JPS6123921A - Flow velocity and flow rate measuring device - Google Patents

Flow velocity and flow rate measuring device

Info

Publication number
JPS6123921A
JPS6123921A JP14582884A JP14582884A JPS6123921A JP S6123921 A JPS6123921 A JP S6123921A JP 14582884 A JP14582884 A JP 14582884A JP 14582884 A JP14582884 A JP 14582884A JP S6123921 A JPS6123921 A JP S6123921A
Authority
JP
Japan
Prior art keywords
circuit
fluid
flow rate
receivers
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14582884A
Other languages
Japanese (ja)
Other versions
JPH0643909B2 (en
Inventor
Masaki Teshigahara
勅使川原 正樹
Yasutaka Tamura
田村 安孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP59145828A priority Critical patent/JPH0643909B2/en
Publication of JPS6123921A publication Critical patent/JPS6123921A/en
Publication of JPH0643909B2 publication Critical patent/JPH0643909B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To extract a noisy signal from fluid by providing a demodulating circuit which extracts the noisy signal from a received wave and a correcting circuit which removes a fixed signal component due to variance in characteristics among transmitters or receivers from a demodulation output. CONSTITUTION:The measuring device is equipped with the demodulating circuit 4 which extracts the noisy signal from the received wave and the correcting circuit 5 which removes the fixed signal component due to variance in characteristics among transmitters or receivers from the demodulation output. This correcting circuit 5 equalize the number of stages of CCDs, etc., constituting a delay circuit 55 to the number N of the receivers, equalizes a clock frequency for delay quantity control to the switching frequency f1 of the receivers, and sets the magnifying power of a multiplying circuit 54 to 0.9. Consequently, the signal component due to variance in characteristics among the receivers is extracted through averaging operation and subtracted from the demodulation output to extract the noisy signal from the fluid.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明は、例えば超音波を利用して、流体の流速ないし
は流量を測定する相関型の、流速・流量測定装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a correlation type flow rate/flow rate measuring device that measures the flow rate or flow rate of a fluid using, for example, ultrasonic waves.

〈発明の背景〉 従来超音波を利用した流速・流量測定装置には、伝播時
間差方式とドツプラ一方式の2種類か実用化されている
。前者の方式は、流体の流れに沿う方向と、流れに反す
る方向とに超音波を発するとき、超音波の伝播時間に差
か生ずるのを利用して、流速や流量を求める方式であり
、また後者の方式は、流体中のこみ、泡等の混在物に超
音波を発するとき、その反射波との間にドツプラー効果
が生ずるのを利用して、流速や流量を求める方式である
。ところか前者の伝播時間差方式の場合、流体中にこみ
等の混入物か存在すると、超音波の径路が妨害されるた
め、流速・流量の測定が困難となり、一方後者のドツプ
ラ一方式の場合、流体中に混入物が存在しないと、反射
波が得られず、同様に流速・流量゛の測定が困難となる
。従ってこれら各方式は、流体中の混入物の有無によっ
て、流速・流量の測定可否やその精度が左右される。
<Background of the Invention> Conventionally, two types of flow velocity/flow measuring devices using ultrasonic waves have been put into practical use: a propagation time difference type and a Doppler type. The former method uses the difference in the propagation time of ultrasonic waves when emitting ultrasonic waves in the direction along the flow of fluid and in the direction against the flow to determine the flow velocity and flow rate. The latter method uses the Doppler effect that occurs between ultrasonic waves and reflected waves when emitting ultrasonic waves to contaminants such as dirt and bubbles in the fluid to determine the flow velocity and flow rate. However, in the case of the former propagation time difference method, if there are contaminants such as dirt in the fluid, the ultrasonic path is obstructed, making it difficult to measure the flow velocity and flow rate.On the other hand, in the latter Doppler one-way method, If there are no contaminants present in the fluid, reflected waves cannot be obtained, and measurement of flow velocity and flow rate becomes difficult as well. Therefore, in each of these methods, whether or not the flow velocity/flow rate can be measured and its accuracy are affected by the presence or absence of contaminants in the fluid.

そこで近年、混入物の有無とは無関係に流速・流量の測
定が可能な相関型の流速・流量測定装置か提案された。
Therefore, in recent years, a correlation-type flow velocity/flow rate measuring device has been proposed that can measure flow velocity/flow rate regardless of the presence or absence of contaminants.

この相関型の装置は、被測定流体中を伝幡する超音波が
流体中の微粒子の存在や、流体の渦更には振動等により
変調を受けることに着目したものであり、この変調成分
を復調し、その流体の状態を一種の雑音性の信号として
抽出する方式である。
This correlation type device focuses on the fact that ultrasonic waves propagating through the fluid to be measured are modulated by the presence of particles in the fluid, fluid vortices, vibrations, etc., and demodulates this modulated component. This method extracts the state of the fluid as a kind of noisy signal.

第3図に示す相関型の装置例は、流体の流れと直′交す
る方向に、超音波を発する送信体IAと、これを受信す
る受信体2Aとを対向配備し、更に一定距離り下流位置
に同様の送信体IBおよび受信体2Bを配備したもので
あり、これら2地点にて前記雑音性の信号を抽出し、両
信号の相関から流体の流速や流量を測定している。
The example of the correlation type device shown in FIG. 3 has a transmitter IA that emits ultrasonic waves and a receiver 2A that receives the ultrasonic waves facing each other in a direction perpendicular to the flow of fluid, and a certain distance downstream. Similar transmitters IB and receivers 2B are placed at the same locations, and the noisy signals are extracted at these two points, and the fluid velocity and flow rate are measured from the correlation between both signals.

ところが図示例の方式の場合、雑音性の信号の保存性が
乏しく、流体が距離りを移動する間に流体の状態がくず
れ、信号パターンが変化するという問題がある。
However, in the case of the illustrated example, there is a problem in that the noisy signal has poor preservation, and the state of the fluid deteriorates while the fluid moves over a distance, causing the signal pattern to change.

第4図は、この問題を解消すへく、発明者において今般
改良した装置例を示す。図示の装置は、送信体1に対向
配備される受信体2を、複数の受信子20.20を整列
配置して構成すると共に、各受信子20を切換回路3に
より順次切り換えて超音波の送受波を行ない、復調回路
4て雑音性の信号を抽出した後、可変遅延回路61、波
形判別回路62および、演算回路63にて雑音性の信号
の速度を求めて、流体の流速や流量を算出するものであ
る。この種構成の装置によれば、雑音性の信号の保存性
が高く、流速や流量を短時間かつ高精度で測定すること
か可能となったが、受信体2を複数の受信子2゜をもっ
て構成するため、受信波中に各受信子側の特性上のばら
つきに起因する固定信号成分が含まれることになり、雑
音性信号につき十分大きな信号強度を得ることができな
い等の問題が生じた。
FIG. 4 shows an example of a device which has been improved by the inventor in order to solve this problem. In the illustrated device, a receiver 2 disposed opposite a transmitter 1 is configured by arranging a plurality of receivers 20 and 20, and each receiver 20 is sequentially switched by a switching circuit 3 to transmit and receive ultrasonic waves. After the demodulation circuit 4 extracts the noisy signal, the speed of the noisy signal is determined by the variable delay circuit 61, the waveform discrimination circuit 62, and the arithmetic circuit 63, and the flow velocity and flow rate of the fluid are calculated. It is something to do. According to the device with this kind of configuration, the noisy signal is highly preserved and it is possible to measure the flow velocity and flow rate with high precision in a short time. Because of this structure, the received wave contains fixed signal components due to variations in the characteristics of each receiver, resulting in problems such as the inability to obtain a sufficiently large signal strength for noisy signals.

〈発明の目的〉 本発明は、伝播時間差方式やドツプラ一方式のように液
体中の混入物の有無とは無関係に流速や流量の測定が可
能であり、かつ従来の相関型のものの欠点を改善した新
規な流速・流量測定装置を提供することを目的とする。
<Purpose of the Invention> The present invention is capable of measuring flow velocity and flow rate regardless of the presence or absence of contaminants in a liquid, such as the propagation time difference method or the Doppler one-way method, and improves the drawbacks of conventional correlation-type methods. The purpose of this study is to provide a new flow velocity/flow rate measuring device.

〈発明の構成および効果〉 上記目的を達成するため、本発明では、例えば複数の受
信子を整列配置して受信体を構成し、切換回路にて各受
信子を順次切換えて超音波を受波した後、受信波の復調
出方を補正回路にて補正して、各受信子の特性上のばら
つきに起因する固定信号成分を復調出方より除去するよ
うにした。
<Configuration and Effects of the Invention> In order to achieve the above object, the present invention configures a receiver by arranging a plurality of receivers, for example, and sequentially switches each receiver with a switching circuit to receive ultrasonic waves. After that, the demodulated output of the received wave is corrected by a correction circuit to remove fixed signal components caused by variations in characteristics of each receiver from the demodulated output.

本発明によれば、整列配置した各受信子等に特性上のば
らつきが存在する場合でも、そのばらつきに起因する固
定信号成分を除去するがら、流体状態を示す雑音性の信
号が微小であっても、これを確実に抽出し得、流速や流
量の測定に全く支障を生じない。
According to the present invention, even if there are variations in characteristics among the receivers arranged in a row, fixed signal components caused by the variations are removed, and noisy signals indicating fluid conditions are minimized. However, this can be extracted reliably, and there is no problem in measuring the flow rate or flow rate.

また本発明の装置は、高速切換えで得た雑音性の信号を
もって相関をとるから、相関されるべき雑音性の信号の
保存性か高く、流速や流量を短時間かつ高精度で測定で
きると共に、従前の伝播時間差方式やドツプラ一方式の
ように流体中の混入物の有無により測定の可否やその精
度が左右されることがない等、発明目的を達成した顕著
な効果を奏する。
Furthermore, since the device of the present invention performs correlation using noisy signals obtained by high-speed switching, the noisy signals to be correlated are highly conserved, and flow velocity and flow rate can be measured with high precision in a short time. Unlike the conventional propagation time difference method or the Doppler one-way method, the measurement accuracy and accuracy are not influenced by the presence or absence of contaminants in the fluid, and the present invention has a remarkable effect of achieving the purpose of the invention.

〈実施例の説明〉 第1図は本発明にかかる流速・流量測定装置を示す。図
示例の装置は、超音波を利用して、管7内を流れる流体
の流速や流量を測定するものであり、管7の外面には流
れと直交する方向に一対の超音波送信体1および受信体
2が対向配備されている。送信体1は超音波発振器1゜
が出力する高周波信号を超音波に変換し、これを管7内
の流体中へ投射する。この超音波は、流体中の微粒子の
存在や、流体の渦更には振−J等によって振幅変調或い
は位相変調を受けつつ伝幡され、前記受信体2に到達し
て受波される。
<Description of Examples> FIG. 1 shows a flow velocity/flow rate measuring device according to the present invention. The illustrated device uses ultrasonic waves to measure the flow velocity and flow rate of fluid flowing inside a tube 7, and a pair of ultrasonic transmitters 1 and Receivers 2 are placed opposite each other. The transmitter 1 converts the high frequency signal outputted by the ultrasonic oscillator 1° into an ultrasonic wave, and projects the ultrasonic wave into the fluid within the tube 7. This ultrasonic wave is propagated while being subjected to amplitude modulation or phase modulation due to the presence of fine particles in the fluid, fluid vortices, vibrations, etc., and reaches the receiver 2 where it is received.

本発明の受信体2は、複数の受信子20 、20を流れ
の方向に4沿い整列配置して構成されており、−各受信
子20を切換回路3を用いて流れ方向へ順次切り換えて
、変調を受けた超音波を受信する。この切換操作はスキ
ャニングと称され、その切換え速度は流速に比へて十分
に速い値に設定する。ここで受信体2の長さをし、受信
体2を構成する受信子20の数をN、発振器30が出力
する切換回路3の切換信号の周波数を「1とすると、切
換え速度Vsは、つぎの0式で与えられる。
The receiver 2 of the present invention is constructed by arranging a plurality of receivers 20, 20 in line along 4 in the flow direction, - each receiver 20 is sequentially switched in the flow direction using a switching circuit 3; Receive modulated ultrasound waves. This switching operation is called scanning, and the switching speed is set to a sufficiently high value compared to the flow velocity. Here, if the length of the receiver 2 is N, the number of receivers 20 constituting the receiver 2 is N, and the frequency of the switching signal of the switching circuit 3 output by the oscillator 30 is 1, then the switching speed Vs is as follows. It is given by the formula 0.

前記の切換回路3は受信体2で得た受信波を増幅回路3
1を経て復調回路4へ出力する。この復調回路4は前記
変調成分を復調するものであり、切換回路3におけるス
キャニング周期毎に雑音性の信号が出力される。尚スキ
ャニング周期とは、全受信子20の切換えに要する時間
を指す。前記復調回路4の復調出力は、検出されるべき
雑音性の信号に、受信子20の特性上のばらつきに起因
する信号成分が重畳されたものてあり、補正回路5を構
成する遅延回路51と減算回路52とへ分割して送出さ
れる。遅延回路51は、B B D (Bucket 
Brigade  Device )、CCD (Ch
arge Coupled Device )等をもっ
て形成され、減算回路52は復調回路4の復調出力と遅
延回路51の遅延出力との減算を行なって、差の信号を
取り出す。
The switching circuit 3 transfers the received wave obtained from the receiver 2 to the amplifier circuit 3.
1 and output to the demodulation circuit 4. This demodulation circuit 4 demodulates the modulation component, and a noisy signal is output every scanning period in the switching circuit 3. Note that the scanning period refers to the time required to switch all receivers 20. The demodulated output of the demodulation circuit 4 is a signal component resulting from variations in the characteristics of the receiver 20 superimposed on the noisy signal to be detected, and is output from the delay circuit 51 constituting the correction circuit 5. It is divided and sent to the subtraction circuit 52. The delay circuit 51 has BBD (Bucket
Brigade Device), CCD (Ch
The subtracting circuit 52 subtracts the demodulated output of the demodulating circuit 4 and the delayed output of the delay circuit 51 to extract a difference signal.

今前記受信子20の個数をN、切換回路3の切換え周波
数をflとすると、スキャニング周期は−となる。−万
遅延回路51のCCD等の段数を受信子数と同じ−N、
遅延制御用のクロック周波数を前記切換え周波数と同じ
flとすると、となる。従ってこの場合の遅延出力は、
1スキャニング分前の復調出力と同じになる。ここで各
受信子20の特性上のばらつきに起因する信号成分は固
定されて常に同じであり、一方雑音性信号の方は一スキ
ャニング周期毎に変化するものであり、従って減算回路
52において特性上のばらつきに起因する信号成分は除
去され、減算回路52は前後スキャニング周期にかかる
雑音性信号の差分値(以下、「差分信号」という)を出
力するものである。
Now, if the number of receivers 20 is N and the switching frequency of the switching circuit 3 is fl, then the scanning period is -. -The number of stages of CCD etc. of the 10,000 delay circuit 51 is the same as the number of receivers -N,
If the clock frequency for delay control is set to fl, which is the same as the switching frequency, then the following equation is obtained. Therefore, the delayed output in this case is
It becomes the same as the demodulated output one scanning period ago. Here, the signal component caused by variations in the characteristics of each receiver 20 is fixed and always the same, while the noise signal changes every scanning period, so the subtraction circuit 52 changes the signal component due to the characteristics. The subtraction circuit 52 outputs a difference value (hereinafter referred to as "difference signal") between the noisy signals in the previous and subsequent scanning cycles.

この差分信号は、信号処理回路6の可変遅延回路61お
よび波形判別回路62へ夫々送られ、波形判別回路62
はこの差分信号と可変遅延回路61の遅延出力との位相
差をチェックする。
This difference signal is sent to the variable delay circuit 61 and the waveform discrimination circuit 62 of the signal processing circuit 6, respectively.
checks the phase difference between this differential signal and the delayed output of the variable delay circuit 61.

可変遅延回路61は、BBD 、CCD等をもって形成
され、その段数を受信子数と同じNとし、また遅延量m
+御用のクロック周波数を12とすれば、遅延量Tはつ
ぎの0式で表わされる。
The variable delay circuit 61 is formed of BBD, CCD, etc., the number of stages is N, which is the same as the number of receivers, and the delay amount m is
+If the clock frequency used is 12, the delay amount T is expressed by the following equation.

波形判別回路62は、差分信号をスキャニング周期毎に
観測し、前回のスキャンにかかる差分信号(可変遅延回
路61の出力)と今回のスキャンにかかる差分信号(減
算回路52の出力)とを比較し、両者の波形が一致する
か否かを判別する。
The waveform discrimination circuit 62 observes the difference signal at each scanning period, and compares the difference signal from the previous scan (output of the variable delay circuit 61) with the difference signal from the current scan (output from the subtraction circuit 52). , determine whether the two waveforms match.

今減算回路52の出力波形をS (t)とすると、波形
判別回路62において波形の一致か認められる場合には
、照合される信号波形間にはつきの0式が成立する。
Now, assuming that the output waveform of the subtraction circuit 52 is S (t), if the waveform discrimination circuit 62 recognizes that the waveforms match, the following equation 0 holds true between the signal waveforms to be compared.

上式中、■は流体の流速であり、この流速Vは■■式か
らつぎの0式で与えられる。但しΔf−f2−[1であ
る。
In the above formula, ■ is the flow velocity of the fluid, and this flow velocity V is given by the following formula 0 from the formula ■■. However, Δf-f2-[1.

かくて波形判別回路62は2つの信号入力波形に位相差
か生じているとき、可変遅延回路7の遅延量を制御する
クロック周波数「2を変化させて、両波形を一致させる
。そして波形判別回路62か一致判別を行なったとき、
演算回路63において、切換え周波数f1およびクロッ
ク周波数12をデータ入力して、前記0式により流速■
を求め、更に流速■に流体の断面積を乗じて流量を算出
する。
Thus, when there is a phase difference between the two signal input waveforms, the waveform discrimination circuit 62 changes the clock frequency "2" that controls the delay amount of the variable delay circuit 7 to make both waveforms match. 62 or when a match is determined,
In the arithmetic circuit 63, the switching frequency f1 and the clock frequency 12 are input as data, and the flow rate is calculated by the above formula 0.
, and further calculate the flow rate by multiplying the flow velocity ■ by the cross-sectional area of the fluid.

第2図は前記補正回路5の他の実施例を示す。FIG. 2 shows another embodiment of the correction circuit 5. In FIG.

この補正回路5は、加算回路53、てい倍回路54、遅
延回路55、減算回路56から成り、例えば遅延回路5
5を構成するCCD等の段数を受信子数Nに一致させ、
また遅延量制御用のクロック周波数を受信子20の切換
周波数E1と同じくし、更にてい倍回路54の倍率を0
.9に設定する。この実施例の場合は、スキャニング周
期10回分の波形を平均化して、つぎのスキャニングで
得られた波形との差分を取り出すよう機能する。従って
この補正回路5によれは、平均化の操作をもって受信子
の特性上のばらつきに起因する信号成分が抽出され、復
調出力からこの信号成分を差し引くことによって、流体
中の雑音性信号を取り出すことができる。
The correction circuit 5 includes an adder circuit 53, a multiplier circuit 54, a delay circuit 55, and a subtracter circuit 56. For example, the delay circuit 5
The number of stages of CCD etc. configuring 5 is made to match the number of receivers N,
Further, the clock frequency for controlling the amount of delay is set to be the same as the switching frequency E1 of the receiver 20, and the multiplier of the multiplier circuit 54 is set to 0.
.. Set to 9. In the case of this embodiment, the function is to average the waveforms of 10 scanning cycles and extract the difference from the waveform obtained in the next scanning. Therefore, this correction circuit 5 extracts signal components caused by variations in characteristics of the receiver through the averaging operation, and subtracts these signal components from the demodulated output to extract noise signals in the fluid. Can be done.

尚上記の各実施例は、超音波を利用した流速・流量測定
装置であるが、本発明は超音波に限らす、電磁波を用い
る装置にも適用実施できる。
Although each of the above-mentioned embodiments is a flow rate/flow measuring device using ultrasonic waves, the present invention is not limited to ultrasonic waves, but can also be applied to devices using electromagnetic waves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる流速・流量測定装置の原理およ
び回路構成を示すブロック説明図、第2図は補正回路の
他の実施例を示すブロック図、第3図は従来例の構成を
示す説明図、第4図は従来例を改良した相関型装置の原
理および回路構成を示すブロック説明図である。 1・・・・・・送信体   2・・・・・・受信体20
・・・・・受信子   3・・・・・・切換回路4・・
・復調回路  5・・・・補正回路特許出願人  立石
電機株式会社 +114− 図 fl A3 図 −127、−
Fig. 1 is a block diagram illustrating the principle and circuit configuration of the flow rate/flow measuring device according to the present invention, Fig. 2 is a block diagram illustrating another embodiment of the correction circuit, and Fig. 3 shows the configuration of a conventional example. The explanatory diagram, FIG. 4, is a block explanatory diagram showing the principle and circuit configuration of a correlation type device that is an improvement over the conventional example. 1... Transmitter 2... Receiver 20
...Receiver 3...Switching circuit 4...
・Demodulation circuit 5... Correction circuit Patent applicant Tateishi Electric Co., Ltd. +114- Figure fl A3 Figure -127, -

Claims (1)

【特許請求の範囲】 超音波等の検出波を被測定流体中へ発して、流体より雑
音性の信号を検出すると共に、雑音性の信号の移動速度
に基づき、流体の流速、流量を測定する装置において、 被測定流体の流れと直交する方向に対向配 備され少なくとも一方は複数の送信若しくは受信子を整
列配置して構成された送信手段および受信手段と、送信
若しくは受信子を順次切り換えて検出波の送受波を行な
う切換回路と、受信波より前記雑音性の信号を取り出す
復調回路と、復調出力より前記送信若しくは受信子の特
性上のばらつきに起因する固定信号成分を除去する補正
回路とを具備して成る流速・流量測定装置。
[Claims] A detection wave such as an ultrasonic wave is emitted into the fluid to be measured, a noisy signal is detected from the fluid, and the flow velocity and flow rate of the fluid are measured based on the moving speed of the noisy signal. The device includes a transmitting means and a receiving means arranged opposite to each other in a direction perpendicular to the flow of the fluid to be measured, at least one of which is configured by arranging a plurality of transmitting or receiving elements, and a detection wave by sequentially switching the transmitting or receiving elements. a switching circuit for transmitting and receiving waves, a demodulation circuit for extracting the noisy signal from the received wave, and a correction circuit for removing fixed signal components caused by variations in characteristics of the transmitter or receiver from the demodulated output. A flow rate/flow rate measurement device consisting of:
JP59145828A 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device Expired - Lifetime JPH0643909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145828A JPH0643909B2 (en) 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145828A JPH0643909B2 (en) 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device

Publications (2)

Publication Number Publication Date
JPS6123921A true JPS6123921A (en) 1986-02-01
JPH0643909B2 JPH0643909B2 (en) 1994-06-08

Family

ID=15394056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145828A Expired - Lifetime JPH0643909B2 (en) 1984-07-12 1984-07-12 Flow velocity / flow rate measuring device and fluid carrying pipe equipped with the device

Country Status (1)

Country Link
JP (1) JPH0643909B2 (en)

Also Published As

Publication number Publication date
JPH0643909B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
CA1300733C (en) Apparatus for examining a moving object by means of ultrasound echography
KR102157507B1 (en) Circuit for acoustic distance measuring
KR100459616B1 (en) Ultrasonic diagnostic apparatus and method for measuring human tissue velocities using doppler effect
RU99100301A (en) METHOD OF MEASURING THE TIME OF SPREADING THE AUDIO SIGNAL IN A FLOW ENVIRONMENT AND METHOD OF MEASURING THE FLOW RATE OF A FLOW ENVIRONMENT
JP2000111374A (en) Ultrasonic flow velocity measurement method and device
KR20000018659A (en) Measuring method of supersonic current speed
US6370963B1 (en) Ultrasonic transit time flow sensor and method
JPS6123921A (en) Flow velocity and flow rate measuring device
Marioli et al. Digital time of flight measurement for ultrasonic sensors
JP2608961B2 (en) Sound wave propagation time measurement method
JPS6123920A (en) Flow velocity and flow rate measuring device
JPH11304559A (en) Flow rate measuring apparatus
JP3215847B2 (en) Flow velocity measurement method
JPS61279233A (en) Doppler blood flow speedometer
JPS586156B2 (en) distance measuring device
JPS6123923A (en) Flow velocity and flow rate measuring device
JPH0511249B2 (en)
JP2723291B2 (en) Ultrasonic sensor
JP4447720B2 (en) Ultrasonic vortex flowmeter
JPS6123924A (en) Flow velocity and flow rate measuring device
JP4236479B2 (en) Ultrasonic transceiver
CN107532933A (en) For determining the specifically method of the transmission time of the ultrasonic pulse string in ultrasonic flowmeter, flowmeter
JP2002365115A (en) Ultrasonic flowmeter
JP2010151583A (en) Ultrasonic flow measuring device
JPH06347548A (en) Ship speed measuring instrument