JPH0642918A - Aligning method and apparatus - Google Patents

Aligning method and apparatus

Info

Publication number
JPH0642918A
JPH0642918A JP3695992A JP3695992A JPH0642918A JP H0642918 A JPH0642918 A JP H0642918A JP 3695992 A JP3695992 A JP 3695992A JP 3695992 A JP3695992 A JP 3695992A JP H0642918 A JPH0642918 A JP H0642918A
Authority
JP
Japan
Prior art keywords
light
diffraction grating
monochromatic
alignment
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3695992A
Other languages
Japanese (ja)
Other versions
JPH0794969B2 (en
Inventor
Keisuke Koga
啓介 古賀
Toru Ito
徹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soltec Co Ltd
Original Assignee
Soltec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soltec Co Ltd filed Critical Soltec Co Ltd
Priority to JP3695992A priority Critical patent/JPH0794969B2/en
Publication of JPH0642918A publication Critical patent/JPH0642918A/en
Publication of JPH0794969B2 publication Critical patent/JPH0794969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To align a wafer with a mask in a stable manner with high accuracy by combining monochromatic lights of a plurality of different wavelengths on the same optical axis and measuring the phase difference on the basis of signals of the best intensity or S/N ratio. CONSTITUTION:The optical paths of laser lights of the center wavelengths #11, #12, #13 generated form the light sources 1a, 1b, 1c are combined on the same optical axis by mirrors 2a, 2b, 2c, and brought into a polarizing beam splitter 3 via a mirror 4c. The splitter 3 separates the light to components of one plane of polarization and those of the other plane of polarization. The mirrors 4a, 4c guide the separated light to a mask diffraction grating 5 and a wafer diffraction grating 6. The diffracted light is, through a mirror 4d, brought into mirrors 70a, 70b, 70c and detected by detectors 7a, 7b, 7c. A signal processing means 8 compares the intensity or S/N ratio of the signals, selects a good signal, predicts the phase difference of the signals from the gratings 5, 6, thereby aligning the mask 7 with the wafer B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体ICやLSIを
製造するための露光装置やパターン評価装置に応用し
て、好適な位置合せ方法やその実施に使用される位置合
せ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a suitable aligning method applied to an exposure apparatus or a pattern evaluation apparatus for manufacturing a semiconductor IC or LSI, and a aligning apparatus used for carrying out the method.

【0002】[0002]

【従来の技術】シンクロトロン放射光リソグラフィ用ア
ライナやフォトステッパ等の精密位置検出技術では、例
えば特開昭62−261003号等のように、光ヘテロ
ダイン位置検出方式が試作機レベルで実用化され始めて
いる。
2. Description of the Related Art In the precision position detecting technology for aligners for synchrotron radiation photolithography, photosteppers and the like, an optical heterodyne position detecting method has begun to be put to practical use at the level of a prototype, as in Japanese Patent Laid-Open No. 62-261003. There is.

【0003】図3は上記の従来技術に示された干渉回折
光を利用する位置検出手段の概要が示されており、まず
その装置構成としては、第1の物体となるマスクA及び
第2の物体となるウェハB上に形成された各回折格子5
0、60と、直交直線偏光のわずかに異なる2周波数の光
を発生させるレーザ装置からなる光源10と、後述する偏
光ビームスプリッタ30で分離した光の方向を調整して前
記回折格子50、60の格子面法線に対して±θn(θnは下
式数1に示す回折の式を満足する)の角度を持つ方向か
ら照射するミラー41、42からなる入射手段と、光源10か
らくる2偏光を分離して前記ミラー41、42方向に夫々分
岐する偏光ビームスプリッタ30及び前記回折格子50、60
から垂直方向に取り出される各回折光を干渉せしめて干
渉光とする偏光板31、32からなる光干渉手段と、この偏
光板31、32により干渉せしめて生成されたビート信号を
検出するディテクタ71、72からなる検出手段と、このデ
ィテクタ71、72の夫々で検出されたビート信号の位相ず
れを検出して位相計に表示する信号処理手段80とを有し
ている。
FIG. 3 shows an outline of the position detecting means utilizing the interference diffracted light shown in the above-mentioned prior art. First, the apparatus configuration is such that the mask A which is the first object and the second object. Each diffraction grating 5 formed on the wafer B as an object
0 and 60, a light source 10 composed of a laser device for generating two frequencies of slightly different orthogonal linearly polarized lights, and a polarization beam splitter 30 described later to adjust the directions of the separated lights to adjust the diffraction gratings 50 and 60. The incident means including the mirrors 41 and 42 for irradiating from the direction having an angle of ± θn (θn satisfies the diffraction formula shown in the following formula 1) with respect to the normal to the lattice plane, and the two polarized light coming from the light source 10 The polarization beam splitter 30 and the diffraction gratings 50 and 60 which are separated and branched in the directions of the mirrors 41 and 42, respectively.
From the optical interference means consisting of polarizing plates 31 and 32 for interfering each diffracted light extracted in the vertical direction from the polarizing plates 31 and 32, and a detector 71 for detecting the beat signal generated by interfering with the polarizing plates 31 and 32, It has a detecting means composed of 72 and a signal processing means 80 for detecting the phase shift of the beat signals detected by the detectors 71 and 72 and displaying the detected phase shift on the phase meter.

【0004】[0004]

【数1】 [Equation 1]

【0005】そして前記光源10から発せられる光は2周
波数成分f1、f2を有しており、偏光ビームスプリッタ
30でf1の周波数成分の光とf2の周波数成分の光に分離
され、夫々ミラー41、42によって回折格子50、60に対し
て±n次方向(例えば±1次方向)から入射する。回折
格子50、60から垂直方向に回折された光f1、f2(図中
破線で示す)は、ミラー43及びプリズムミラー44を通っ
て各偏光板31、32で可干渉となり、ディテクタ71、72で
夫々ビート信号が検出される。各ディテクタ71、72で検
出されたビート信号間では、回折格子50、60の位置ずれ
量に比例した位相差を生じる。この位相差を信号処理手
段80の位相計で検出することにより、2つの回折格子5
0、60間の相対的位置ずれ量を知ることになる。
The light emitted from the light source 10 has two frequency components f 1 and f 2 and has a polarization beam splitter.
The light having the frequency component of f 1 and the light having the frequency component of f 2 are separated by 30 and are incident on the diffraction gratings 50 and 60 by the mirrors 41 and 42 from the ± n-order directions (for example, ± 1st-order directions). Lights f 1 and f 2 (shown by broken lines in the figure) diffracted in the vertical direction from the diffraction gratings 50 and 60 pass through the mirror 43 and the prism mirror 44 and become coherent at the respective polarizing plates 31 and 32, and the detector 71, At 72, beat signals are detected respectively. Between the beat signals detected by the detectors 71 and 72, a phase difference proportional to the amount of positional deviation of the diffraction gratings 50 and 60 is generated. By detecting this phase difference with the phase meter of the signal processing means 80, the two diffraction gratings 5
The amount of relative displacement between 0 and 60 will be known.

【0006】[0006]

【発明が解決しようとする課題】以上の光ヘテロダイン
方式を含む単色光を用いる位置検出方法では、単色レー
ザ光の干渉性が極めて高いため、回折格子の形状やレジ
スト等の透明膜に対し、干渉を起こしてしまい、ある条
件では、信号強度が極端に低くなり、位置検出精度が低
下するという問題を有している。
In the position detecting method using monochromatic light including the above-mentioned optical heterodyne system, since the coherence of monochromatic laser light is extremely high, interference with the transparent film such as the shape of the diffraction grating or the resist is caused. Under certain conditions, the signal strength becomes extremely low, and the position detection accuracy deteriorates.

【0007】図4はラメラー回折格子の格子段差h(格
子高さ方向の最高位置と最低位置の差)に対する0次元
と1次元の回折効率の変化を示しており、回折効率に応
じた周期的信号強度の低下が認められる。
FIG. 4 shows changes in the diffraction efficiency in the 0-dimensional and the 1-dimensional with respect to the grating step h (difference between the highest position and the lowest position in the grating height direction) of the lamellar diffraction grating, and it shows a periodic variation according to the diffraction efficiency. A decrease in signal strength is observed.

【0008】半導体デバイス工程では、プロセスが複雑
であり、この干渉効果を抑制することは実用上非常に困
難であり、プロセスによってアライメント精度が大きく
左右されることになる。
In the semiconductor device process, the process is complicated, and it is practically very difficult to suppress this interference effect, and the alignment accuracy is greatly influenced by the process.

【0009】本発明は従来技術の以上の様な問題に鑑み
創案されたもので、位置検出のための信号につき回折格
子における段差等のマーク形状やレジスト膜厚等のプロ
セス条件等の影響により左右されず、常に良好なものを
得ることができる、非常に安定で且つ高精度な位置合わ
せ方法及び位置合わせ装置を提供せんとするものであ
る。
The present invention was devised in view of the above problems of the prior art, and the signal for position detection is affected by the influence of process conditions such as mark shapes such as steps in the diffraction grating and resist film thickness. It is an object of the present invention to provide a very stable and highly accurate alignment method and alignment device that can always obtain good results.

【0010】[0010]

【課題を解決するための手段】そのため本発明法は、第
1の回折格子を設けた第1の物体と第2の回折格子を設
けた第2の物体とを一定の間隔を隔てて対向配置させ、
これらの回折格子に単色光を入射させて両回折格子から
生じる回折光を用いて両物体の相対位置を検出し、これ
らの位置合せを行なう位置合せ方法において、所望の波
長を有する2以上の単色光を同一光路軸上に合成し、各
波長毎に独立して両物体の相対位置を検出し、そのうち
の1又は2以上の検出信号に基づいて位置合せを行なう
ことを基本的特徴としている。
Therefore, according to the method of the present invention, the first object provided with the first diffraction grating and the second object provided with the second diffraction grating are arranged to face each other with a constant interval. Let
In the alignment method in which monochromatic light is made incident on these diffraction gratings and the relative positions of both objects are detected using the diffracted light generated from both diffraction gratings, and these are aligned, two or more monochromatic lights having desired wavelengths are detected. The basic feature is that light is combined on the same optical path axis, relative positions of both objects are detected independently for each wavelength, and alignment is performed based on one or more detection signals of them.

【0011】以上の様な構成では第1及び第2の回折格
子について、入射光の各波長の違いに対応させて夫々の
波長に見合う周期のものを各用意すると良い。
In the above-mentioned structure, it is preferable to prepare the first and second diffraction gratings each having a period corresponding to each wavelength corresponding to the difference in each wavelength of the incident light.

【0012】第2発明は第1発明の実施装置構成であ
り、第1の物体に設けた第1の回折格子と、第2の物体
に設けた第2の回折格子と、第1の物体及び/又は第2
の物体を動かす移動機構と、単色光を発生する光源と、
該光源から照射された単色光を夫々の回折格子に入射せ
しめる入射手段と、これらの回折格子より取り出された
回折光を検出する検出手段と、これらの検出信号の位相
差を測定して該位相差に基づき前記移動機構に制御信号
を出力し、第1の物体及び/又は第2の物体を移動させ
て位置合せを行なわしめる信号処理制御手段とを有する
位置合せ装置において、前記光源を複数用いて異なる波
長の単色光を複数発生させ、且つこれらの光を同一光路
軸上に合成する光軸合成手段を設けると共に、第1及び
第2の回折格子には各単色光に対応する周期のものを夫
々設け、更に前記検出手段として回折光を各波長毎に分
離して独立に検出できる構成のものを用い、加えて前記
信号処理制御手段として検出信号の強度又はS/N比を
比較して最良の信号に基づいてその位相差を測定する構
成のものとすることを基本的特徴としている。
A second aspect of the present invention is the configuration of the apparatus according to the first aspect of the present invention, in which the first diffraction grating provided on the first object, the second diffraction grating provided on the second object, the first object, and / Or second
A moving mechanism that moves the object, a light source that generates monochromatic light,
Incident means for making the monochromatic light emitted from the light source incident on each diffraction grating, detection means for detecting the diffracted light extracted from these diffraction gratings, and measuring the phase difference between these detection signals A plurality of the light sources are used in an alignment apparatus having a signal processing control means for outputting a control signal to the moving mechanism based on the phase difference to move the first object and / or the second object to perform the alignment. A plurality of monochromatic lights of different wavelengths are provided, and an optical axis synthesizing means for synthesizing these lights on the same optical path axis is provided, and the first and second diffraction gratings have a period corresponding to each monochromatic light. Further, as the detecting means, those having a structure capable of separately detecting the diffracted light for each wavelength and independently detecting the diffracted light are used. In addition, as the signal processing control means, the intensities or S / N ratios of the detected signals are compared. Best belief It is basically characterized in that as the arrangement for measuring the phase difference based on.

【0013】以上の2つの発明とも、単色光を用いる光
学的位置検出技術に適用されるものであるが、特に第1
の回折格子由来のビート信号と第2の回折格子由来のビ
ート信号の位相差を求める光ヘテロダイン方式の構成に
適用された場合、信号強度の高い検出信号が得られるこ
とになり有効である。該光ヘテロダイン方式では、例え
ば横ゼーマンレーザ光のように直交偏波面にわずかに異
なる2周波成分のコヒーレント光を射出するレーザ光を
利用しており、絶対的な意味では単色光とは言えない
が、上記レーザ光の2周波成分は極めて近似しており、
その中心波長が単一という意味で自然光の様な多色光に
対し単色光と言える。その他光ヘテロダイン方式では、
単色レーザ光を分岐し、その一方又は両方を音響光学素
子等の周波数シフタによりわずかに周波数をずらしてこ
れらを回折格子に照射する構成のものもあり、この場合
も上記2発明の構成が適用できることは言うまでもな
い。
Both of the above two inventions are applied to the optical position detecting technique using monochromatic light.
When it is applied to the configuration of the optical heterodyne system that obtains the phase difference between the beat signal originating in the diffraction grating and the beat signal originating in the second diffraction grating, a detection signal with high signal strength can be obtained, which is effective. In the optical heterodyne system, laser light that emits coherent light of two slightly different frequency components in orthogonal polarization planes, such as transverse Zeeman laser light, is used, and cannot be said to be monochromatic light in an absolute sense. , The two frequency components of the laser light are very similar,
In the sense that the central wavelength is single, it can be said to be monochromatic light as opposed to polychromatic light such as natural light. In other optical heterodyne system,
There is also a configuration in which monochromatic laser light is branched, and one or both of them is slightly shifted in frequency by a frequency shifter such as an acousto-optical element to irradiate them on a diffraction grating. In this case also, the configuration of the above-mentioned 2 invention can be applied. Needless to say.

【0014】[0014]

【作用】複数の光源から射出される所望な波長を有する
レーザ光を同一光路軸上で使用し、夫々の波長に対応し
た周期を待つ複数の回折格子によって各々独立に位置ズ
レ情報を検出し、信号強度の強い又はS/N比の良い信
号を選択的に用いて位置合せを行なうことにより、プロ
セスに影響されず、常に高精度に位置合せを実現するこ
とが可能となる。
Operation: Laser light having a desired wavelength emitted from a plurality of light sources is used on the same optical path axis, and position deviation information is detected independently by a plurality of diffraction gratings waiting for a cycle corresponding to each wavelength, By selectively using a signal having a strong signal strength or a good S / N ratio to perform the alignment, it is possible to always perform the alignment with high accuracy without being affected by the process.

【0015】[0015]

【実施例】以下本発明の具体的実施例につき説明する。EXAMPLES Specific examples of the present invention will be described below.

【0016】図1はシンクロトロン放射光露光装置にお
いてマスクAとウェハBの位置合せに用いられた第2発
明の実施例に係る光ヘテロダイン方式の位置合せ装置構
成の概略を示すもので、図中マスクA及びウェハBの各
移動機構については、夫々マスクステージ9aとウェハス
テージ9bを示すだけでその他の構成は省略されている。
FIG. 1 is a schematic view showing the arrangement of an optical heterodyne alignment device according to an embodiment of the second invention used for aligning a mask A and a wafer B in a synchrotron radiation exposure apparatus. Regarding the respective moving mechanisms of the mask A and the wafer B, only the mask stage 9a and the wafer stage 9b are shown, respectively, and other configurations are omitted.

【0017】本実施例では、マスクA上及びウェハB上
に設けられたマスク回折格子5及びウェハ回折格子6と、
前記マスクステージ9a及びウェハステージ9bのみを示し
た移動機構と、周波数がわずかに異なるコヒーレント光
をその偏波面が直交する状態で発する横ゼーマンレーザ
から成る光源1a、1b、1cと、ミラー4cを介して入射して
くるコヒーレント光を光干渉手段の1つたる偏光ビーム
スプリッタ3で分離した後、分離された光を両回折格子5
及び6に照射するミラー4a、4bからなる入射手段と、垂
直方向に取り出されてくる回折光をミラー4dで水平に導
き、途中もう1つの光干渉手段たる図示しない偏光板で
干渉せしめ生成されたビート信号を検出するディテクタ
7a、7b、7cからなる検出手段と、これらの検出信号の位
相差を測定してその位相差に基づき、前記マスクステー
ジ9a及びウェハステージ9bの各移動機構に位置合せ用の
制御信号を出力する信号処理制御手段8とを有してい
る。
In this embodiment, a mask diffraction grating 5 and a wafer diffraction grating 6 provided on the mask A and the wafer B,
A moving mechanism showing only the mask stage 9a and the wafer stage 9b, light sources 1a, 1b and 1c composed of transverse Zeeman lasers emitting coherent light having slightly different frequencies with their polarization planes orthogonal to each other, and via a mirror 4c. The incident coherent light is separated by the polarization beam splitter 3 which is one of the optical interference means, and the separated light is separated by both diffraction gratings 5.
And diffracted light extracted in the vertical direction are guided horizontally by the mirror 4d, which is made up of mirrors 4a and 4b for irradiating 6 and 6, and they are generated by interfering with another polarizing plate (not shown) which is another optical interference means on the way. Detector that detects the beat signal
7a, 7b, and 7c, and a phase difference between these detection signals is measured and based on the phase difference, a control signal for alignment is output to each moving mechanism of the mask stage 9a and the wafer stage 9b. It has a signal processing control means 8.

【0018】上記構成のうち、前記光源1a、1b、1cは、
夫々中心波長λ1、λ2、λ3の各単色光を発するもの
で、これらの各波長は近接していないものが良い。そし
て全反射ミラー2c及び各々の波長毎に設定された誘電体
多層膜ミラー2a、2bよりなる光軸合成手段により、波長
λ3の光は全反射ミラー2cで、又波長λ2及びλ1の光は
夫々誘電体多層膜ミラー2a、2bで同一光路軸上に光路が
合成され、前記ミラー4cを介して偏光ビームスプリッタ
3に射出されるようになっている。
In the above structure, the light sources 1a, 1b, 1c are
It emits monochromatic lights having central wavelengths λ 1 , λ 2 , and λ 3 , respectively, and it is preferable that these wavelengths are not close to each other. Then, by the optical axis synthesizing means consisting of the total reflection mirror 2c and the dielectric multilayer mirrors 2a and 2b set for each wavelength, the light of the wavelength λ 3 is reflected by the total reflection mirror 2c and the wavelengths of λ 2 and λ 1 . The light beams have their respective optical paths combined on the same optical path axis by the dielectric multilayer film mirrors 2a and 2b, and the polarization beam splitter is passed through the mirror 4c.
It is supposed to be ejected to 3.

【0019】一方、マスクA及びウェハB上に設けられ
た回折格子5、6は、図2に示される様に前記3つの単色
光の各波長λ1、λ2、λ3に対応した3つの周期P1、P
2、P3のものが夫々形成されている。即ち、前記数1の
回折の式より、前記光源のレーザ光の波長をλi及び入
射角θnとすると、回折格子の周期Piとの関係は、下式
数2に示すようになる。
On the other hand, as shown in FIG. 2, the diffraction gratings 5 and 6 provided on the mask A and the wafer B have three diffraction gratings corresponding to the respective wavelengths λ 1 , λ 2 and λ 3 of the three monochromatic lights. Period P 1 , P
2 and P 3 are formed respectively. That is, according to the diffraction equation of the equation 1, when the wavelength of the laser light of the light source is λi and the incident angle θn, the relation with the period Pi of the diffraction grating is as shown in the following equation 2.

【0020】[0020]

【数2】 [Equation 2]

【0021】ここで本実施例の入射光は±1次より入射
されると仮定すると、更に下式数3に示すようになる。
Assuming that the incident light of this embodiment is incident from the ± 1st order, the following expression 3 is obtained.

【0022】[0022]

【数3】 [Equation 3]

【0023】従って同一光路軸上に入射してくるレーザ
光の各波長λ1、λ2、λ3に対し、夫々に対応した周期
1、P2、P3の回折格子をマスクA及びウェハBの夫
々に形成することになる。
Therefore, for the respective wavelengths λ 1 , λ 2 , λ 3 of the laser light incident on the same optical path axis, the diffraction gratings of the periods P 1 , P 2 , P 3 corresponding to the respective wavelengths λ 1 , λ 2 , λ 3 are provided on the mask A and the wafer. It will be formed in each of B.

【0024】更に前記検出手段は、各ディテクタ7a、7
b、7cに対し、図2に示される様に同一光路軸上に取り
出されてきた回折光を2つの誘電体多層膜ミラー70a、7
0b及び全反射ミラー70cで夫々取り出して前記ビート信
号の検出を行なっており、そしてこれらのディテクタ7
a、7b、7cは夫々の波長領域毎に対応した感度のものを
用いているため、各波長毎に分離して独立に検出できる
ことになる(即ち、ディテクタ7aは波長λ1のものを、
ディテクタ7bは波長λ2のものを、又ディテクタ7cは波
長λ3のものを検出している)。
Further, the detecting means is composed of detectors 7a, 7a.
In contrast to b and 7c, the diffracted light extracted on the same optical path axis as shown in FIG. 2 is converted into two dielectric multilayer film mirrors 70a and 7c.
0b and the total reflection mirror 70c are respectively taken out to detect the beat signal, and the detector 7
Since a, 7b, and 7c have sensitivity corresponding to each wavelength region, they can be detected separately for each wavelength separately (that is, the detector 7a has a wavelength λ 1 ,
The detector 7b detects a wavelength λ 2 and the detector 7c detects a wavelength λ 3 ).

【0025】加えて前記信号処理制御手段8は上記ディ
テクタ7a、7b、7cからの検出信号をモニターして、最も
安定な(信号強度の強い又はS/N比の良い)信号を選
別し、その上でマスク回折格子5由来のものと、ウェハ
回折格子6由来のものの信号の位相差を測定する回路構
成を有している。
In addition, the signal processing control means 8 monitors the detection signals from the detectors 7a, 7b, 7c, selects the most stable signal (strong signal strength or good S / N ratio), and The circuit configuration for measuring the phase difference between the signals derived from the mask diffraction grating 5 and the wafer diffraction grating 6 is provided above.

【0026】以上の本実施例構成の作動につき、次に説
明する。
The operation of the configuration of this embodiment described above will be described below.

【0027】まず光源1a、1b、1cから発せられた中心波
長λ1、λ2、λ3の各レーザ光は、全反射ミラー2c及び
誘電体多層膜ミラー2a、2bの光軸合成手段により同一光
路軸上に光路が合成され、ミラー4cを経て偏光ビームス
プリッタ3に進入する。該偏光ビームスプリッタ3では各
レーザ光につき互いに直交する偏波面の一の偏波面の成
分の光と他の偏波面の成分の光に分離する。入射手段の
ミラー4a、4bは分離された各レーザ光をマスク回折格子
5及びウェハ回折格子6に±1次方向から入射させる。夫
々の回折格子5、6から垂直方向に回折された光はミラー
4dを経て前記誘電体多層膜ミラー70a、70b及び全反射ミ
ラー70aに到り、各ディテクタ7a、7b、7cに検出され
る。その途中各単色光の2つの直交偏波面は図示しない
前記偏光板等により一つの偏波面に重ねられて各2周波
成分が干渉し合うことになり、3種類のビート信号が生
成される。従ってディテクタ7aは波長λ1のレーザ光由
来のビート信号を、又ディテクタ7bは波長λ2のレーザ
光由来のビート信号を、更にディテクタ7cは波長λ3
レーザ光由来のビート信号を夫々選別して検出すること
になる。そして前記信号処理制御手段8では、3つのビ
ート信号の信号強度又はS/N比を比較して良好な信号
を1つ選択し、マスク回折格子5からのものとウェハ回
折格子6からのものの位相差を測定する。これによって
得られたマスクAとウェハB間の位置ズレ情報を基に該
信号処理制御手段8はマスクステージ9a及びウェハステ
ージ9bに制御信号を出力してマスクA及びウェハBの位
置合せを行なう。
First, the laser beams having the central wavelengths λ 1 , λ 2 and λ 3 emitted from the light sources 1a, 1b and 1c are made the same by the optical axis combining means of the total reflection mirror 2c and the dielectric multilayer film mirrors 2a and 2b. The optical paths are combined on the optical path axis and enter the polarization beam splitter 3 via the mirror 4c. The polarization beam splitter 3 separates each laser light into light of one polarization plane component and light of another polarization plane orthogonal to each other. The mirrors 4a and 4b of the incident means mask the separated laser beams with a mask diffraction grating.
5 and the wafer diffraction grating 6 are made incident from the ± first-order directions. The light diffracted in the vertical direction from the diffraction gratings 5 and 6 is a mirror.
After passing through 4d, the dielectric multilayer film mirrors 70a, 70b and the total reflection mirror 70a are reached, and detected by the detectors 7a, 7b, 7c. On the way, two orthogonal polarization planes of each monochromatic light are superposed on one polarization plane by the polarizing plate or the like (not shown) so that the two frequency components interfere with each other, and three kinds of beat signals are generated. Therefore, the detector 7a selects the beat signal derived from the laser light having the wavelength λ 1 , the detector 7b selects the beat signal derived from the laser light having the wavelength λ 2 , and the detector 7c selects the beat signal derived from the laser light having the wavelength λ 3. Will be detected. Then, the signal processing control means 8 compares the signal intensities or S / N ratios of the three beat signals to select one good signal, and selects one from the mask diffraction grating 5 and the wafer diffraction grating 6. Measure the phase difference. The signal processing control means 8 outputs a control signal to the mask stage 9a and the wafer stage 9b on the basis of the positional deviation information between the mask A and the wafer B obtained in this way to align the mask A and the wafer B.

【0028】以上の様に本実施例では波長の異なる複数
の単色光を用いて光ヘテロダイン検出しているため、単
色光特有の干渉効果による信号劣化を抑制でき、高安定
・高精度な位置合せが可能になった。
As described above, in the present embodiment, since optical heterodyne detection is performed by using a plurality of monochromatic lights having different wavelengths, signal deterioration due to the interference effect peculiar to monochromatic light can be suppressed, and highly stable and highly accurate alignment is possible. Became possible.

【0029】[0029]

【発明の効果】以上詳述した本発明の位置検出方法乃至
装置によれば、位置検出信号が回折格子の段差等のマー
ク形状やレジスト膜厚等のプロセス条件の影響により左
右されず、常に良好な状態で得ることができ、非常に安
定で且つ高精度な位置合せができるようになる。
According to the position detecting method and apparatus of the present invention described in detail above, the position detecting signal is not influenced by the process conditions such as the mark shape such as the step of the diffraction grating and the resist film thickness, and is always good. It can be obtained in a stable state, and extremely stable and highly accurate alignment can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】第2発明装置の一実施例構成を示す概略図であ
る。
FIG. 1 is a schematic diagram showing the configuration of an embodiment of a second invention device.

【図2】本実施例構成における回折格子の設置状況とレ
ーザ光の回折状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state of installation of a diffraction grating and a diffraction state of laser light in the configuration of this embodiment.

【図3】従来の光ヘテロダイン位置検出構成を示す斜視
図である。
FIG. 3 is a perspective view showing a conventional optical heterodyne position detection configuration.

【図4】回折格子の段差の違いによる回折光の回折効率
を示すグラフである。
FIG. 4 is a graph showing the diffraction efficiency of diffracted light due to the difference in the steps of the diffraction grating.

【符号の説明】[Explanation of symbols]

1a、1b、1c、10 光源 2a、2b 誘電体多層膜ミ
ラー 2c 全反射ミラー 3、30 偏光ビームスプ
リッタ 31、32 偏光板 4a、4b、4c、4d、40、41、42、43 ミラー 44 プリズムミラー 5、5a、5b、5c、50 マスク回折格子 6、6a、6b、6c、60 ウェハ回折格子 7a、7b、7c、71、72 ディテクタ 70a、70b 誘電体多層膜ミ
ラー 70c 全反射ミラー 8 信号処理制御手
段 80 信号処理手段 9a、90 マスクステージ 9b、91 ウェハステージ
1a, 1b, 1c, 10 Light source 2a, 2b Dielectric multilayer mirror 2c Total reflection mirror 3, 30 Polarizing beam splitter 31, 32 Polarizing plate 4a, 4b, 4c, 4d, 40, 41, 42, 43 Mirror 44 Prism mirror 5, 5a, 5b, 5c, 50 Mask diffraction grating 6, 6a, 6b, 6c, 60 Wafer diffraction grating 7a, 7b, 7c, 71, 72 Detector 70a, 70b Dielectric multilayer mirror 70c Total reflection mirror 8 Signal processing control Means 80 Signal processing means 9a, 90 Mask stage 9b, 91 Wafer stage

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/68 G 8418−4M Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/68 G 8418-4M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 第1の回折格子を設けた第1の物体と第
2の回折格子を設けた第2の物体とを一定の間隔を隔て
て対向配置させ、これらの回折格子に単色光を入射させ
て両回折格子から生じる回折光を用いて両物体の相対位
置を検出し、これらの位置合せを行なう位置合せ方法に
おいて、所望の波長を有する2以上の単色光を同一光路
軸上に合成し、各波長毎に独立して両物体の相対位置を
検出し、そのうちの1又は2以上の検出信号に基づいて
位置合せを行なうことを特徴とする位置合せ方法。
1. A first object provided with a first diffraction grating and a second object provided with a second diffraction grating are arranged so as to face each other with a constant gap, and monochromatic light is applied to these diffraction gratings. In the alignment method in which the relative positions of both objects are detected by using the diffracted light that is incident and is generated from both diffraction gratings, two or more monochromatic lights having a desired wavelength are combined on the same optical path axis in an alignment method for aligning them. Then, the relative position of both objects is detected independently for each wavelength, and the alignment is performed based on one or more detection signals of the two.
【請求項2】 請求項第1項記載の位置合せ方法におい
て、前記第1及び第2の回折格子の夫々に、前記複数の
単色光に対応する複数の周期のものを設けたことを特徴
とする請求項第1項記載に位置合せ方法。
2. The alignment method according to claim 1, wherein each of the first and second diffraction gratings has a plurality of periods corresponding to the plurality of monochromatic lights. The alignment method according to claim 1.
【請求項3】 第1の物体に設けた第1の回折格子と、
第2の物体に設けた第2の回折格子と、第1の物体及び
/又は第2の物体を動かす移動機構と、単色光を発生す
る光源と、該光源から照射された単色光を夫々の回折格
子に入射せしめる入射手段と、これらの回折格子より取
り出された回折光を検出する検出手段と、これらの検出
信号の位相差を測定して該位相差に基づき前記移動機構
に制御信号を出力し、第1の物体及び/又は第2の物体
を移動させて位置合せを行なわしめる信号処理制御手段
とを有する位置合せ装置において、前記光源を複数用い
て異なる波長の単色光を複数発生させ、且つこれらの光
を同一光路軸上に合成する光軸合成手段を設けると共
に、第1及び第2の回折格子には各単色光に対応する周
期のものを夫々設け、更に前記検出手段として回折光を
各波長毎に分離して独立に検出できる構成のものを用
い、加えて前記信号処理制御手段として検出信号の強度
又はS/N比を比較して最良の信号に基づいてその位相
差を測定する構成のものとすることを特徴とする位置合
せ装置。
3. A first diffraction grating provided on the first object,
A second diffraction grating provided on the second object, a moving mechanism for moving the first object and / or the second object, a light source for generating monochromatic light, and a monochromatic light emitted from the light source, respectively. Incident means for entering the diffraction grating, detection means for detecting the diffracted light extracted from these diffraction gratings, and measuring the phase difference between these detection signals and outputting a control signal to the moving mechanism based on the phase difference Then, in an alignment device having a signal processing control means for moving the first object and / or the second object to perform alignment, a plurality of monochromatic lights of different wavelengths are generated by using a plurality of the light sources, Further, an optical axis synthesizing means for synthesizing these lights on the same optical path axis is provided, and the first and second diffraction gratings are respectively provided with a period corresponding to each monochromatic light, and further the diffracted light as the detecting means. Is separated for each wavelength In addition, the signal processing control means may be configured to measure the phase difference based on the best signal by comparing the intensity or S / N ratio of the detection signal. Characteristic alignment device.
JP3695992A 1992-01-29 1992-01-29 Positioning method and device thereof Expired - Lifetime JPH0794969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3695992A JPH0794969B2 (en) 1992-01-29 1992-01-29 Positioning method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3695992A JPH0794969B2 (en) 1992-01-29 1992-01-29 Positioning method and device thereof

Publications (2)

Publication Number Publication Date
JPH0642918A true JPH0642918A (en) 1994-02-18
JPH0794969B2 JPH0794969B2 (en) 1995-10-11

Family

ID=12484288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3695992A Expired - Lifetime JPH0794969B2 (en) 1992-01-29 1992-01-29 Positioning method and device thereof

Country Status (1)

Country Link
JP (1) JPH0794969B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053390B2 (en) 1995-02-01 2006-05-30 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
JP2010157527A (en) * 2008-12-26 2010-07-15 Lintec Corp Device and method of recognizing position of plate-like member, alignment apparatus, and alignment method
KR101065195B1 (en) * 2006-12-19 2011-09-19 주식회사 엘지화학 Laser interference apparature and method for formation of nano grating thereby
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP2022501632A (en) * 2018-09-21 2022-01-06 エーエスエムエル ネザーランズ ビー.ブイ. Radiation system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7053390B2 (en) 1995-02-01 2006-05-30 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US7109508B2 (en) 1995-02-01 2006-09-19 Nikon Corporation Method of detecting position of mark on substrate, position detection apparatus using this method, and exposure apparatus using this position detection apparatus
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR101065195B1 (en) * 2006-12-19 2011-09-19 주식회사 엘지화학 Laser interference apparature and method for formation of nano grating thereby
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2010157527A (en) * 2008-12-26 2010-07-15 Lintec Corp Device and method of recognizing position of plate-like member, alignment apparatus, and alignment method
JP2022501632A (en) * 2018-09-21 2022-01-06 エーエスエムエル ネザーランズ ビー.ブイ. Radiation system
US11467507B2 (en) 2018-09-21 2022-10-11 Asml Netherlands B.V. Radiation system

Also Published As

Publication number Publication date
JPH0794969B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US4710026A (en) Position detection apparatus
US5369486A (en) Position detector for detecting the position of an object using a diffraction grating positioned at an angle
JP6120967B2 (en) Method and apparatus for measuring asymmetry of microstructure, position measuring method, position measuring apparatus, lithographic apparatus and device manufacturing method
US5689339A (en) Alignment apparatus
US5100234A (en) Method and apparatus for aligning two objects, and method and apparatus for providing a desired gap between two objects
JP3244769B2 (en) Measuring method and measuring device
JPH0642918A (en) Aligning method and apparatus
JPH06177013A (en) Position detecting device
JP3029133B2 (en) Measurement method and device
USRE34010E (en) Position detection apparatus
US5164789A (en) Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference
JP2514699B2 (en) Position shift detection method and position shift detection device using diffraction grating
JP3095036B2 (en) Method and apparatus for measuring displacement using diffraction grating
JP2931082B2 (en) Method and apparatus for measuring small displacement
JP2677662B2 (en) Relative alignment method and device
JPH09138110A (en) Method and apparatus for position alignment using diffraction grating
JPH0465604A (en) Method and device for position detection and aligning device
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device
JPH06160020A (en) Measuring device
JP2694045B2 (en) Positioning device using diffraction grating
JPH0587530A (en) Interference measurement device
JPH06147827A (en) Positional shift detecting method
JP2837532B2 (en) Method and apparatus for measuring small displacement
JPH06288710A (en) Dislocation distance measuring method by means of diffraction grating and its device
JPH07122565B2 (en) Exposure equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981006