JPH0643908B2 - Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device - Google Patents

Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device

Info

Publication number
JPH0643908B2
JPH0643908B2 JP59145827A JP14582784A JPH0643908B2 JP H0643908 B2 JPH0643908 B2 JP H0643908B2 JP 59145827 A JP59145827 A JP 59145827A JP 14582784 A JP14582784 A JP 14582784A JP H0643908 B2 JPH0643908 B2 JP H0643908B2
Authority
JP
Japan
Prior art keywords
fluid
flow velocity
flow rate
flow
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59145827A
Other languages
Japanese (ja)
Other versions
JPS6123920A (en
Inventor
正樹 勅使川原
弘郎 山崎
安孝 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP59145827A priority Critical patent/JPH0643908B2/en
Publication of JPS6123920A publication Critical patent/JPS6123920A/en
Publication of JPH0643908B2 publication Critical patent/JPH0643908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 <発明の技術分野> 本発明は、例えば超音波を利用して、流体の流速ないし
は流量を測定する流速・流量測定装置およびその装置を
備えた流体搬送管に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a flow velocity / flow rate measuring device for measuring the flow velocity or flow rate of a fluid by using, for example, ultrasonic waves, and a fluid transfer pipe equipped with the device.

<発明の背景> 従来超音波を利用したこの種装置には、伝幡時間差方式
およびドツプラー方式の2種類が実用化されている。前
者の方式は、流体の流れに沿う方向と、流れに反する方
向とに超音波を発するとき、超音波の伝幡時間に差が生
ずるのを利用して、流速や流量を求める方式であり、ま
た後者の方式は、流体中のごみ、泡等の混在物に超音波
を発するとき、その反射波との間にドツプラー効果が生
ずるのを利用して、流速や流量を求める方式である。と
ころが前者の伝幡時間差方式の場合、流体中にごみ等の
混入物が存在すると、超音波の径路が妨害されため、流
速・流量の測定が困難となり、一方後者のドツプラー方
式の場合、流体中に混入物が混在しないと、反射波が得
られず、同様に流速・流量測定が困難となる。従ってこ
れらの各方式は、流体中の混入物の有無によつて、流速
・流量の測定可否やその精度が左右される。そこで近
年、混入物の有無とは無関係に流速・流量の測定が可能
な相関型の流速・流量測定装置が提案された。この相関
型の装置は、被測定流体中を伝幡する超音波が流体中の
微粒子の存在や、流体の渦更には振動等により変調を受
けることに着目したものであり、この変調成分を復調
し、その流体の状態を一種の雑音性の信号として抽出す
る方式である。
<Background of the Invention> Conventionally, two types of apparatuses, which use ultrasonic waves, have been put into practical use: a transfer time difference method and a Doppler method. The former method is a method of obtaining a flow velocity and a flow rate by utilizing a difference in propagation time of ultrasonic waves when ultrasonic waves are emitted in a direction along a flow of a fluid and a direction opposite to the flow, The latter method is a method for obtaining the flow velocity and the flow rate by utilizing the fact that the Doppler effect is generated between the ultrasonic wave and the reflected wave when ultrasonic waves are emitted to the contaminants such as dust and bubbles in the fluid. However, in the former transmission time difference method, if contaminants such as dust are present in the fluid, the path of the ultrasonic waves will be obstructed, making it difficult to measure the flow velocity and flow rate, while in the latter case of the Doppler method, in the fluid. If no contaminants are mixed in, the reflected wave cannot be obtained, and similarly, it becomes difficult to measure the flow velocity and flow rate. Therefore, in each of these methods, whether or not the flow velocity and flow rate can be measured and their accuracy depend on the presence or absence of contaminants in the fluid. Therefore, in recent years, a correlation type flow velocity / flow rate measuring device capable of measuring the flow velocity / flow rate regardless of the presence or absence of a contaminant has been proposed. This correlation type device focuses on the fact that the ultrasonic waves propagating in the fluid to be measured are modulated by the presence of fine particles in the fluid, the vortex of the fluid, and the vibration. Then, the state of the fluid is extracted as a kind of noisy signal.

第2図に示す従来の相関型流速・流量測定装置は、流体
の流れ(図中、矢印で示す)と直交する方向に、超音波
を発する送信体1Aと、これを受信する受信体2Aとを
対向配備し、更に一定距離L下流位置に同様の送信体1
Bおよび受信体2Bを配備したものであり、これら2地
点において前記雑音性の信号を抽出し、両信号の相関か
ら流体の流速や流量を測定している。すなわち第2図に
おいて、流体の流速をV、2組の送受信体間の距離を
L、相関が最大となる時間をτとすると、流速Vはつぎ
の式で求めることができる。
The conventional correlation type flow velocity / flow rate measuring device shown in FIG. 2 has a transmitter 1A that emits an ultrasonic wave and a receiver 2A that receives the ultrasonic wave in a direction orthogonal to a fluid flow (indicated by an arrow in the figure). Are arranged opposite to each other, and a similar transmitter 1 is provided at a position downstream of a fixed distance L.
B and the receiver 2B are provided, and the noise signals are extracted at these two points, and the flow velocity and flow rate of the fluid are measured from the correlation between the two signals. That is, in FIG. 2, assuming that the flow velocity of the fluid is V, the distance between the two sets of transmitters and receivers is L, and the time when the correlation is maximum is τ, the flow velocity V can be obtained by the following equation.

V=L/τ …… ところが上記の相関型装置においては、前記雑音性信号
の保存性が乏しく、流体が距離Lを移動する間に流体の
状態がくずれ、信号パターンが変化するという問題があ
る。このため一致しない信号相互間につき相関をとる結
果となり、十分な測定精度を得るのに、測定時間を長く
設定してデータを平均化する等の処理が必要である。
V = L / τ However, in the above-mentioned correlation type device, there is a problem that the storage property of the noise signal is poor and the fluid state collapses while the fluid moves the distance L, and the signal pattern changes. . As a result, the signals that do not match are correlated with each other, and in order to obtain sufficient measurement accuracy, it is necessary to set a long measurement time and average the data.

<発明の目的> 本発明は、伝幡時間差方式やドツプラー方式のように液
体中の混入物の有無とは無関係に流速や流量の測定が可
能であり、かつ従来の相関型のものの欠点を改善した流
速・流量測定装置およびその装置を備えた流体搬送管を
提供することを目的とする。
<Purpose of the Invention> The present invention is capable of measuring the flow velocity and flow rate regardless of the presence or absence of contaminants in the liquid, such as the transfer time difference method and the Doppler method, and improves the drawbacks of the conventional correlation type. An object of the present invention is to provide a flow velocity / flow rate measuring device and a fluid carrying pipe equipped with the device.

<発明の構成および効果> 第1の発明は、流体の流速・流量の測定する流速・流量
測定装置であって、流体中へ流体の流れと直交する方向
に超音波等の検出波を投射する送信手段と、前記送信手
段に対向配備され流体中で変調を受けつつ伝播してくる
検出波を受信する受信手段とを備えたものである。前記
送信手段と受信手段との少なくとも一方は、複数の送信
もしくは受信子を整列配置して構成されると共に、送信
もしくは受信子の集合体には各送信もしくは受信子を流
体の流速より速い速度で順次切り換えて検出波の送受波
を行う切換回路が接続されている。また前記受信手段に
は、受信信号より変調成分を復調して得られる雑音性の
信号を前記切換回路による切換周期毎に抽出すると共
に、抽出される前後の信号間の相関から流体の流速・流
量を算出する演算処理回路が接続されている。第2の発
明は、上記構成の流速・流量測定装置を備えた流体搬送
管であって、流速・流量測定装置により管内の流体の流
速・流量を測定するようにしたものである。
<Structure and Effect of the Invention> A first invention is a flow velocity / flow rate measuring device for measuring a flow velocity / flow rate of a fluid, which projects a detection wave such as an ultrasonic wave into the fluid in a direction orthogonal to the flow of the fluid. It is provided with a transmitting means and a receiving means which is arranged opposite to the transmitting means and receives a detection wave which propagates while being modulated in a fluid. At least one of the transmitting means and the receiving means is configured by arranging a plurality of transmitters or receivers in an array, and the transmitters or receivers are arranged in a group of the transmitters or receivers at a speed higher than the fluid flow velocity. A switching circuit is connected which sequentially switches to transmit and receive a detection wave. Further, the receiving means extracts a noisy signal obtained by demodulating a modulation component from the received signal at each switching cycle by the switching circuit, and the flow velocity / flow rate of the fluid based on the correlation between the signals before and after the extraction. An arithmetic processing circuit for calculating is connected. A second aspect of the present invention is a fluid carrying pipe including the flow velocity / flow rate measuring device having the above-mentioned configuration, wherein the flow velocity / flow rate of the fluid in the pipe is measured by the flow velocity / flow rate measuring device.

本発明によれば、高速切換えで雑音性信号をもつて相関
をとるから、相関されるべき信号の保存性が高く、流
速、流量測定を短時間かつ高精度で実施可能となつた。
而も本発明の方式の場合、従前の伝幡時間差方式やドツ
プラー方式のように流体中の混入物の有無により測定の
可否やその精度が左右されることが全くない等、発明目
的を達成した顕著な効果を奏する。
According to the present invention, since the correlation is obtained with a noisy signal by high-speed switching, the signal to be correlated is highly conserved, and the flow velocity and the flow rate can be measured in a short time and with high accuracy.
In addition, in the case of the method of the present invention, the possibility of measurement and its accuracy are not affected by the presence or absence of contaminants in the fluid as in the conventional transfer time difference method or Doppler method, and the invention object is achieved. Has a remarkable effect.

<実施例の説明> 第1図は本発明にかかる流速・流量測定装置およびその
装置を備えた流体搬送管を示す。図示例の流速・流量測
定装置は、超音波を利用して、管9内を流れる流体の流
速や流量を測定するものであり、管9の外面には流れと
直交する方向に一対の超音波送信体1および受信体2が
対向配備されている。送信体1は超音波発振器3が出力
する高周波信号を超音波に変換し、これを管9内の流体
中へ投射する。この超音波は、流体中の微粒子の存在
や、流体の渦更には振動等によつて振幅変調或いは位相
変調を受けつつ伝幡され、前記受信体2に到達して受波
される。前記の受信体2は、複数の受信子20,20を
流れの方向に沿い整列配置して構成されており、各受信
子20を切換回路4を用いて流れ方向へ順次切り換え
て、変調を受けて超音波を受信する。この切換操作はス
キリニングと称され、、その切換え速度は流速に比べて
十分に速い値に設定する。ここで受信体2の長さをL、
受信体2を構成する受信子20の数をN、発振器40が
出力する切換回路4の切換信号の周波数を1とする
と、切換え速度Vは、次の式で与えられる。
<Description of Embodiments> FIG. 1 shows a flow velocity / flow rate measuring device according to the present invention and a fluid carrying pipe provided with the device. The flow velocity / flow rate measuring device in the illustrated example measures the flow velocity and flow rate of a fluid flowing in the pipe 9 by using ultrasonic waves, and a pair of ultrasonic waves are provided on the outer surface of the pipe 9 in a direction orthogonal to the flow. The transmitter 1 and the receiver 2 are arranged opposite to each other. The transmitter 1 converts the high frequency signal output from the ultrasonic oscillator 3 into ultrasonic waves and projects the ultrasonic waves into the fluid in the tube 9. This ultrasonic wave is propagated while undergoing amplitude modulation or phase modulation due to the presence of fine particles in the fluid, the vortex of the fluid, vibration, etc., and reaches the receiving body 2 to be received. The receiver 2 is constructed by arranging a plurality of receivers 20 and 20 in line along the flow direction, and each receiver 20 is sequentially switched in the flow direction using a switching circuit 4 to receive modulation. To receive ultrasonic waves. This switching operation is called skinning, and the switching speed is set to a value sufficiently higher than the flow velocity. Here, the length of the receiver 2 is L,
When the number of receivers 20 forming the receiver 2 is N and the frequency of the switching signal of the switching circuit 4 output from the oscillator 40 is 1 , the switching speed V s is given by the following equation.

前記の切換回路4は受信体2より取り込んだ超音波信号
を演算処理回路10中の増幅回路41を介して復調回路
5へ出力する。この復調回路5は前記変調成分を復調
し、これを流体中の雑音性信号Iとして検出するもので
ある。この雑音性信号Iは、波形判別回路6および可変
遅延回路7へ夫々送られ、波形判別回路6は雑音性信号
Iと遅延出力信号Jとの位相をチエツクする。
The switching circuit 4 outputs the ultrasonic signal received from the receiver 2 to the demodulation circuit 5 via the amplification circuit 41 in the arithmetic processing circuit 10. The demodulation circuit 5 demodulates the modulated component and detects it as a noisy signal I in the fluid. The noisy signal I is sent to the waveform discriminating circuit 6 and the variable delay circuit 7, respectively, and the waveform discriminating circuit 6 checks the phases of the noisy signal I and the delayed output signal J.

前記可変遅延回路7は、例えばBBD(Bucket Brigade
Device)、CCD(Charge Coupled Device)等をもつ
て形成され、その段数を前記受信子数と同じNとし、ま
た遅延量制御用のクロツク周波数を2とすれば、遅延
量τはつぎの式で表わさる。
The variable delay circuit 7 is, for example, a BBD (Bucket Brigade).
Device), CCD (Charge Coupled Device), etc., and the number of stages is N, which is the same as the number of receivers, and the clock frequency for delay amount control is 2 , the delay amount τ is expressed by the following equation. It

波形判別回路6は、雑音性信号Iをスキヤニング周期毎
に観測し、前回のスキヤンにかかる雑音性信号(可変遅
延回路7の出力に相当する)と今回のスキヤンにかかる
雑音性信号(復調回路5の出力に相当する)とを比較
し、両者の波形一致するか否かを判別する。尚フキヤン
ニング周期とは、全ての受信子20の切換えに要する時
間を指す。
The waveform discrimination circuit 6 observes the noisy signal I at each scanning cycle, and the noisy signal applied to the previous scan (corresponding to the output of the variable delay circuit 7) and the noisy signal applied to this scan (the demodulation circuit 5). (Corresponding to the output of the above) and it is determined whether or not the two waveforms match. The defying period refers to the time required to switch all the receivers 20.

今復調回路5が出力する雑音性信号Iの波形をS(t)と
すると、波形判別回路6において波形の一致が認められ
る場合には、照合される信号波形間にはつぎの式が成
立する。
Assuming that the waveform of the noisy signal I output from the demodulation circuit 5 is S (t), the following equation holds between the signal waveforms to be collated when the waveform discrimination circuit 6 finds that the waveforms match.

そして前記式および式から、流速Vはつぎの式で
与えられる。但しΔf=21である。
From the above equation and equation, the flow velocity V is given by the following equation. However Δf = 2 - 1.

かくして波形判別回路6は2つの信号入力波形に位相差
が生じているとき、可変遅延回路7の遅延量を制御する
クロツク周波数2を変化させて、両波形を一致させ
る。尚この場合、切換周波数1を変化させても、波形
の一致を得ることができる。そして波形判別回路6が一
致判別を行なつたとき、、演算回路8において、切換回
路4の切換え周波数1およびクロツク周波数2をデー
タ入力して、前記式により流速Vを求め、更に流速V
に流体の断面積を乗じて流量を算出する。
Thus, when there is a phase difference between the two signal input waveforms, the waveform discriminating circuit 6 changes the clock frequency 2 for controlling the delay amount of the variable delay circuit 7 to match the two waveforms. In this case, even if the switching frequency 1 is changed, the waveforms can be matched. When the waveform discriminating circuit 6 discriminates the coincidence, the arithmetic circuit 8 inputs the switching frequency 1 and the clock frequency 2 of the switching circuit 4 to obtain the flow velocity V by the above equation, and further the flow velocity V
Calculate the flow rate by multiplying by the cross-sectional area of the fluid.

尚上記実施例は超音波を利用した流速・流量測定装置で
あるが、本発明は超音波に限らず、電磁波を用いる装置
にも適用実施できる。
Although the above embodiment is a flow velocity / flow rate measuring device using ultrasonic waves, the present invention is not limited to ultrasonic waves and can be applied to devices using electromagnetic waves.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかる流速・流量測定装置の原理およ
び回路構成を示すブロツク図、第2図は従来例の構成を
示す説明図である。 1……送信体、2……受信体 20……受信子、4……切換回路
FIG. 1 is a block diagram showing the principle and circuit configuration of a flow velocity / flow rate measuring device according to the present invention, and FIG. 2 is an explanatory diagram showing the configuration of a conventional example. 1 ... Sender, 2 ... Receiver 20 ... Receiver, 4 ... Switching circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】流体の流速・流量を測定する流速・流量測
定装置であって、 流体中へ流体の流れと直交する方向に超音波等の検出波
を投射する送信手段と、前記送信手段に対向配備され流
体中で変調を受けつつ伝播してくる検出波を受信する受
信手段とを備え、 前記送信手段と受信手段との少なくとも一方は、複数の
送信もしくは受信子を整列配置して構成されると共に、
送信もしくは受信子の集合体には各送信もしくは受信子
を流体の流速より速い速度で順次切り換えて検出波の送
受波を行う切換回路が接続されており、 前記受信手段には、 受信信号より変調成分を復調して得られる雑音性の信号
を前記切換回路による切換周期毎に抽出すると共に、抽
出される前後の信号間の相関から流体の流速・流量を算
出する演算処理回路が接続されて成る流速・流量測定装
置。
1. A flow velocity / flow rate measuring device for measuring a flow velocity / flow rate of a fluid, the transmitting means projecting a detection wave such as an ultrasonic wave into the fluid in a direction orthogonal to the flow of the fluid, and the transmitting means. A receiving means arranged to face each other and receiving a detection wave propagating while being modulated in a fluid, wherein at least one of the transmitting means and the receiving means is configured by arranging a plurality of transmitting or receiving elements in alignment. Along with
A switching circuit for transmitting and receiving a detection wave by sequentially switching each transmission or reception element at a speed higher than the flow velocity of the fluid is connected to the aggregate of transmission or reception elements, and the reception means modulates from the reception signal. A noisy signal obtained by demodulating the components is extracted for each switching cycle by the switching circuit, and an arithmetic processing circuit is connected to calculate the flow velocity / flow rate of the fluid from the correlation between the signals before and after the extraction. Flow velocity / flow rate measuring device.
【請求項2】流体の流速・流量を測定する流速・流量測
定装置を備えた流体搬送管であって、 前記流速・流量測定装置は、 前記管内へ流体の流れと直交する方向に超音波等の検出
波を投射する送信手段と、前記送信手段に対向配備され
流体中で変調を受けつつ伝播してくる検出波を受信する
受信手段とを備え、 前記送信手段と受信手段との少なくとも一方は、複数の
送信もしくは受信子を整列配置して構成されると共に、
送信もしくは受信子の集合体には各送信もしくは受信子
を流体の流速より速い速度で順次切り換えて検出波の送
受波を行う切換回路が接続されており、 前記受信手段には、 受信信号より変調成分を復調して得られる雑音性の信号
を前記切換回路による切換周期毎に抽出すると共に、抽
出される前後の信号間の相関から流体の流速・流量を算
出する演算処理回路が接続されて成る流速・流量測定装
置を備えた流体搬送管。
2. A fluid carrying pipe provided with a flow velocity / flow rate measuring device for measuring a flow velocity / flow rate of a fluid, wherein the flow velocity / flow rate measuring device is an ultrasonic wave or the like in a direction orthogonal to the flow of the fluid into the pipe. Of the detection means, and a receiving means that is provided facing the transmission means and receives the detection wave that propagates while being modulated in the fluid, and at least one of the transmission means and the reception means , With multiple transmitters or receivers aligned and configured,
A switching circuit for transmitting and receiving a detection wave by sequentially switching each transmission or reception element at a speed higher than the flow velocity of the fluid is connected to the aggregate of transmission or reception elements, and the reception means modulates from the reception signal. A noisy signal obtained by demodulating the components is extracted for each switching cycle by the switching circuit, and an arithmetic processing circuit is connected to calculate the flow velocity / flow rate of the fluid from the correlation between the signals before and after the extraction. Fluid transfer pipe equipped with flow velocity / flow rate measuring device.
JP59145827A 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device Expired - Lifetime JPH0643908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145827A JPH0643908B2 (en) 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145827A JPH0643908B2 (en) 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device

Publications (2)

Publication Number Publication Date
JPS6123920A JPS6123920A (en) 1986-02-01
JPH0643908B2 true JPH0643908B2 (en) 1994-06-08

Family

ID=15394035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145827A Expired - Lifetime JPH0643908B2 (en) 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device

Country Status (1)

Country Link
JP (1) JPH0643908B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005022048A1 (en) * 2005-05-09 2006-11-16 Endress + Hauser Flowtec Ag Device for determining and / or monitoring the volume and / or mass flow rate of a measuring medium
CN112875261A (en) * 2021-02-02 2021-06-01 宁夏天地西北煤机有限公司 Conveying device

Also Published As

Publication number Publication date
JPS6123920A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
JP3028723B2 (en) Ultrasonic fluid flow meter
JP3016511B1 (en) Ultrasonic flow velocity measuring method and device
JPH0643908B2 (en) Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device
JPH1048009A (en) Ultrasound temperature current meter
JP2608961B2 (en) Sound wave propagation time measurement method
JPH0643909B2 (en) Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device
JP3235637B2 (en) Ultrasonic fluid flow meter
JPS6123924A (en) Flow velocity and flow rate measuring device
JPH0612278B2 (en) Two-phase flow ultrasonic type flow rate measuring method and measuring apparatus
JPS5852488Y2 (en) Flow rate measurement device using correlation technology
JPS5852487Y2 (en) Flow rate measurement device using correlation technology
JP3024312B2 (en) Vortex flow meter
JP2723291B2 (en) Ultrasonic sensor
JPH0511249B2 (en)
JP3465100B2 (en) Vortex flow meter
JPS6123923A (en) Flow velocity and flow rate measuring device
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
CN107532933A (en) For determining the specifically method of the transmission time of the ultrasonic pulse string in ultrasonic flowmeter, flowmeter
JP2760079B2 (en) Ultrasonic sensor
JPH0395477A (en) Ultrasonic detector
JP2828678B2 (en) Ultrasonic detector
JP2710399B2 (en) Flow measurement method
JPH0361892B2 (en)
JPH04242189A (en) Ultrasonic detector
JPH0117090B2 (en)