hot water supply system, so that more efficient exhaust heat utilization can be achieved. realizable. Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to these embodiments, and the heat exchange with steam and hot water, the cycle mechanism of the absorption chiller-heater, and the like of the present invention. It is possible to freely change the design within the scope of the purpose.

【0037】[0037]

【発明の効果】以上説明したように本発明の燃料電池排
熱利用システムによると、排熱の利用と処理が有機的に
結び付けられており、排熱の高効率での利用と的確な処
理を行えるので、燃料電池のより安定的な作動を図れる
と共に、エネルギー効率の向上により省資源化に大きく
寄与できる。
As described above, according to the fuel cell exhaust heat utilization system of the present invention, the utilization and the treatment of the exhaust heat are organically linked, and the utilization of the exhaust heat with high efficiency and the proper treatment can be achieved. As a result, the fuel cell can be operated more stably, and the energy efficiency can be improved to greatly contribute to resource saving.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例による燃料電池排熱利用システ
ムと燃料電池の関係を示すフロー図。
FIG. 1 is a flow chart showing the relationship between a fuel cell exhaust heat utilization system and a fuel cell according to an embodiment of the present invention.

【図2】本発明の他の実施例による図1相当のフロー
図。
FIG. 2 is a flowchart corresponding to FIG. 1 according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

D 燃料電池 S 燃料電池排熱利用システム U 装置ユニット 10 温水配管 11 蒸気配管 12 ドレン水配管 34 高温再生器 39 ドレンクーラー 50 蒸気放熱用熱交換器 51 給湯用蒸気熱交換器 52 調温用熱交換器 53 温水放熱用熱交換器 54 給湯用温水熱交換器 55 冷媒蒸気熱交換器 60 冷温水配管 61、62、63、64 冷却水配管 65、66 給湯配管 67 冷房、暖房負荷 68 給湯負荷 69 冷却塔 90 冷温水温度検出器(負荷状態検出手段) 91 給湯温度検出器(負荷状態検出手段) 92 給湯温度検出器(負荷状態検出手段) 93 ドレン水温度検出器 D Fuel Cell S Fuel Cell Waste Heat Utilization System U Equipment Unit 10 Hot Water Pipe 11 Steam Pipe 12 Drain Water Pipe 34 High Temperature Regenerator 39 Drain Cooler 50 Steam Radiation Heat Exchanger 51 Hot Water Steam Heat Exchanger 52 Temperature Control Heat Exchange 53 Heat exchanger for hot water heat dissipation 54 Hot water heat exchanger for hot water supply 55 Refrigerant vapor heat exchanger 60 Cold / hot water piping 61, 62, 63, 64 Cooling water piping 65, 66 Hot water piping 67 Cooling, heating load 68 Hot water supply load 69 Cooling Tower 90 Cold / hot water temperature detector (load state detection means) 91 Hot water supply temperature detector (load state detection means) 92 Hot water supply temperature detector (load state detection means) 93 Drain water temperature detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 恭二 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内 (72)発明者 石田 宏洋 神奈川県川崎市麻生区百合ケ丘三丁目14番 17号 (72)発明者 西崎 邦博 神奈川県川崎市高津区梶ケ谷二丁目11番2 号 東京ガス梶ケ谷独身寮内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kyoji Kono, 4-6 Kanda Surugadai, Chiyoda-ku, Tokyo, Hitachi, Ltd. (72) Hirohiro Ishida 3-14 Yurigaoka, Aso-ku, Kawasaki, Kanagawa Prefecture (72) Inventor Kunihiro Nishizaki, Kajigaya 2-1-2, Kajigaya, Takatsu-ku, Kawasaki City, Kanagawa Prefecture

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池の冷却系から発生する水蒸気を
熱源として利用する燃料電池排熱利用システムにおい
て、 上記水蒸気を熱源として利用する吸収式冷温水機と、水
蒸気の余剰熱を外部へ放熱するための放熱系とを備えた
ことを特徴とする燃料電池排熱利用システム。
1. A fuel cell exhaust heat utilization system that uses water vapor generated from a cooling system of a fuel cell as a heat source, and an absorption chiller-heater that uses the water vapor as a heat source, and radiates excess heat of the water vapor to the outside. And a heat dissipation system for the fuel cell.
【請求項2】 燃料電池の冷却系から発生する温水を熱
源として利用する燃料電池排熱利用システムにおいて、 上記温水を熱源として利用する給湯系と、温水の余剰熱
を外部へ放熱するための放熱系とを備えたことを特徴と
する燃料電池排熱利用システム。
2. A fuel cell exhaust heat utilization system that uses hot water generated from a cooling system of a fuel cell as a heat source, and a hot water supply system that uses the hot water as a heat source and heat dissipation for radiating excess heat of the hot water to the outside. A system for utilizing exhaust heat of a fuel cell, comprising:
【請求項3】 燃料電池の冷却系から発生する水蒸気を
熱源として利用する燃料電池排熱利用システムにおい
て、 上記水蒸気を熱源として利用する給湯系と、水蒸気の余
剰熱を外部へ放熱するための放熱系とを備えたことを特
徴とする燃料電池排熱利用システム。
3. A fuel cell exhaust heat utilization system that uses steam generated from a cooling system of a fuel cell as a heat source, and a hot water supply system that uses the steam as a heat source, and heat dissipation for radiating excess heat of the steam to the outside. A system for utilizing exhaust heat of a fuel cell, comprising:
【請求項4】 燃料電池の冷却系から発生する水蒸気及
び温水を熱源として利用する燃料電池排熱利用システム
において、 上記温水及び水蒸気を熱源として利用する給湯系と、水
蒸気及び温水の余剰熱を外部へ放熱するための放熱系と
を備えたことを特徴とする燃料電池排熱利用システム。
4. A fuel cell exhaust heat utilization system using steam and hot water generated from a cooling system of a fuel cell as a heat source, wherein a hot water supply system using the hot water and steam as a heat source and excess heat of the steam and hot water are externally supplied. A fuel cell exhaust heat utilization system comprising: a heat dissipation system for radiating heat to a fuel cell.
【請求項5】 燃料電池の冷却系から発生する水蒸気及
び温水を熱源として利用する燃料電池排熱利用システム
において、 上記水蒸気を熱源として利用する吸収式冷温水機と、上
記温水及び又は上記水蒸気を熱源として利用する給湯系
と、水蒸気及び温水の余剰熱を外部へ放熱するための放
熱系と、吸収式冷温水機及び給湯機それぞれの負荷状態
を検出する検出手段とを備え、検出手段で検出したそれ
ぞれの負荷状態に応じて、蒸気及び温水の熱の吸収式冷
温水機又は給湯機への熱源としての利用と放熱系による
外部への放熱処理とを選択的に組み合わせて行えるよう
にしたことを特徴とする燃料電池熱利用のシステム。
5. A fuel cell exhaust heat utilization system that uses steam and hot water generated from a cooling system of a fuel cell as a heat source, an absorption chiller-heater that uses the steam as a heat source, and the hot water and / or the steam. A hot water supply system used as a heat source, a heat radiation system for radiating excess heat of steam and hot water to the outside, and a detection means for detecting the load state of each of the absorption chiller / hot water heater and the water heater are detected by the detection means. Depending on the respective load conditions, it was made possible to selectively combine the use of heat of steam and hot water as a heat source for absorption type chiller-heater or water heater and heat dissipation processing to the outside by a heat dissipation system. Fuel cell heat utilization system characterized by:
【請求項6】 放熱系の外部への放熱手段として吸収式
冷温水機の冷却塔を利用するようにした請求項5に記載
の燃料電池排熱利用システム。
6. The fuel cell exhaust heat utilization system according to claim 5, wherein a cooling tower of the absorption chiller-heater is used as a heat radiating means to the outside of the heat radiating system.
【請求項7】 吸収式冷温水機の高温再生器での熱交換
を経て凝縮した水蒸気のドレン水の温度を検出するドレ
ン水温度検出手段を設けると共に、ドレン水の燃料電池
への回収路に放熱系と熱交換するための調温用熱交換器
を設け、ドレン水温度検出手段での検出温度が所定温度
以上である場合に調温用熱交換器に冷却水を通水させる
ようにした請求項5又は請求項6のいずれかに記載の燃
料電池排熱利用システム。
7. A drain water temperature detecting means for detecting the temperature of drain water of steam condensed after heat exchange in a high temperature regenerator of an absorption chiller-heater is provided, and a drain water recovery path is provided to a fuel cell. A temperature control heat exchanger for exchanging heat with the heat radiation system was provided, and cooling water was allowed to pass through the temperature control heat exchanger when the temperature detected by the drain water temperature detection means was above a predetermined temperature. The fuel cell exhaust heat utilization system according to claim 5 or 6.
【請求項8】 吸収式冷温水機の高温再生器での熱交換
を経て凝縮した水蒸気のドレン水の熱を希溶液に与えて
希溶液の予熱を行うと共にドレン水の降温を行うドレン
クーラーを設けるようにした請求項5〜請求項7のいず
れかに記載の燃料電池排熱利用システム。
8. A drain cooler for preheating the dilute solution by giving heat to the dilute solution of the drain water of the steam condensed through heat exchange in the high temperature regenerator of the absorption chiller-heater to cool the drain water. The fuel cell exhaust heat utilization system according to any one of claims 5 to 7, wherein the system is provided.
【請求項9】吸収式冷温水機の高温再生器で発生した冷
媒蒸気の熱も給湯系の給湯の加熱に利用するようにした
請求項5〜請求項8のいずれかに記載の燃料電池排熱利
用システム。
9. The exhaust of the fuel cell according to claim 5, wherein the heat of the refrigerant vapor generated in the high temperature regenerator of the absorption chiller-heater is also used for heating the hot water supply of the hot water supply system. Heat utilization system.
JP19968592A 1992-07-27 1992-07-27 Fuel cell waste heat utilization system Expired - Fee Related JP3426620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19968592A JP3426620B2 (en) 1992-07-27 1992-07-27 Fuel cell waste heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19968592A JP3426620B2 (en) 1992-07-27 1992-07-27 Fuel cell waste heat utilization system

Publications (2)

Publication Number Publication Date
JPH0644979A true JPH0644979A (en) 1994-02-18
JP3426620B2 JP3426620B2 (en) 2003-07-14

Family

ID=16411915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19968592A Expired - Fee Related JP3426620B2 (en) 1992-07-27 1992-07-27 Fuel cell waste heat utilization system

Country Status (1)

Country Link
JP (1) JP3426620B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528416A (en) * 2003-04-15 2006-12-14 エイデスヴィク エーエス Buffer / converter / disposal system between fuel cell and process
KR100741805B1 (en) * 2000-12-29 2007-07-24 주식회사 엘지이아이 Fuel cell cooking utensil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101699905B1 (en) * 2016-05-31 2017-01-25 주식회사 성지테크 Absorption chiller system having fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741805B1 (en) * 2000-12-29 2007-07-24 주식회사 엘지이아이 Fuel cell cooking utensil
JP2006528416A (en) * 2003-04-15 2006-12-14 エイデスヴィク エーエス Buffer / converter / disposal system between fuel cell and process

Also Published As

Publication number Publication date
JP3426620B2 (en) 2003-07-14

Similar Documents

Publication Publication Date Title
US5345786A (en) Absorption heat pump and cogeneration system utilizing exhaust heat
JP4776391B2 (en) Waste heat utilization system
JP5980025B2 (en) Fuel cell cogeneration system
JP2009036473A (en) Fuel cell system
JP3215489B2 (en) Fuel cell waste heat utilization system and control method thereof
JP2004211979A (en) Absorption refrigerating system
JP3426620B2 (en) Fuel cell waste heat utilization system
JP2014182923A (en) Fuel cell system and operation method thereof
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JPH06185828A (en) Absorption heat pump using low temperature heat source
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
JPH11102720A (en) Fuel cell power generating device
CN114244274B (en) Photovoltaic photo-thermal and thermoelectric power generation coupling system with combined heat and power generation
JP6274607B2 (en) Fuel cell system
JP5277573B2 (en) Fuel cell power generator
JP6666148B2 (en) Electrical installation having a cooled fuel cell with an absorption heat engine
JPH05121082A (en) Exhaust heat utilizing facility of fuel cell
JP2000082478A (en) Phospholic acid type fuel cell generation plant
JPH0541231A (en) Fuel cell
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
JP2001266919A (en) Fuel cell co-generation system
CN115572983A (en) Cogeneration system for water electrolyzer and fuel cell and control method thereof
CN117293349A (en) Hydrogen-heat integrated power generation system and method based on PEMFC and organic Rankine cycle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees