JPH0643909B2 - Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device - Google Patents
Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the deviceInfo
- Publication number
- JPH0643909B2 JPH0643909B2 JP59145828A JP14582884A JPH0643909B2 JP H0643909 B2 JPH0643909 B2 JP H0643909B2 JP 59145828 A JP59145828 A JP 59145828A JP 14582884 A JP14582884 A JP 14582884A JP H0643909 B2 JPH0643909 B2 JP H0643909B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- flow rate
- flow velocity
- circuit
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/66—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
- G01F1/667—Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Description
【発明の詳細な説明】 <発明の技術分野> 本発明は、例えば超音波を利用して、流体の流速ないし
は流量を測定する相関型の流速・流量測定装置およびそ
の装置を備えた流体搬送管に関する。TECHNICAL FIELD OF THE INVENTION The present invention relates to a correlation type flow velocity / flow rate measuring device for measuring the flow velocity or flow rate of a fluid by utilizing, for example, ultrasonic waves, and a fluid transfer pipe equipped with the device. Regarding
<発明の背景> 従来超音波を利用した流速・流量測定装置には、伝幡時
間差方式とドツプラー方式の2種類が実用化されてい
る。前者の方式は、流体の流れに沿う方向と、流れに反
する方向とに超音波を発するとき、超音波の伝幡時間に
差が生ずるのを利用して、流速や流量を求める方式であ
り、また後者の方式は、流体中のごみ、泡等の混在物に
超音波を発するとき、その反射波との間にドツプラー効
果が生ずるのを利用して、流速や流量を求める方式であ
る。ところが前者の伝幡時間差方式の場合、流体中にご
み等の混入物が存在すると、超音波の径路が妨害される
ため、流速・流量の測定が困難となり、一方後者のドツ
プラー方式の場合、流体中に混入物が混在しないと、反
射波が得られず、同様に流速・流量測定が困難となる。
従つてこれら各方式は、流体中の混入物の有無によつ
て、流速・流量の測定可否やその精度が左右される。<Background of the Invention> Conventionally, two types of flow velocity / flow rate measuring devices using ultrasonic waves have been put into practical use: a transmission time difference method and a Doppler method. The former method is a method of obtaining a flow velocity and a flow rate by utilizing a difference in propagation time of ultrasonic waves when ultrasonic waves are emitted in a direction along a flow of a fluid and a direction opposite to the flow, The latter method is a method for obtaining the flow velocity and the flow rate by utilizing the fact that the Doppler effect is generated between the ultrasonic wave and the reflected wave when ultrasonic waves are emitted to the contaminants such as dust and bubbles in the fluid. However, in the former transmission time difference method, if contaminants such as dust are present in the fluid, the ultrasonic path is obstructed, making it difficult to measure the flow velocity and flow rate, while in the latter Doppler method, If no contaminants are mixed in, reflected waves cannot be obtained, and similarly, flow velocity / flow rate measurement becomes difficult.
Therefore, in each of these methods, whether or not the flow velocity and flow rate can be measured and their accuracy depend on the presence or absence of contaminants in the fluid.
そこで近年、混入物の有無とは無関係に流速・流量の測
定が可能な相関型の流速・流量測定装置が提案された。
この相関型の装置は、被測定流体中を伝幡する超音波が
流体中の微粒子の存在や、流体の渦更には振動等により
変調を受けることに着目したものであり、この変調成分
を復調し、その流体の状態を一種の雑音性の信号として
抽出する方式である。Therefore, in recent years, a correlation type flow velocity / flow rate measuring device capable of measuring the flow velocity / flow rate regardless of the presence or absence of a contaminant has been proposed.
This correlation type device focuses on the fact that the ultrasonic waves propagating in the fluid to be measured are modulated by the presence of fine particles in the fluid, the vortex of the fluid, and the vibration. Then, the state of the fluid is extracted as a kind of noisy signal.
第3図に示す相関型の装置例は、流体の流れと直交する
方向に、超音波を発する送信体1Aと、これを受信する
受信体2Aとを対向配備し、更に一定距離L下流位置に
同様の送信体1Bおよび受信体2Bを配備したものであ
り、これら2地点にて前記雑音性の信号を抽出し、両信
号の相関から流体の流速や流量を測定している。ところ
が、図示例の方式の場合、雑音性の信号の保存性が乏し
く、流体が距離Lを移動する間に流体の状態がくず
れ、、信号パターンが変化するという問題がある。In the correlation type device example shown in FIG. 3, a transmitter 1A that emits an ultrasonic wave and a receiver 2A that receives the ultrasonic wave are arranged so as to face each other in a direction orthogonal to the fluid flow, and further at a constant distance L downstream position. The same transmitter 1B and receiver 2B are provided, and the noise signals are extracted at these two points, and the flow velocity and flow rate of the fluid are measured from the correlation between the two signals. However, in the case of the method of the illustrated example, there is a problem that the storage property of the noisy signal is poor, the state of the fluid collapses while the fluid moves the distance L, and the signal pattern changes.
第4図は、この問題を解消すべく、発明者において今般
改良した装置例を示す。図示の装置は、送信体1に対向
配備される送信体2を、複数の受信子20,20を整列
配置して構成すると共に、、各受信子20を切換回路3
により順次切り換えて超音波の送受波を行ない、復調回
路4で雑音性の信号を抽出した後、可変遅延回路61、
波形判別回路62および、、演算回路63にて雑音性の
信号の速度を求めて、流体の流速や流量を算出するもの
である。この種構成の装置によれば、雑音性の信号の保
存性が高く、流速や流量を短時間かつ高精度で測定する
ことが可能となつたが、受信体2を複数の受信子20を
もつて構成するため、受信波中に各受信子20の特性上
のばらつきに超因する固定信号成分が含まれることにな
り、雑音性信号につき十分大きな信号強度を得ることが
できない等の問題が生じた。FIG. 4 shows an example of a device which has been improved by the inventor to solve this problem. In the illustrated apparatus, a transmitter 2 arranged opposite to the transmitter 1 is configured by arranging a plurality of receivers 20, 20 in line, and each receiver 20 is switched by a switching circuit 3.
The ultrasonic wave is transmitted / received by sequentially switching by, and after the noise signal is extracted by the demodulation circuit 4, the variable delay circuit 61,
The waveform discriminating circuit 62 and the arithmetic circuit 63 calculate the velocity of the noisy signal to calculate the flow velocity and flow rate of the fluid. According to the device of this kind of configuration, it is possible to measure the flow velocity and the flow rate in a short time and with high accuracy because the noise signal is highly conserved, but the receiver 2 has a plurality of receivers 20. Since it is configured as described above, the fixed wave component due to the variation in the characteristics of each receiver 20 is included in the received wave, which causes a problem that a sufficiently large signal strength cannot be obtained for the noisy signal. It was
<発明の目的> 本発明は、伝幡時間差方式やドツプラー方式のように液
体中の混入物の有無とは無関係に流速や流量の測定が可
能であり、かつ従来の相関型のものの欠点を改善した流
速・流量測定装置およびその装置を備えた流体搬送管を
提供することを目的とする。<Purpose of the Invention> The present invention is capable of measuring the flow velocity and flow rate regardless of the presence or absence of contaminants in the liquid, such as the transfer time difference method and the Doppler method, and improves the drawbacks of the conventional correlation type. An object of the present invention is to provide a flow velocity / flow rate measuring device and a fluid carrying pipe equipped with the device.
<発明の構成および効果> 本発明は、流速・流量測定装置と、その装置を備えた管
内の流体を搬送する流体搬送システムとに係るものであ
って、流速・流量測定装置は、流体中へ流体の流れと直
交する方向に超音波等の検出波を投射する送信手段と、
前記送信手段に対向配備され流体中で変調を受けつつ伝
播してくる検出波を受信する受信手段とを備えている。
前記送信手段と受信手段との少なくとも一方は、複数の
送信もしくは受信子を整列配置して構成されると共に、
送信もしくは受信子の集合体には各送信もしくは受信子
を流体の流速より速い速度で順次切り換えて検出波の送
受波を行う切換回路が接続されている。また前記受信手
段には、受信信号より変調成分を復調して得られる雑音
性の信号を前記切換回路による切換周期毎に抽出すると
共に、抽出される前後の信号間の相関から流体の流速・
流量を算出する演算処理回路が接続されている。そして
前記演算処理回路は、前記復調出力より前記送信もしく
は受信子の特性上のばらつきに起因する固定信号成分を
除去する補正回路を含んでいる。<Structure and Effect of the Invention> The present invention relates to a flow velocity / flow rate measuring device and a fluid transport system for transporting a fluid in a pipe provided with the device. Transmitting means for projecting a detection wave such as an ultrasonic wave in a direction orthogonal to the fluid flow,
The receiving means is provided opposite to the transmitting means and receives the detection wave propagating while being modulated in the fluid.
At least one of the transmitting means and the receiving means is configured by arranging a plurality of transmitting or receiving elements in line, and
A switching circuit is connected to the aggregate of the transmitters or receivers to sequentially switch the transmitters or receivers at a speed higher than the flow velocity of the fluid to transmit and receive the detection wave. Further, the receiving means extracts a noisy signal obtained by demodulating a modulation component from the received signal for each switching cycle by the switching circuit, and determines the flow velocity of the fluid from the correlation between the signals before and after the extraction.
An arithmetic processing circuit for calculating the flow rate is connected. The arithmetic processing circuit includes a correction circuit that removes a fixed signal component resulting from the characteristic variation of the transmitter or the receiver from the demodulated output.
本発明よれば、整列配置した各受信子等に特性上のばら
つきが存在する場合でも、そのばらつきに起因する固定
信号成分を除去するから、流体状態を示す雑音性の信号
が微小であつても、これを確実に抽出し得、流速や流量
の測定に全く支障を生じない。According to the present invention, even if there are variations in characteristics among the aligned receivers and the like, the fixed signal component resulting from the variations is removed, so that even if the noise signal indicating the fluid state is minute, However, this can be reliably extracted, and there is no problem in measuring the flow velocity and flow rate.
また本発明の装置は、高速切換えで得た雑音性の信号を
もつて相関をとるから、相関されるべき雑音性の信号の
保存性が高く、流速や流量を短時間かつ高精度で測定で
きると共に、従前の伝幡時間差方式やドツプラー方式の
ように流体中の混入物の有無により測定の可否やその精
度が左右されることがない等、発明目的を達成した顕著
な効果を奏する。Further, since the apparatus of the present invention performs correlation using a noisy signal obtained by high-speed switching, it has a high preservation property of the noisy signal to be correlated and can measure the flow velocity and the flow rate in a short time and with high accuracy. At the same time, unlike the conventional transfer time difference method and Doppler method, the presence or absence of contaminants in the fluid does not affect the possibility of measurement or the accuracy thereof, and other significant effects of achieving the object of the invention are achieved.
<実施例の説明> 第1図は本発明にかかる流速・流量測定装置およびその
装置を備えた流体搬送システムを示す。図示例の流速・
流量測定装置は、超音波を利用して、管7内を流れる流
体の流速や流量を測定するものであり、管7の外面には
流れと直交する方向に一対の超音波送信体1および受信
体2が対向配備されている。送信体1は超音波発振器1
0が出力する高周波信号を超音波に変換し、これを管7
内の流体中へ投射する。この超音波は、流体中の微粒子
の存在や、流体の渦更には振動等によつて振幅変調或い
は位相変調を受けつつ伝幡され、前記受信体2に到達し
て受波される。前記の受信体2は、複数の受信子20,
20を流れの方向に沿い整列配置して構成されており、
各受信子20を切換回路3を用いて流れ方向へ順次切り
換えて、変調を受けた超音波を受信する。この切換操作
はスキヤニングと称され、、その切換え速度は流速に比
べて十分に速い値に設定する。ここで受信体2の長さを
L、受信体2を構成する受信子20の数をN、発振器3
0が出力する切換回路3の切換信号の周波数を1とす
ると、切換え速度Vsは、次の式で与えられる。<Description of Embodiments> FIG. 1 shows a flow velocity / flow rate measuring device according to the present invention and a fluid transfer system including the device. Flow velocity in the example shown
The flow rate measuring device uses ultrasonic waves to measure the flow velocity and flow rate of the fluid flowing in the pipe 7, and a pair of ultrasonic transmitters 1 and a receiver are provided on the outer surface of the pipe 7 in a direction orthogonal to the flow. Body 2 is deployed oppositely. The transmitter 1 is an ultrasonic oscillator 1
The high frequency signal output by 0 is converted into an ultrasonic wave and this is converted into a tube 7
Project into the fluid inside. This ultrasonic wave is propagated while undergoing amplitude modulation or phase modulation due to the presence of fine particles in the fluid, the vortex of the fluid, vibration, etc., and reaches the receiving body 2 to be received. The receiver 2 has a plurality of receivers 20,
It is configured by arranging 20 along the direction of flow,
Each receiver 20 is sequentially switched in the flow direction by using the switching circuit 3 to receive the modulated ultrasonic waves. This switching operation is called scanning, and the switching speed is set to a value sufficiently higher than the flow velocity. Here, the length of the receiver 2 is L, the number of receivers 20 constituting the receiver 2 is N, and the oscillator 3
When the frequency of the switching signal of the switching circuit 3 output by 0 is 1 , the switching speed V s is given by the following equation.
前記の切換回路3は受信体2で得た受信波を演算処理回
路8中の増幅回路31を経て復調回路4へ出力する。こ
の復調回路4は前記変調成分を復調するものであり、切
換回路3におけるスキヤニング周期毎に雑音性の信号が
出力される。尚スキヤニング周期とは、全受信子20の
切換えに要する時間を指す。前記復調回路4の復調出力
は、検出されるべき雑音性の信号に、受信子20の特性
上のばらつきに起因する信号成分が重畳されたものであ
り、補正回路5を構成する遅延回路51と減算回路52
とへ分割して送出される。遅延回路51は、BBD(Bu
cket Brigade Device)、CCD(Charge Coupled Devi
ce)等をもつて形成され、減算回路52は復調回路4の
復調出力と遅延回路51の遅延出力との減算を行なつ
て、差の信号を取り出す。 The switching circuit 3 outputs the received wave obtained by the receiver 2 to the demodulation circuit 4 via the amplification circuit 31 in the arithmetic processing circuit 8. The demodulation circuit 4 demodulates the modulation component, and a noise signal is output every scanning cycle in the switching circuit 3. The scanning cycle refers to the time required to switch all the receivers 20. The demodulation output of the demodulation circuit 4 is a noise signal to be detected, on which a signal component due to variations in the characteristics of the receiver 20 is superimposed. Subtraction circuit 52
And is divided into two and sent. The delay circuit 51 has a BBD (Bu
cket Brigade Device), CCD (Charge Coupled Devi
ce) and the like, and the subtraction circuit 52 subtracts the demodulation output of the demodulation circuit 4 and the delay output of the delay circuit 51 to extract the difference signal.
今前記受信子20の個数をN、切換回路3の切換周波数
をf1とすると、スキヤニング周期は となる。一方遅延回路51のCCD等の段数を受信子数
と同じN、遅延制御用のクロツク周波数を前記切換え周
波数と同じf1とすると、遅延出力の遅延量はスキヤニン
グ周期と同じ となる。従つてこの場合の遅延出力は、1スキヤニング
分前の復調出力と同じになる。ここで各受信子20の特
性上のばらつきに起因する信号成分は固定されて常に同
じであり、一方雑音性信号の方はスキヤニング周期毎に
変化するものであり、従つて減算回路52において特性
上のばらつきに起因する信号成分は除去され、減算回路
52は前後スキヤニング周期にかかる雑音性信号の差分
値(以下、「差分信号」という)を出力するものであ
る。Now, assuming that the number of the receivers 20 is N and the switching frequency of the switching circuit 3 is f 1 , the scanning period is Becomes On the other hand, if the number of CCDs and the like in the delay circuit 51 is N, which is the same as the number of receivers, and the clock frequency for delay control is f 1, which is the same as the switching frequency, the delay amount of the delay output is the same as the scanning period. Becomes Therefore, the delay output in this case is the same as the demodulation output one scanning before. Here, the signal component resulting from the characteristic variation of each receiver 20 is fixed and always the same, while the noisy signal changes every scanning cycle, and therefore the characteristic of the subtractor circuit 52 is changed. The signal component caused by the variation of is subtracted, and the subtraction circuit 52 outputs a difference value of the noisy signal (hereinafter, referred to as “difference signal”) in the front-back scanning period.
この差分信号は、信号処理回路6の可変遅延回路61お
よび波形判別回路62へ夫々送られ、波形判別回路62
はこの差分信号と可変遅延回路61の遅延出力との位相
差をチエツクする。可変遅延回路61は、BBD,CCD等を
もつて形成され、その段数を受信子数と同じNとし、ま
た遅延量制御用のクロツク周波数をf2とすれば、遅延量
τはつぎの式で表わさる。This difference signal is sent to the variable delay circuit 61 and the waveform discrimination circuit 62 of the signal processing circuit 6, respectively, and the waveform discrimination circuit 62 is supplied.
Checks the phase difference between this difference signal and the delay output of the variable delay circuit 61. The variable delay circuit 61 is formed with BBDs, CCDs, etc., and if the number of stages is N, which is the same as the number of receivers, and the clock frequency for delay amount control is f 2 , the delay amount τ is expressed by the following equation. It
波形判別回路62は、差分信号をスキヤニング周期毎に
観測し、前回のスキヤンにかかる差分信号(可変遅延回
路61の出力)と今回のスキヤンにかかる差分信号(減
算回路52の出力)とを比較し、両者の波形一致するか
否かを判別する。 The waveform discrimination circuit 62 observes the differential signal for each scanning cycle, and compares the differential signal applied to the previous scanning (output of the variable delay circuit 61) and the differential signal applied to this scanning (output of the subtraction circuit 52). , It is determined whether the two waveforms match.
今減算回路52の出力波形をS(t)とすると、波形判別
回路62において波形の一致が認められる場合には、照
合される信号波形間にはつぎの式が成立する。Now, assuming that the output waveform of the subtraction circuit 52 is S (t), the following equation holds between the signal waveforms to be collated when the waveform discrimination circuit 62 finds that the waveforms match.
上式中、Vは流体の流速であり、この流速Vは式か
らつぎの式で与えられる。但しΔf=f2−1であ
る。 In the above equation, V is the flow velocity of the fluid, and this flow velocity V is given by the following equation. However Δf = f 2 - 1.
かくて波形判別回路62は2つの信号入力波形に位相差
が生じているとき、可変遅延回路7の遅延量を制御する
クロツク周波数f2を変化させて、両波形を一致させる。
そして波形判別回路62が一致判別を行なつたとき、、
演算回路63において、切換え周波数f1およびクロツク
周波数f2をデータ入力して、前記式により流速Vを求
め、更に流速Vに流体の断面積を乗じて流量を算出す
る。 Thus, when there is a phase difference between the two signal input waveforms, the waveform discriminating circuit 62 changes the clock frequency f 2 that controls the delay amount of the variable delay circuit 7 to match the two waveforms.
When the waveform discrimination circuit 62 makes a coincidence discrimination,
In the arithmetic circuit 63, the switching frequency f 1 and the clock frequency f 2 are input as data, the flow velocity V is obtained by the above equation, and the flow velocity V is multiplied by the cross-sectional area of the fluid to calculate the flow rate.
第2図は前記補正回路5の他の実施例を示す。この補正
回路5は、加算回路53、てい倍回路54、遅延回路5
5、減算回路56から成り、例えば遅延回路55を構成
するCCD等の段数を受信子数Nに一致させ、また遅延
量制御用のクロツク周波数を受信子20の切換周波数f1
と同じくし、更にてい倍回路54の倍率を0.9に設定す
る。この実施例の場合は、スキヤリング周期10回分の
波形を平均化して、つぎのスキヤニングで得られた波形
との差分を取り出すよう機能する。従つてこの補正回路
5によれば、平均化の操作をもつて受信子の特性上のば
らつきに起因する信号成分が抽出され、復調出力からこ
の信号成分を差し引くことによつて、流体中の雑音性信
号を取り出すことができる。FIG. 2 shows another embodiment of the correction circuit 5. The correction circuit 5 includes an adder circuit 53, a multiplication circuit 54, and a delay circuit 5.
5 and a subtraction circuit 56, for example, the number of stages of CCDs or the like that constitutes the delay circuit 55 is made equal to the number N of receivers, and the clock frequency for delay amount control is the switching frequency f 1 of the receiver 20.
Similarly, the magnification of the multiplication circuit 54 is set to 0.9. In the case of this embodiment, the function of averaging the waveforms for 10 skiring cycles and extracting the difference from the waveform obtained by the next scanning is performed. Therefore, according to the correction circuit 5, the signal component due to the variation in the characteristics of the receiver is extracted by performing the averaging operation, and by subtracting this signal component from the demodulation output, the noise in the fluid is reduced. The sex signal can be retrieved.
尚上記の各実施例は、超音波を利用した流速・流量測定
装置であるが、本発明は超音波に限らず、電磁波を用い
る装置にも適用実施できる。Although each of the above embodiments is a flow velocity / flow rate measuring device using ultrasonic waves, the present invention is not limited to ultrasonic waves and can be applied to devices using electromagnetic waves.
第1図は本発明にかかる流速・流量測定装置の原理およ
び回路構成を示すブロツク説明図、第2図は補正回路の
他の実施例を示すブロツク図、第3図は従来例の構成を
示す説明図、第4図は従来例を改良した相関型装置の原
理および回路構成を示すブロツク説明図である。 1……送信体、2……受信体 20……受信子、3……切換回路 4……復調回路、5……補正回路FIG. 1 is a block diagram showing the principle and circuit configuration of a flow velocity / flow rate measuring device according to the present invention, FIG. 2 is a block diagram showing another embodiment of a correction circuit, and FIG. 3 is a configuration of a conventional example. FIG. 4 and FIG. 4 are block diagrams showing the principle and circuit configuration of a correlation type apparatus improved from the conventional example. 1 ... Transmitter, 2 ... Receiver 20 ... Receiver, 3 ... Switching circuit 4 ... Demodulator circuit, 5 ... Correction circuit
Claims (2)
定装置であって、 流体中へ流体の流れと直交する方向に超音波等の検出波
を投射する送信手段と、前記送信手段に対向配備され流
体中で変調を受けつつ伝播してくる検出波を受信する受
信手段とを備え、 前記送信手段と受信手段との少なくとも一方は、複数の
送信もしくは受信子を整列配置して構成されると共に、
送信もしくは受信子の集合体には各送信もしくは受信子
を流体の流速より速い速度で順次切り換えて検出波の送
受波を行う切換回路が接続され、 前記受信手段には、 受信信号より変調成分を復調して得られる雑音性の信号
を前記切換回路による切換周期毎に抽出すると共に、抽
出される前後の信号間の相関から流体の流速・流量を算
出する演算処理回路が接続されており、 前記演算処理回路は、 前記復調出力より前記送信もしくは受信子の特性上のば
らつきに起因する固定信号成分を除去する補正回路を含
んで成る流速・流量測定装置。1. A flow velocity / flow rate measuring device for measuring a flow velocity / flow rate of a fluid, the transmitting means projecting a detection wave such as an ultrasonic wave into the fluid in a direction orthogonal to the flow of the fluid, and the transmitting means. A receiving means arranged to face each other and receiving a detection wave propagating while being modulated in a fluid, wherein at least one of the transmitting means and the receiving means is configured by arranging a plurality of transmitting or receiving elements in alignment. Along with
A switching circuit for transmitting and receiving a detection wave by sequentially switching each transmission or receiver at a speed higher than the flow velocity of the fluid is connected to the aggregate of transmitters or receivers, and the receiving means receives a modulation component from the received signal. A noise processing signal obtained by demodulation is extracted for each switching cycle by the switching circuit, and an arithmetic processing circuit is connected to calculate the flow velocity / flow rate of the fluid from the correlation between the signals before and after the extraction, The flow rate / flow rate measuring device, wherein the arithmetic processing circuit includes a correction circuit that removes a fixed signal component due to variations in characteristics of the transmitter or the receiver from the demodulated output.
定装置を備えた流体搬送管であって、 前記流速・流量測定装置は、 前記管内へ流体の流れと直交する方向に超音波等の検出
波を投射する送信手段と、前記送信手段に対向配備され
流体中で変調を受けつつ伝播してくる検出波を受信する
受信手段とを備え、 前記送信手段と受信手段との少なくとも一方は、複数の
送信もしくは受信子を整列配置して構成されると共に、
送信もしくは受信子の集合体には各送信もしくは受信子
を流体の流速より速い速度で順次切り換えて検出波の送
受波を行う切換回路が接続され、 前記受信手段には、 受信信号より変調成分を復調して得られる雑音性の信号
を前記切換回路による切換周期毎に抽出すると共に、抽
出される前後の信号間の相関から流体の流速・流量を算
出する演算処理回路が接続されており、 前記演算処理回路は、 前記復調出力より前記送信もしくは受信子の特性上のば
らつきに起因する固定信号成分を除去する補正回路を含
んで成る流速・流量測定装置を備えた流体搬送管。2. A fluid carrying pipe provided with a flow velocity / flow rate measuring device for measuring a flow velocity / flow rate of a fluid, wherein the flow velocity / flow rate measuring device is an ultrasonic wave or the like in a direction orthogonal to the flow of the fluid into the pipe. Of the detection means, and a receiving means that is provided facing the transmission means and receives the detection wave that propagates while being modulated in the fluid, and at least one of the transmission means and the reception means , With multiple transmitters or receivers aligned and configured,
A switching circuit for transmitting and receiving a detection wave by sequentially switching each transmission or receiver at a speed higher than the flow velocity of the fluid is connected to the aggregate of transmitters or receivers, and the receiving means receives a modulation component from the received signal. A noise processing signal obtained by demodulation is extracted for each switching cycle by the switching circuit, and an arithmetic processing circuit is connected to calculate the flow velocity / flow rate of the fluid from the correlation between the signals before and after the extraction, The arithmetic processing circuit is a fluid transfer pipe including a flow velocity / flow rate measuring device including a correction circuit that removes a fixed signal component caused by variations in characteristics of the transmitter or the receiver from the demodulated output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59145828A JPH0643909B2 (en) | 1984-07-12 | 1984-07-12 | Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59145828A JPH0643909B2 (en) | 1984-07-12 | 1984-07-12 | Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6123921A JPS6123921A (en) | 1986-02-01 |
JPH0643909B2 true JPH0643909B2 (en) | 1994-06-08 |
Family
ID=15394056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59145828A Expired - Lifetime JPH0643909B2 (en) | 1984-07-12 | 1984-07-12 | Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0643909B2 (en) |
-
1984
- 1984-07-12 JP JP59145828A patent/JPH0643909B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6123921A (en) | 1986-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102157507B1 (en) | Circuit for acoustic distance measuring | |
JPS5937459A (en) | Body detector by ultrasonic wave | |
JPH0643909B2 (en) | Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device | |
JPS6480351A (en) | Ultrasonic doppler meter | |
JPH0643908B2 (en) | Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device | |
JPS5852487Y2 (en) | Flow rate measurement device using correlation technology | |
JPS59794B2 (en) | Buried object detection device with rotating antenna | |
JPH0511249B2 (en) | ||
JPH0612278B2 (en) | Two-phase flow ultrasonic type flow rate measuring method and measuring apparatus | |
JPS586156B2 (en) | distance measuring device | |
JPH053552B2 (en) | ||
JP2723291B2 (en) | Ultrasonic sensor | |
JPH03233395A (en) | Sound wavepropagation time measuring method | |
JP3024312B2 (en) | Vortex flow meter | |
JPH0324607B2 (en) | ||
JP4447720B2 (en) | Ultrasonic vortex flowmeter | |
JPS5852486Y2 (en) | Flow velocity flow measuring device | |
JPH0395477A (en) | Ultrasonic detector | |
JPS6123924A (en) | Flow velocity and flow rate measuring device | |
JP3281259B2 (en) | Measuring device for fluid in pipeline | |
JP2002365115A (en) | Ultrasonic flowmeter | |
JPS6123923A (en) | Flow velocity and flow rate measuring device | |
EP0308477A1 (en) | An arrangement for measuring speeds | |
JPS63208779A (en) | Sonar reception system | |
JP2710399B2 (en) | Flow measurement method |