JPH0465604A - Method and device for position detection and aligning device - Google Patents

Method and device for position detection and aligning device

Info

Publication number
JPH0465604A
JPH0465604A JP2177236A JP17723690A JPH0465604A JP H0465604 A JPH0465604 A JP H0465604A JP 2177236 A JP2177236 A JP 2177236A JP 17723690 A JP17723690 A JP 17723690A JP H0465604 A JPH0465604 A JP H0465604A
Authority
JP
Japan
Prior art keywords
light
objects
diffracted
diffraction
diffraction gratings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2177236A
Other languages
Japanese (ja)
Other versions
JPH0635927B2 (en
Inventor
Hiromasa Shibata
浩匡 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soltec Co Ltd
Original Assignee
Soltec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soltec Co Ltd filed Critical Soltec Co Ltd
Priority to JP2177236A priority Critical patent/JPH0635927B2/en
Priority to US07/688,115 priority patent/US5182610A/en
Publication of JPH0465604A publication Critical patent/JPH0465604A/en
Publication of JPH0635927B2 publication Critical patent/JPH0635927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To detect the quantities of displacement of a 1st and a 2nd body by measuring the phase difference between beat signals obtained with diffracted light beams from diffraction gratings which are provided to the 1st and 2nd bodies and have equal grating constants. CONSTITUTION:A signal processing control circuit 7 measures the phase difference between the beat signal sent from a mask P1 detector 60 and the beat signal from a wafer P1 detector 62. The circuit 7 also measures the phase difference between the beat signal sent from a mask P2 detector 61 and the beat signal sent from a wafer P2 detector 63. Then the circuit 7 detects the phase difference between the beat signals from diffraction gratings 10 which has the pitch of masks A and B, i.e. 8mum in this case and the phase difference between the beat signals from diffraction gratings 11 which have the same pitch, i.e. 1.5mum in this case, so the quantity of the relative position shift between the wafers A and B can be measured within a range of 4mum and the quantity of displacement between the bodies A and B is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体超微細加工や超精密測定等において
光ヘテロダイン干渉光を利用する位置検出方法及びその
装置、更にその位置検出構成を用いて2つの物体の超精
密位置合せを行なう位置合せ装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a position detection method and apparatus using optical heterodyne interference light in semiconductor ultrafine processing, ultraprecision measurement, etc., and a position detection configuration using the same. The present invention relates to an alignment device that performs ultra-precise alignment of two objects.

〔従来の技術〕[Conventional technology]

シンクロトロン放射光りソグラフィ用アライナやフォト
ステッパ等の精密位置検出技術では、例えば特開昭62
−261003号や特開昭64−89323号等のよう
に、光ヘテロダイン位置検出方式が試作機レベルで実用
化され始めている。
For precision position detection technology such as synchrotron radiation lithography aligners and photosteppers, for example, JP-A-62
Optical heterodyne position detection methods are beginning to be put into practical use at the prototype level, as in Patent No. 261003 and Japanese Patent Application Laid-Open No. 64-89323.

第6図は上記の従来技術のうち前者に示された光ヘテロ
ダイン干渉回折光を利用する位置検出手段の概要が示さ
れており、まずその装置構成としては、第1の物体とな
るマスクA及び第2の物体となるウェハB上に形成され
た各回折格子(xa) (lb)と、直交直線偏光のわ
ずかに異なる2周波数の光を発生させるレーザ装置から
なる光源(2)と、・後述する偏光ビームスプリッタ(
52a)で分離した光の方向を調整して前記回折格子(
la) (lb)に向けて士nIA方向(nは正の整数
)から照射するミラー(40a) (41a)からなる
入射角調整手段と、光源(2)からくる2偏光を分離し
て前記ミラー(40a) (41a)方向に夫々分岐す
る偏光ビームスプリッタ(52a)及び前記回折格子(
la) (lb)から垂直方向に取り出される各回折光
を干渉せしめて光ヘテロダイン干渉光とする偏光板(5
4) (55)からなる光干渉手段と、この偏光板(5
4) (5s)により光ヘテロダイン干渉せしめた干渉
回折光を検出しビート信号を生成するディテクタ(60
a) (62a)からなる検出手段と、このディテクタ
(60a) (62a)の夫々から生成されたビート信
号の位相ずれを検出して位相計に表示する信号処理手段
(70)とを有している。
FIG. 6 shows an outline of a position detecting means using optical heterodyne interference diffraction light shown in the former of the above-mentioned conventional techniques. Each diffraction grating (xa) (lb) formed on the wafer B, which is a second object, and a light source (2) consisting of a laser device that generates orthogonal linearly polarized light of two slightly different frequencies; Polarizing beam splitter (
The direction of the separated light is adjusted by the diffraction grating (52a).
la) incident angle adjustment means consisting of mirrors (40a) and (41a) that emit light from the direction (n is a positive integer) toward (lb), and the mirror that separates the two polarized lights coming from the light source (2) (40a) A polarizing beam splitter (52a) that branches in the (41a) direction, and the diffraction grating (
la) A polarizing plate (5
4) An optical interference means consisting of (55) and this polarizing plate (5)
4) A detector (60
a) A detection means (62a), and a signal processing means (70) for detecting a phase shift of the beat signal generated from each of the detectors (60a) and (62a) and displaying the detected phase shift on a phase meter. There is.

そして前記光源(2)から発せられる光は直交直線偏光
2周波数酸分子1、f2を有しており、偏光ビームスプ
リッタ(52a)でflの周波数成分の光とf2の周波
数成分の光に分離され、夫々ミラー(40a) (41
a)によって回折格子(la)’(lb)に対して±n
次方向(例えば±1次方向)から入射する。回折格子(
la) (lb)から垂直方向に回折された光f1、f
、(図中破線で示す)は、ミラー(44a)及びプリズ
ムミラー(44b)を通って各偏光板(54)(55)
で可干渉となり、ディテクタ(60a)(62a)で夫
々ビート信号が検出される。各ディテクタ(60a)(
62a)で検出されたビート信号間では、回折格子(l
a) (lb)の位置ずれ量に比例した位相差を生じる
。どの位相差を信号処理手段(70)の位相計で検出す
ることにより、2つの回折格子(la) (lb)間の
相対的位置ずれ量を知ることになる。
The light emitted from the light source (2) has orthogonal linearly polarized two-frequency acid molecules 1 and f2, and is separated by the polarizing beam splitter (52a) into light with a frequency component of fl and light with a frequency component of f2. , mirrors (40a) (41
±n for the diffraction grating (la)'(lb) by a)
The light is incident from the next direction (for example, the ±1st order direction). Diffraction grating(
la) Light f1, f diffracted in the vertical direction from (lb)
, (indicated by broken lines in the figure) pass through the mirror (44a) and prism mirror (44b) to each polarizing plate (54) (55).
They become coherent, and beat signals are detected by the detectors (60a) and (62a), respectively. Each detector (60a) (
Between the beat signals detected by the diffraction grating (l
a) A phase difference proportional to the amount of positional deviation (lb) is generated. By detecting which phase difference is detected by the phase meter of the signal processing means (70), the amount of relative positional deviation between the two diffraction gratings (la) (lb) can be known.

又、後者の位置検出手段では、上記の入射角調整手段の
構成を基準格子゛とフーリエ変換光学系で構成される該
手段に替えただけであって。
In addition, in the latter position detection means, the structure of the above-mentioned incident angle adjustment means is simply replaced with a means composed of a reference grating and a Fourier transform optical system.

基本的構成は前者の構成と同じである。The basic configuration is the same as the former configuration.

〔発明が解決しようとする問題点) 以上の光ヘテロダイン位置検出方式では、各回折格子(
la) (1b)の格子室゛数、即ち格子ピッチPが大
きい程その信号検出範囲が広がり、その間の関係は、 信号検出範囲=回折格子(la) (lb)ピッチP/
2n但し、n:コヒーレント光の照射方向の次数の絶対
値 であって、例えばnが1の場合、上記ピッチPの1/2
がそ゛の検出範囲となる。但し、検出分解能については
全くこの逆の関係が成り立ち。
[Problems to be solved by the invention] In the optical heterodyne position detection method described above, each diffraction grating (
la) The larger the number of grating chambers in (1b), that is, the grating pitch P, the wider the signal detection range, and the relationship between them is: Signal detection range = Diffraction grating (la) (lb) pitch P/
2n However, n: the absolute value of the order in the irradiation direction of coherent light, for example, when n is 1, 1/2 of the above pitch P
is the detection range. However, the exact opposite relationship holds true for detection resolution.

仮りに、位相計分解能の精度を1°程度とすると、その
検出分解能は。
Assuming that the accuracy of the phase meter resolution is approximately 1°, the detection resolution is:

検出分解能=信号検出箱H/360’ となり、前記光の照射方向の次数の絶対値nを上げない
限り、格子ピッチPが大きいほど該検出分解能の精度は
低下することになる。そのため検出分解能を上げようと
して前記格子ピッチPの小さな回折格子(Ia)(’l
b)にしようとすれば、信号検出範囲は上記式より極端
に狭くなる(尚。
Detection resolution=signal detection box H/360', and unless the absolute value n of the order in the irradiation direction of the light is increased, the accuracy of the detection resolution decreases as the grating pitch P increases. Therefore, in an attempt to increase the detection resolution, a small diffraction grating (Ia) ('l) with the grating pitch P is
If you try to use b), the signal detection range will be much narrower than the above formula (note).

コヒーレント光の照射方向次数の絶対値nを大きくして
検出分解能を上げた場合でも上記式より同様な結果とな
る)。
Even when the detection resolution is increased by increasing the absolute value n of the order in the irradiation direction of the coherent light, similar results are obtained according to the above equation).

従って転写線幅がクォータミクロンオーダになるシンク
ロトロン放射光りソグラフィ用アライナにおいてこのよ
うな光ヘテロダイン位置検出方式を用いてより高い位置
検8分解能を得ようとすると、信号検出範囲が非常に狭
いものとなり、実用化が困難であった。
Therefore, if an attempt is made to obtain higher position detection resolution by using such an optical heterodyne position detection method in a synchrotron radiation lithography aligner where the transfer line width is on the order of a quarter micron, the signal detection range will become extremely narrow. , it was difficult to put it into practical use.

本発明は従来技術の以上のような問題に鑑み創案された
もので、必要な検出分解能を維持したまま検出範囲を拡
大できる位置検出方法及びその装置と、その位置検出構
成を用いた位置合せ装置を提供せんとするものである。
The present invention was devised in view of the above-mentioned problems of the prior art, and provides a position detection method and device capable of expanding the detection range while maintaining the necessary detection resolution, and an alignment device using the position detection configuration. We aim to provide the following.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明の位置検出方法は、マスク、ウェハ等の
第1及び第2の物体に夫々設けられる回折格子につき、
2種以上の異なる格子定数のものを並べて配置すること
とし、これらの各回折格子に対し夫々垂直方向(次数の
絶対値nは同じでも格子ピッチPが異なるのであるから
実際には+側及び−側の夫々複数の方向)かられずかに
異なる2周波数のコヒーレント光を照射し、この照・射
によって各回折格子から夫々垂直方向に生じる回折光を
検出し、且つこの回折時点で又は回折光光路途中で2周
波成分を干渉せしめて光ヘテロダイン干渉回折光とする
ことでこれらを基にビート信号を夫々生成し、第1及び
第2の物体に設けられた上記回折格子のうち格子定数の
等しいもの同士の回折光から得られるビート信号の位相
差を夫々測定してこれらの各位相差に基づいて前記第1
及び第2の物体の変位量(相対的位置ずれ量のほか、他
に基準ビート信号を生成せしめてこれら2つの物体の夫
々の変位量を知る絶対的位置ずれ量でも良い)を検出す
る。
Therefore, in the position detection method of the present invention, with respect to the diffraction gratings provided on the first and second objects such as masks and wafers,
Two or more types of diffraction gratings with different grating constants are arranged side by side, and each of these diffraction gratings is perpendicular to each other (the absolute value n of the order is the same but the grating pitch P is different, so in reality, it is on the + side and - Coherent light of two slightly different frequencies is irradiated from each side (in multiple directions), and the diffracted light generated in the vertical direction from each diffraction grating is detected by this irradiation, and at the time of this diffraction or in the diffracted light optical path. Beat signals are generated based on these by interfering two frequency components on the way to form optical heterodyne interference diffracted light, and among the above-mentioned diffraction gratings provided on the first and second objects, those having the same grating constant The phase differences between the beat signals obtained from the diffracted lights are measured, and the first
and the displacement amount of the second object (in addition to the relative positional displacement amount, it may also be an absolute positional displacement amount that generates a reference beat signal to know the displacement amount of each of these two objects).

例えば、格子ピッチP工と格子ピッチP2の2つの回折
格子であってPx> p2となるもの(但し、P工/P
、=mとする)を第1及び第2の物体の夫々に2段に並
べて配置(その地格子ピッチP□の回折格子群の隣に格
子ピッチP2の回折格子群を並べて配置しても良い)し
、これらの回折格子に±1次方向から直交直線偏光のわ
ずかに異なる2周波数酸分子1、f2を有する光を照射
することにより、第1及び第2の物体の夫々において格
子ピッチP、からなる回折格子からの回折光と、格子ピ
ッチP2からなる回折格子からの回折光を各分離して検
出し、これらの回折光の2周波数酸分子い f2を干渉
せしめて各ビート信号を生成せしめる。
For example, two diffraction gratings with a grating pitch P and a grating pitch P2 where Px>p2 (however, P
, = m) are arranged in two rows on each of the first and second objects (a group of diffraction gratings with a grating pitch P2 may be arranged next to a group of diffraction gratings with a grating pitch P□). ), and by irradiating these diffraction gratings with light having two slightly different frequency acid molecules 1 and f2 of orthogonal linearly polarized light from the ±1st order direction, the grating pitch P, The diffracted light from the diffraction grating consisting of P2 and the diffracted light from the diffraction grating having a grating pitch P2 are each separated and detected, and the two-frequency acid molecules f2 of these diffracted lights are made to interfere with each other to generate each beat signal. .

そして第1及び第2の物体における格子ピッチP1の各
回折格子からの回折光によるビート信号間の位相差を検
出すれば、その信号波形は上記格子ピンチP工の172
を周期とする線形信号となる。又、格子ピッチP2の各
回折格子からの回折光によるビート信号間の位相差を検
出すれば、その信号波形は上記格子ピッチP2の172
を周期とする線形信号となる。従って前者の信号波形を
採れば後者のm倍の検出範囲をカバーでき、且つ後者の
信号波形を採れば前者のm倍の検出分解能を得ることが
できることになる。そのため両方の信号の位相差を同時
に検出することで、格子ピッチP2の回折格子による分
解能を維持したまま、格子ピッチP工の回折格子による
検出範囲をカバーすることが可能になる。
Then, if the phase difference between the beat signals due to the diffracted light from each diffraction grating of the grating pitch P1 in the first and second objects is detected, the signal waveform will be 172
It becomes a linear signal with a period of . Moreover, if the phase difference between the beat signals due to the diffracted light from each diffraction grating with the grating pitch P2 is detected, the signal waveform will be 172 times the grating pitch P2.
It becomes a linear signal with a period of . Therefore, if the former signal waveform is adopted, a detection range m times that of the latter can be covered, and if the latter signal waveform is adopted, a detection resolution m times that of the former can be obtained. Therefore, by simultaneously detecting the phase difference of both signals, it is possible to cover the detection range of the diffraction grating with the grating pitch P while maintaining the resolution of the diffraction grating with the grating pitch P2.

更に第1及び第2の物体の変位量を検出する別の方法と
しては、光源から垂直方向に照射され第1及び第2の物
体の各回折格子から夫々生じる回折光のうち±n次回折
光を検出し、回折光光路途中で2周波成分を干渉せしめ
て光ヘテロダイン干渉回折光とすることでこれを基にビ
ート信号を夫々生成し、これらのビート信号の位相差を
測定することでその変位量を検出することもできるが、
本発明はこのような構成に対しても適用できる。この場
合も同様に2種以上の異なる格子定数の回折格子を並べ
て第1及び第2の物体の夫々に配置し、これらの回折格
子から±nn次回力方向次数の絶対値nは同じであって
も格子ピッチPが異なっているのであるから実際には+
側及び−側の夫々複数の方向)で取り出される回折光を
光ヘテロダイン干渉せしめてその干渉光を検出する。該
検出により各ビート信号を生成せしめ、第1及び第2の
物体に設けられた上記回折格子のうち格子定数の等しい
もの同士の回折光から得られるビート信号の位相差を夫
々測定し、これらの各位相差に基づいて第1及び第2の
物体の変位量を検出することになる。但し以上の構成で
は、第1及び第2の物体の夫々に設けられる回折格子の
格子ピッチを仮りにP、、P、とした場合に、P工をP
2の整数倍にするとピッチP1の回折格子由来の±Q次
次回先光ピッ千P2の回折格子由来の±1次回折光とが
同一方向に出射され、ノイズとなる可能性があるため、
非整数倍にすることが望ましい。
Furthermore, another method for detecting the amount of displacement of the first and second objects is to detect the ±nth-order diffracted light among the diffracted lights emitted from the light source in the vertical direction and generated from the respective diffraction gratings of the first and second objects. By detecting the diffracted light and interfering the two frequency components in the middle of the optical path to create an optical heterodyne interference diffracted light, beat signals are generated respectively based on this, and by measuring the phase difference of these beat signals, the amount of displacement is determined. It is also possible to detect
The present invention can also be applied to such a configuration. In this case as well, two or more diffraction gratings with different grating constants are arranged side by side and placed on each of the first and second objects, and the absolute values n of the orders in the power direction of the ±nn order from these diffraction gratings are the same. Since the lattice pitch P is different, in reality, +
The diffracted lights extracted in a plurality of directions (on the side and on the negative side) are subjected to optical heterodyne interference, and the interference light is detected. Each beat signal is generated by the detection, and the phase difference between the beat signals obtained from the diffracted light of the diffraction gratings having the same grating constant among the diffraction gratings provided on the first and second objects is measured, respectively. The displacement amounts of the first and second objects are detected based on each phase difference. However, in the above configuration, if the grating pitch of the diffraction grating provided on each of the first and second objects is P,,P, then P
If it is an integral multiple of 2, the ±Q-order diffraction light originating from the diffraction grating at pitch P1 and the ±1st-order diffraction light originating from the pitch P2 diffraction grating may be emitted in the same direction, resulting in noise.
It is desirable to use a non-integer multiple.

尚、上記本発明の構成中、光の干渉を行なわしめる手段
については、上述のような偏光ビームスプリッタと偏光
板を組合せて使用する方法もあるが、偏光ビームスプリ
ッタと172波長板を組合せて使ったり、又はビームス
プリッタ、1/2波長板及び偏光板を組合せて使うこと
も可能である。即ち、コヒーレント光の±n次方向から
の照射′を行なろ場合に、偏光ビームスプリッタで取り
出されたf□酸成分み又はビームスプリッタで取り出さ
れたf工及びf2の両成分を有する+0次光か同じく偏
光ビームスプリッタで取り出されたf2構成のみ又はビ
ームスプリッタで取り出されたf2及びfiの両成分を
有する一n次光の一方の偏波面を172波長板で90’
ずらせて各回折格子に照射し、その回折の時点で光ヘテ
ロダイン干渉せしめることも可能である(f工、f2の
両成分を有する形で照射干渉がなされた後者の場合は、
水平方向又は垂直方向の干渉光の一方を更に偏光板でカ
ットし、残りの干渉光を検出することになる)し、コヒ
ーレント光を各回折格子に垂直に入射させ、そこから発
生する回折光のうち±n次の回折光を取り出した場合に
+n次回折光をは−n次回折光をうち、その一方を17
2波長板で同様に処理し、±n次回折光を検出の時点前
に光ヘテロダイン干渉せしめるということもできる。
In the configuration of the present invention, as for the means for causing light interference, there is a method of using a combination of a polarizing beam splitter and a polarizing plate as described above, but it is also possible to use a combination of a polarizing beam splitter and a 172 wavelength plate. Alternatively, it is also possible to use a beam splitter, a half-wave plate, and a polarizing plate in combination. In other words, when irradiating coherent light from the ±n-order direction, only the f□ acid component extracted by the polarizing beam splitter or the +0-order light having both the f and f2 components extracted by the beam splitter. Similarly, one polarization plane of the first n-order light having only the f2 configuration extracted by the polarizing beam splitter or having both f2 and fi components extracted by the beam splitter is polarized at 90' with a 172 wavelength plate.
It is also possible to irradiate each diffraction grating at different intervals and cause optical heterodyne interference at the time of diffraction (in the latter case, where irradiation interference is performed in a form that has both f and f2 components,
(One of the horizontal or vertical interference lights is further cut by a polarizing plate, and the remaining interference light is detected.) Then, the coherent light is vertically incident on each diffraction grating, and the diffracted light generated therefrom is detected. When the ±nth order diffracted light is taken out, the +nth order diffracted light is the -nth order diffracted light, and one of them is 17
It is also possible to perform the same process using a two-wavelength plate and cause the ±n-order diffracted light to undergo optical heterodyne interference before the point of detection.

次に第2及び第3発明の位置検出装置は上記第1発明の
位置検出方法の実施装置に係り、第2発明装置は回折光
を垂直方向で取り出す場合の構成、及び第3発明装置は
回折光を±nn次回力方向取り出す場合の構成である。
Next, the position detection devices of the second and third inventions relate to devices for implementing the position detection method of the first invention, the second invention device has a configuration for extracting diffracted light in the vertical direction, and the third invention device has a configuration for extracting diffracted light in the vertical direction. This is a configuration for extracting light in the ±nn next power direction.

即ち、第2発明装置は、第1及び第2の物体の夫々に並
べて配置された2種以上の異なる格子定数からなる回折
格子と、力ずかに異なる2周波数のコヒーレント光を発
生させる光源と、該光源から照射されたコヒーレント光
を前記第1及び第2の物体の各回折格子に対して夫々±
n次の方向から入射させる入射角調整手段と、各回折格
子で照射光が回折する時点で又は各回折格子から垂直方
向に夫々取り出される回折光の光路途中で2周波成分を
干渉せしめて光ヘテロダイン干渉光とする光干渉手段と
、第1及び第2の物体の各回折格子から垂直方向に夫々
取り出され、且つ前記光干渉手段によって光ヘテロダイ
ン干渉光となった回折光を検出してビート信号を夫々生
成する検出手段と、第1及び第2の物体の前記回折格子
のうち格子定数の等しいもの同士の回折光から前記検出
手段によって得られるビート信号の位相差を夫々測定し
てこれらの位相差に基づき第1及び第2の物体の変位量
を検出する信号処理手段とを有している。又、第3発明
装置では光の入射を垂直方向から行ない、回折光の取り
出しを±nn次回力方向行なう構成としているため、第
2発明装置のような入射角調整手段はなく、各回折格子
から生じる1折光のうち±n次の回折光を取り出すミラ
ーや偏光ビームスプリッタ等の回折光取り出し手段を備
え、且つ光干渉手段については、回折光の取り出し光路
途中で2周波成分の干渉を行なわしめる装置構成として
いる。そしてこれらの構成を前提構成として第3発明は
回折光取り出し手段により各回折格子から±nn次回力
方向回折光を取り出すと共に、前記検出手段についても
これらの回折光取り出し方向に対応させて各光ヘテロダ
イン干渉回折光の検出及び各ビート信号の生成ができる
ようにし、更に前記信号処理手段についても、検出手段
により検出された各回折光のうち、第1・及び第2の物
体の夫々に設けられた格子定数の等しい回折格子同士の
回折光から得られるビート信号の位相差を夫々測定し、
これらの各位相差に基づき前記第1及び第2の物体の変
位量を検出するようにしている。
That is, the second invention device includes a diffraction grating made of two or more different grating constants arranged side by side on each of the first and second objects, and a light source that generates coherent light of two strongly different frequencies. , coherent light emitted from the light source is applied to each diffraction grating of the first and second objects, respectively.
Optical heterodyne is achieved by using an incident angle adjusting means for making the light incident from the n-th direction, and interfering two frequency components at the time when the irradiated light is diffracted by each diffraction grating or in the middle of the optical path of the diffracted light taken out from each diffraction grating in the vertical direction. A beat signal is generated by detecting the diffracted light taken out in the vertical direction from each of the diffraction gratings of the first and second objects and turned into optical heterodyne interference light by the optical interference means. These phase differences are determined by measuring the phase difference between the beat signals obtained by the detection means respectively generated by the detection means and the beat signals obtained by the detection means from the diffracted lights of the diffraction gratings of the first and second objects having the same grating constant. and signal processing means for detecting the displacement amounts of the first and second objects based on. In addition, in the third device of the present invention, since the light is incident in the vertical direction and the diffracted light is taken out in the ±nn order output direction, there is no incident angle adjustment means as in the second device of the invention, and there is no angle of incidence adjustment means as in the second device of the present invention. It is equipped with a diffracted light extracting means such as a mirror or a polarizing beam splitter for extracting ±n-order diffracted light out of the generated one-fold diffracted light, and as for the optical interference means, it is a device that performs interference of two frequency components in the middle of the extracting optical path of the diffracted light. It is structured as follows. With these configurations as a prerequisite configuration, the third invention extracts the ±nn order diffracted light in the output direction from each diffraction grating by the diffraction light extraction means, and also extracts each optical heterodyne with respect to the detection means corresponding to these diffraction light extraction directions. The interference diffraction light can be detected and each beat signal can be generated, and the signal processing means is provided on each of the first and second objects among the respective diffraction lights detected by the detection means. Measure the phase difference of the beat signals obtained from the diffracted light between diffraction gratings with the same grating constant,
The amount of displacement of the first and second objects is detected based on these phase differences.

更に、第4及び第5発明の位置合せ装置は5第2及び第
3発明の位置検出装置を基に更にその装置構成を第1の
物体と第2の物体の位置合せができるような構成まで発
展改良させたちのであり、それしこ固有な構成は、第1
の物体及び/又は第2の物体を動かす移動機構を備える
と共に、測定された位相差から第1の物体と第2の物体
の位置検出を行なう信号処理手段を単に備えるというの
ではなく、その位相差に基づき前記移動機構に制御信号
を出力し、第1の物体及び/又は第2の物体を動かして
位置合せする信号処理制御手段を備えるものであり、そ
の他の構成は第2発明及び第3発明の構成と同しである
Furthermore, the alignment devices of the fourth and fifth inventions are based on the position detection devices of the second and third inventions, and the device configuration is further changed to a configuration that can align the first object and the second object. It has been developed and improved, and its unique structure is the first one.
It does not simply include a moving mechanism that moves the object and/or the second object, and a signal processing means that detects the positions of the first object and the second object from the measured phase difference. The apparatus includes a signal processing control means for outputting a control signal to the moving mechanism based on the phase difference to move and align the first object and/or the second object, and the other configurations are according to the second invention and the third invention. The structure is the same as that of the invention.

〔実施例〕〔Example〕

以下本発明の具体的実施例につき添付図面を基に説明す
る。
Hereinafter, specific embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は、シンクロトロン放射光露光装置において第1
の物体たるマスクAと第2の物体たるウェハBの位置合
せに用いられた第5発明に係る位置合せ装置構成の概略
を示すもので、図中マスク及びウェハの各移動機構につ
いての構成は省略されている。
Figure 1 shows the first stage in a synchrotron radiation exposure apparatus.
This diagram schematically shows the configuration of an alignment device according to the fifth invention used for aligning a mask A, which is an object, and a wafer B, which is a second object, and the configuration of each moving mechanism for the mask and wafer is omitted in the figure. has been done.

本実施例では、マスクA上及びウェハB上の夫々に第2
図に示すようにL段側に格子ピッチ8μmの回折格子(
10)及び下段側に格子ピッチ1.5μmの回折格子(
11)を並へて配置している。
In this example, the second
As shown in the figure, a diffraction grating with a grating pitch of 8 μm (
10) and a diffraction grating with a grating pitch of 1.5 μm on the lower side (
11) are arranged side by side.

以上の構成のほか本実施例では、シリンダレス(20)
及びミラー(21)を介して上記各回折格子(10)(
11)に対して垂直方向から2周波コヒーレント光を照
射せしめる横ゼーマンレーザからなる光g(2)と、マ
スクステージ及びウェハステージにより構成された移動
機構(図示なし)と、上記照射によって各回折格子(1
0) (11)から生じる回折光のうちピッチ8μmの
回折格子(10)から生じる±1次回折光を取り出すミ
ラー(30)(31)及びピッチ1.5μmの回折格子
(11)から生しる±1次回折光を取り出すミラー(3
2) (33)の回折光取り出し手段と、該ミラー(3
1) (33)で+1次方向に取り出された回折光の偏
波面を90゜ずらす172波長板(50)(51)及び
前記ミラー(30)(32)で取り出された一1次回折
光がこの90゜偏波面のずらされた±1次回折光と干渉
し合い更にそこで偏光せしめられることになる偏光ビー
ムスプリンタ(52)(53)からなる光干渉手段と、
マスクA側の各回折格子(10)(11)から取り出さ
れてくる±1次回折光の光ヘテロダイン干渉光を検出し
、その干渉光から生じるピッチ8μmの回折格子(10
)由来のビート信号と、ピッチ1.5μmの回折格子(
11)由来のビート信号を生成するマスクPエディテク
タ(60)及びマスクP2ディテクタ(61)、更にウ
ェハB側の各回折格子(10)(11)から取り出され
てくる±1次回折光の光ヘテロダイン干渉光をナイフェ
ツジミラー(34) (35)で反射せしめて検出し、
その干渉光から生じるピッチ8μmの回折格子(10)
由来のビート信号とピッチ1.5μmの回折格子(11
)由来のビート信号を生成するウェハPエディテクタ(
62)及びウェハP2ディテクタ(63)からなる検出
手段と、これらの各検出手段で生成されたビート信号を
入力し、マスクA及びウェハBのピッチ8μmの回折格
子(10)からの回折光に由来するビート信号間の位相
差と同じくマスクA及びウェハBのピッチ1.5μmの
回折格子(11)からの回折光に由来するビート信号間
の位相差を泪す定し、これらの位相差に基づいて前記移
動機構に制御信号を出力する信号処理制御回路(7)と
を有している。
In addition to the above configuration, in this example, cylinderless (20)
and each of the above-mentioned diffraction gratings (10) (
Light g (2) consisting of a transverse Zeeman laser that irradiates two-frequency coherent light from the perpendicular direction to 11), a moving mechanism (not shown) constituted by a mask stage and a wafer stage, and each diffraction grating by the above irradiation. (1
0) Among the diffracted lights generated from (11), the mirrors (30) and (31) take out the ±1st-order diffracted light generated from the diffraction grating (10) with a pitch of 8 μm, and the ± generated from the diffraction grating (11) with a pitch of 1.5 μm. Mirror (3
2) The diffracted light extraction means (33) and the mirror (3)
1) The 1st-order diffracted light taken out by the 172-wave plate (50) (51) and the mirrors (30) (32) that shift the polarization plane of the diffracted light taken out in the +1st-order direction by (33) by 90 degrees is an optical interference means consisting of polarizing beam splinters (52) and (53) that interfere with the ±1st-order diffracted light whose polarization plane has been shifted by 90°, and further polarize the light therein;
Optical heterodyne interference light of ±1st-order diffracted light extracted from each diffraction grating (10) (11) on the mask A side is detected, and a diffraction grating (10
)-derived beat signal and a diffraction grating with a pitch of 1.5 μm (
11) Optical heterodyne of the ±1st-order diffracted light extracted from the mask P editor (60) and mask P2 detector (61) that generate the original beat signal, and also from each diffraction grating (10) (11) on the wafer B side. The interference light is reflected by a knife mirror (34) (35) and detected.
Diffraction grating (10) with a pitch of 8 μm generated from the interference light
The original beat signal and the diffraction grating with a pitch of 1.5 μm (11
wafer P editor (
62) and a wafer P2 detector (63), and the beat signals generated by each of these detection means are input, and the detection means derived from the diffracted light from the diffraction grating (10) with a pitch of 8 μm on the mask A and wafer B is detected. The phase difference between the beat signals derived from the diffracted light from the diffraction grating (11) with a pitch of 1.5 μm on the mask A and the wafer B is determined as well as the phase difference between the beat signals, and based on these phase differences, and a signal processing control circuit (7) that outputs a control signal to the moving mechanism.

尚、上記装置構成において、マスクAの回折格子(10
)(11)に対し、ウェハBの回折格子(10)(11
)は格子長手方向にわずかにずれている。又、マスクA
面には光透過窓(lc)が設けられており、ウェハBの
各回折格子(10)(11)に対する前記コヒーレント
光の照射と該回折格子(10)(11)からの回折光の
取り出しはこの光透過窓(lc)を介してなされている
。更に前記信号処理制御回路(7)には測定された各位
相差を表示する位相計(図示なし)も同時に設置されて
いる。
In addition, in the above device configuration, the diffraction grating (10
)(11), the diffraction grating (10)(11) of wafer B
) is slightly shifted in the longitudinal direction of the grid. Also, mask A
A light transmission window (lc) is provided on the surface, and irradiation of the coherent light to each diffraction grating (10) (11) of the wafer B and extraction of the diffracted light from the diffraction grating (10) (11) are performed. This is done through this light transmission window (lc). Furthermore, a phase meter (not shown) for displaying each measured phase difference is also installed in the signal processing control circuit (7).

以上の装置構成の使用方法を次に説明する。How to use the above device configuration will be explained next.

上記光源(2)の横ゼーマンレーザは、直交直線偏光2
周波成分子工、f2を含んだ光を発生し、このコヒーレ
ント光を垂直方向からマスクAの回折格子(10)(1
1)及びウェハBの回折格子(10)(11)に夫々照
射する。この時、ウェハBの回折格子(to)(11)
に対しては前記光透過窓(lc)を通って照射されるこ
とになる。この照射によって各回折格子(10)(11
)には第1図に示すような各方向に回折光が生じ、その
うちマスクA及びウェハBのピッチ8μmの回折格子(
lO)から発せられる±1次回折光をミラー(3o)(
31)で又同゛じくマスクA及びウェハBのピッチ1.
5μmの回折格子(11)から発せられる±1次回折光
をミラー (32) (33)で偏光ビームスプリッタ
(52) (53)方向に反射せしめ、そこからその一
部はマスクPエディテクタ(60)及びマスクP2ディ
テクタ(61)に、又残りはナイフェツジミラー(34
) (35)を介してウェハPエディテクタ(62)及
びウェハP2ディテクタ(63)に達し、そこで検出さ
れる。
The transverse Zeeman laser of the light source (2) has orthogonal linear polarization 2
It generates light containing a frequency component, f2, and directs this coherent light through the diffraction gratings (10) (1) of mask A in the vertical direction.
1) and the diffraction gratings (10) and (11) of wafer B, respectively. At this time, the diffraction grating (to) (11) of wafer B
The light will be irradiated through the light transmission window (lc). By this irradiation, each diffraction grating (10) (11
), diffracted light is generated in each direction as shown in Figure 1, and among them, the diffraction grating (
The ±1st-order diffracted light emitted from the mirror (3o) (
In 31), the pitch of mask A and wafer B is 1.
The ±1st-order diffracted light emitted from the 5 μm diffraction grating (11) is reflected by the mirrors (32) (33) toward the polarization beam splitter (52) (53), and a part of it is then sent to the mask P editor (60). and the mask P2 detector (61), and the rest is the knife mirror (34).
) (35) to the wafer P editor (62) and wafer P2 detector (63), where it is detected.

上記回折光のうち、ミラー(31) (33)によって
反射せしめられマスクA及びウェハBの格子ピッチ8μ
m並びに1.5μ閣の各回折格子(to)(11)から
発せられた+1次回折光はその途中1/2波長板(50
)(51)によってその偏波面を90°ずらされる(垂
直成分は水平に、又水平成分は垂直にずらされる)ため
、偏光ビームスプリッタ(52)(53)で夫々格子ピ
ッチ8μm及び1.5μmの各回折格子(lo)(tf
)から取り出された一1次回折光と干渉し合い、光ヘテ
ロダイン干渉光となる。このため各ディテクタ(60)
 (61) (62) (63)では該干渉光によるビ
ート信号が生成され、信号処理制御回路(7)にこれら
ビート信号が送られる。該回路(7)では、マスクP□
ディテクタ(60)より送られてくるビート信号と、ウ
ェハP□ディテクタ(62)より送られてくるビート信
号の位相差が測定され、第3図(a)に示されるような
信号波形が得られることになる。又同じくこの信号処理
制御回路(7)にはマスクP2ディテクタ(61)より
送られてくるビート信号とウェハP2ディテクタ(63
)より送られてくるビート信号の位相差が測定され、同
図(b)に示されるような信号波形が得られる。第3図
(a)に示された信号波形では、4μmを周期とする線
形信号となり、同図(b)のそれでは、0.75μmを
周期とする線形信号となる。このように信号処理制御回
路(7)では、マスクA及びウェハBのピッチ8μmの
回折格子(10)由来のビート信号の位相差と、同ピッ
チ1.5μ■の回折格子(11)由来のビート信号の位
相差を検出しているので、4μmの範囲内でマスクAと
ウェハBの相対的な位置ずれ量が測定でき、しかもピッ
チ1.5μmの回折格子(11)の持つ分解能(位相計
分解能を1°程度とすると、その分解能は0.75μm
/360’ ということになり、格子ピッチ8μmの回
折格子(10)の分解能の約5.3倍になる〕を同時に
達成できることになる。
Of the above diffracted light, it is reflected by the mirrors (31) (33) and the grating pitch of mask A and wafer B is 8μ.
The +1st-order diffracted light emitted from each diffraction grating (to) (11) of m and 1.5 μm passes through a 1/2 wavelength plate (50
) (51), the plane of polarization is shifted by 90° (the vertical component is shifted horizontally, and the horizontal component is shifted vertically), so the polarization beam splitter (52) (53) Each diffraction grating (lo) (tf
) and interferes with the 1st-order diffracted light extracted from the 1st-order diffraction light, resulting in optical heterodyne interference light. For this reason, each detector (60)
(61) (62) In (63), beat signals are generated by the interference light, and these beat signals are sent to the signal processing control circuit (7). In the circuit (7), the mask P□
The phase difference between the beat signal sent from the detector (60) and the beat signal sent from the wafer P□ detector (62) is measured, and a signal waveform as shown in FIG. 3(a) is obtained. It turns out. Similarly, this signal processing control circuit (7) receives the beat signal sent from the mask P2 detector (61) and the wafer P2 detector (63).
) is measured, and a signal waveform as shown in FIG. 3(b) is obtained. The signal waveform shown in FIG. 3(a) is a linear signal with a period of 4 μm, and the signal waveform shown in FIG. 3(b) is a linear signal with a period of 0.75 μm. In this way, the signal processing control circuit (7) calculates the phase difference between the beat signals derived from the diffraction grating (10) with a pitch of 8 μm on mask A and wafer B, and the beat signal derived from the diffraction grating (11) with the same pitch of 1.5 μm. Since the phase difference of the signal is detected, the relative positional deviation between mask A and wafer B can be measured within a range of 4 μm, and the resolution of the diffraction grating (11) with a pitch of 1.5 μm (phase meter resolution) If the angle is about 1°, the resolution is 0.75 μm.
/360', which is approximately 5.3 times the resolution of the diffraction grating (10) with a grating pitch of 8 μm.

第4図は同じくシンクロトロン放射光露光装置のマスク
AとウェハBの位置合せ用に使用された第4発明の位置
合せ装置の実施例構成を示している。
FIG. 4 shows the construction of an embodiment of the alignment apparatus of the fourth invention, which is also used for alignment of mask A and wafer B in a synchrotron radiation exposure apparatus.

本実施例構成でも、マスクAとウェハBの夫々に格子ピ
ッチ8μ−と1.5μ朧の各回折格子(10) (11
)を並べて配置しており、更に横ゼーマンレーザの光源
(2)より発せられた2周波成分子□、f2を有するコ
ヒーレント光をシリンダレンズ(20)を介してハーフ
ミラ−(22)によりその一部は偏光ビームスプリッタ
(53)側に、又その残りはミラー(23)を介して別
の偏光ビームスプリッタ(52)側に進入せしめ、面偏
光ビームスプリッタ(52) (53)により夫々上記
コヒーレント光をf1成分とf2構成を有する光に分離
し、更に夫々ミラー(40) (41)とミラー(42
) (43)によりマスクA及びウェハBの夫々に格子
ピッチ8μmと1.5μIで設けられている回折格子(
1’0)(11)に対して夫々上1次方向より照射する
。この時第4図に示されるようにf1成分の光は1/2
波長板(50)(51)によってその偏波面が90°ず
らされ、ミラー(41)(43)により各回折格子(1
0)(11)に対し、+1次方向から照射される。又本
実施例では格子ピッチ8μIの回折格子(10)への照
射で生じる回折光と格゛子ピッチ1.5μlの回折格子
(11)への照射で生じる回折光がいずれも垂直方向に
生ずることになり重なってしまうため、第4図の丁度真
横から見た状態を示す第5図に示されるように、ピッチ
8μmの回折格子(10)への照射とピッチ1.5μm
の回折格子(11)への照射を角度を異ならしめながら
斜入射させることにより、回折光の取り出しをその斜入
射角度に対応せしめた方向で行なえる(斜方検出ができ
る)ようにしている。
In the configuration of this embodiment as well, each diffraction grating (10) (11
) are arranged side by side, and coherent light having two frequency components □ and f2 emitted from the transverse Zeeman laser light source (2) is transmitted through a cylinder lens (20) and a part of it by a half mirror (22). enters the polarizing beam splitter (53), and the rest enters another polarizing beam splitter (52) via the mirror (23), and the coherent light is transmitted by the plane polarizing beam splitters (52) and (53), respectively. The light is separated into light having an f1 component and an f2 configuration, and is further split into mirrors (40) (41) and mirrors (42), respectively.
) According to (43), the diffraction grating (
1'0) and (11) are irradiated from the upper primary direction. At this time, as shown in Figure 4, the light of the f1 component is 1/2
The polarization plane is shifted by 90° by the wave plates (50) and (51), and each diffraction grating (1
0) (11) is irradiated from the +1st order direction. Furthermore, in this example, the diffracted light generated by irradiating the diffraction grating (10) with a grating pitch of 8 μl and the diffracted light generated by irradiating the diffraction grating (11) with a grating pitch of 1.5 μl are both generated in the vertical direction. Therefore, as shown in Figure 5, which shows the state seen from the side of Figure 4, the irradiation to the diffraction grating (10) with a pitch of 8 μm and the pitch of 1.5 μm are shown.
By making the irradiation onto the diffraction grating (11) obliquely incident at different angles, the diffracted light can be extracted in a direction corresponding to the oblique incident angle (oblique detection can be performed).

以上のようにして照射された光は各回折格子(10) 
(11)で回折した時点で光ヘテロダイン干渉光となっ
てミラー(44)’(45)及びナイフェツジミラー(
46) (47)を介してマスクP1ディテクタ(60
)及びウェハPエディテクタ(62)とマスクP2ディ
テクタ(61)及びウェハP2ディテクタ(63)にビ
ート信号として夫々検出される。
The light irradiated in the above manner is applied to each diffraction grating (10).
(11), it becomes an optical heterodyne interference light and mirrors (44)'(45) and Naifezi mirror (
46) Mask P1 detector (60
) and are detected as beat signals by the wafer P editor (62), mask P2 detector (61), and wafer P2 detector (63), respectively.

更に検出された各ビート信号は信号処理制御回路(7)
に入力され、マスクA及びウェハBの夫々に設けられた
格子ピッチ8μmの回折格子(10)に由来するビート
信号間の位相差と同じく格子ピッチ1.5μmの回折格
子(11)に由来するビート信号間の位相差を夫々測定
して、マスクAとウェハ8間の相対的位置ずれ量を各々
検出する。得られる位相差の信号波形は前実施例の第3
図(a)(b)に示されたものと同じになり、そのため
その詳細については省略する。
Furthermore, each detected beat signal is sent to a signal processing control circuit (7).
The phase difference between the beat signals input from the diffraction grating (10) with a grating pitch of 8 μm provided on each of mask A and wafer B and the beat signal originating from the diffraction grating (11) with a grating pitch of 1.5 μm The relative positional deviation between the mask A and the wafer 8 is detected by measuring the phase difference between the signals. The signal waveform of the obtained phase difference is the same as the third one in the previous example.
It is the same as that shown in Figures (a) and (b), so its details will be omitted.

尚、以上本発明で使用される回折格子のタイプは、反射
型、透過型、振幅型、位相型、ブレーズド型等種々のも
のが使用可能である。又光源についても、横ゼーマンレ
ーザのほか、軸ゼーマンレーザと174波長板の組合せ
、及び安定化レーザと周波数シフタの組合せ等が可能で
ある。更に以上の実施例で示したものはマスク回折格子
とウェハ回折格子から得られる各回折光をビート信号に
変換して各ビート信号の位相差を測定したものであり、
これにより得られるマスクとウェハの変位量は相対的な
ものであるが、別に基準ビート信号を採Iす、これに対
してマスク及びウェハが夫々どの程度ずれているかを測
定する絶対位置ずれ検出方式を採用することもできる。
Note that various types of diffraction gratings can be used in the present invention, such as reflection type, transmission type, amplitude type, phase type, and blazed type. As for the light source, in addition to a transverse Zeeman laser, a combination of an axial Zeeman laser and a 174 wavelength plate, a combination of a stabilized laser and a frequency shifter, etc. are possible. Furthermore, in the embodiment shown above, each diffracted light obtained from a mask diffraction grating and a wafer diffraction grating is converted into a beat signal and the phase difference of each beat signal is measured.
Although the amount of displacement between the mask and wafer obtained by this is relative, an absolute positional deviation detection method uses a separate reference beat signal and measures how much the mask and wafer are deviated from each other. can also be adopted.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明法並びに装置によれば、光ヘ
テロダイン位置検出方式の必要な検品分解能を高く維持
したまま、この分解能とは相反する関係にある検出範囲
をこれまでとは逆に著しく拡大することができ、そのた
め第1の物体と第2の物体のクォータミクロン範囲の微
小変位の検出が可能で、且つその検出によって位置合せ
精度も飛躍的に向上せしめることができるようになる。
As detailed above, according to the method and device of the present invention, while maintaining the high inspection resolution required by the optical heterodyne position detection method, the detection range, which has a contradictory relationship with this resolution, can be significantly increased. Therefore, it becomes possible to detect minute displacements in the quarter micron range between the first object and the second object, and the alignment accuracy can be dramatically improved by this detection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第5発明の位置合せ装置の一実施例に係る構成
を示す概略図、第2図は本実施例において各回折格子で
の回折光の発生状況を示す説明図、第3図(a)(b)
は本実施例において各位相差の検出の結果得られた位相
計の信号波形を示す図、第4図は第4発明の位置合せ装
置の実施例構成を示す概略図、第5図は前回の丁度真横
から見た照射光の斜入射状況及び回折光の斜方検出状況
を示す側面図、第6図は従来の光ヘテロダイン位置検出
方式の説明図である。 図中、Aはマスク、Bはウェハ、(la) (lb)(
1o)(11)は回折格子、(2)は光源、(30) 
(31)(32)(33) (40) (40a) (
41)(41a) (42) (43)はミラー(52
) (52a) (53)は偏光ビームスプリッタ、(
50)(51)は1/2波長板、(60) (60a)
 (61)(62) (62a)(63)はディテクタ
、(7)は信号処理制御回路を各示す。 手続補正書 (自発) 補 正 内 容 平成2年//月 16日 本願明細書第20頁4行目から5行目にかけて「シリン
ダレス(20)J とあるを 「シリンダレンズ
FIG. 1 is a schematic diagram showing the configuration of an embodiment of the alignment device of the fifth invention, FIG. 2 is an explanatory diagram showing the generation situation of diffracted light at each diffraction grating in this embodiment, a)(b)
is a diagram showing the signal waveform of the phase meter obtained as a result of detection of each phase difference in this embodiment, FIG. 4 is a schematic diagram showing the configuration of an embodiment of the alignment device of the fourth invention, and FIG. FIG. 6 is a side view showing the oblique incidence of irradiation light and the oblique detection state of diffracted light as viewed from the side, and is an explanatory diagram of the conventional optical heterodyne position detection method. In the figure, A is a mask, B is a wafer, (la) (lb) (
1o) (11) is a diffraction grating, (2) is a light source, (30)
(31) (32) (33) (40) (40a) (
41) (41a) (42) (43) are mirrors (52
) (52a) (53) is a polarizing beam splitter, (
50) (51) are 1/2 wavelength plates, (60) (60a)
(61), (62), (62a), and (63) are detectors, and (7) is a signal processing control circuit, respectively. Procedural amendment (voluntary) Amendment contents 16/1990 Page 20 of the specification of the Japanese application, lines 4 to 5, "Cylinderless (20) J" is replaced with "Cylinder lens"

Claims (5)

【特許請求の範囲】[Claims] (1)2種以上の異なる格子定数の回折格子を並べて第
1及び第2の物体の夫々に配置し、わずかに異なる2周
波数のコヒーレント光を、これらの回折格子に対し垂直
方向から照射し、又はこれらの回折格子に対し夫々±n
次の方向から照射することにより、第1及び第2の物体
の各回折格子から夫々生じる±n次回折光を検出し、又
はこれら各回折格子から夫々垂直方向に生じる回折光を
検出し、且つ前記回折時点で又は回折光光路途中で2周
波成分を干渉せしめて光ヘテロダイン干渉回折光とする
ことでこれらを基にビート信号を夫々生成し、第1及び
第2の物体に設けられた上記回折格子のうち格子定数の
等しいもの同士の回折光から得られるビート信号の位相
差を夫々測定することで第1及び第2の物体の変位量を
検出することを特徴とする位置検出方法。
(1) Two or more types of diffraction gratings with different lattice constants are arranged side by side on each of the first and second objects, and coherent light of two slightly different frequencies is irradiated to these diffraction gratings from the perpendicular direction, or ±n for each of these gratings
By irradiating from the following directions, detecting the ±nth order diffracted light generated from each of the diffraction gratings of the first and second objects, or detecting the diffracted light generated in the vertical direction from each of these diffraction gratings, and By interfering the two frequency components at the time of diffraction or in the middle of the diffracted light optical path to generate optical heterodyne interference diffracted light, beat signals are generated based on these, and the above-mentioned diffraction gratings provided on the first and second objects are generated. A position detection method comprising: detecting the displacement amount of the first and second objects by measuring the phase difference of the beat signals obtained from the diffracted lights of the two objects having the same lattice constant.
(2)第1及び第2の物体の夫々に並べて配置された2
種以上の異なる格子定数からなる回折格子と、わずかに
異なる2周波数のコヒーレント光を発生させる光源と、
該光源から照射されたコヒーレント光を前記第1及び第
2の物体の各回折格子に対して夫々±n次の方向から入
射させる入射角調整手段と、各回折格子で照射光が回折
する時点で又は各回折格子から垂直方向に夫々取り出さ
れる回折光の光路途中で2周波成分を干渉せしめて光ヘ
テロダイン干渉光とする光干渉手段と、第1及び第2の
物体の各回折格子から垂直方向に夫々取り出され、且つ
前記光干渉手段によって光ヘテロダイン干渉光となった
回折光を検出してビート信号を夫々生成する検出手段と
、第1及び第2の物体の前記回折格子のうち格子定数の
等しいもの同士の回折光から前記検出手段によって得ら
れるビート信号の位相差を夫々測定してこれらの位相差
に基づき第1及び第2の物体の変位量を検出する信号処
理手段とを有することを特徴とする位置検出装置。
(2) 2 arranged side by side on each of the first and second objects
A diffraction grating consisting of more than one species of different lattice constants, a light source that generates coherent light of two slightly different frequencies,
an incident angle adjusting means for making the coherent light irradiated from the light source enter each of the diffraction gratings of the first and second objects from ±n-order directions, and at the time when the irradiated light is diffracted by each diffraction grating; or an optical interference means that interferes two frequency components in the optical path of the diffracted light taken out in the vertical direction from each diffraction grating to produce optical heterodyne interference light; detection means for detecting the diffracted lights that are respectively taken out and turned into optical heterodyne interference light by the optical interference means to generate beat signals, respectively; It is characterized by comprising a signal processing means for measuring the phase difference of the beat signals obtained by the detection means from the diffracted light between the objects and detecting the displacement amount of the first and second objects based on these phase differences. position detection device.
(3)第1及び第2の物体の夫々に並べて配置された2
種以上の異なる格子定数からなる回折格子と、わずかに
異なる2周波数のコヒーレント光を発生させる光源と、
該光源から発生したコヒーレント光を前記第1及び第2
の物体の各回折格子に対し垂直方向から照射した時にこ
れらの回折格子から生ずる回折光のうち±n次回折光の
取り出しを夫々行なう回折光の取り出し手段と、前記各
回折光の取り出し光路途中で2周波成分を干渉せしめて
光ヘテロダイン干渉光とする光干渉手段と、前記回折光
取り出し手段によって取り出され且つ光干渉手段によっ
て光ヘテロダイン干渉光となった回折光を検出してビー
ト信号を夫々生成する検出手段と、第1及び第2の物体
の前記回折格子のうち格子定数の等しいもの同士の回折
光から前記検出手段によって得られるビート信号の位相
差を夫々測定してこれらの位相差に基づき第1及び第2
の物体の変位量を検出する信号処理手段とを有すること
を特徴とする位置検出装置。
(3) 2 arranged side by side on each of the first and second objects
A diffraction grating consisting of more than one species of different lattice constants, a light source that generates coherent light of two slightly different frequencies,
Coherent light generated from the light source is transmitted to the first and second
a diffraction light extraction means for respectively extracting the ±nth order diffracted light among the diffracted lights generated from the diffraction gratings when the respective diffraction gratings of the object are irradiated from the perpendicular direction; Optical interference means for interfering frequency components to produce optical heterodyne interference light; and detection for generating beat signals by detecting the diffracted light extracted by the diffracted light extraction means and turned into optical heterodyne interference light by the optical interference means. and a beat signal obtained by the detecting means from the diffracted light of the diffraction gratings having the same grating constant among the diffraction gratings of the first and second objects. and second
A position detection device comprising: signal processing means for detecting the amount of displacement of an object.
(4)第1及び第2の物体の夫々に並べて配置された2
種以上の異なる格子定数からなる回折格子と、第1の物
体及び/又は第2の物体を動かす移動機構と、わずかに
異なる2周波数のコヒーレント光を発生させる光源と、
該光源から照射されたコヒーレント光を前記第1及び第
2の物体の各回折格子に対して夫々±n次の方向から入
射させる入射角調整手段と、各回折格子で照射光が回折
する時点で又は各回折格子から垂直方向に夫々取り出さ
れる回折光の光路途中で2周波成分を干渉せしめて光ヘ
テロダイン干渉光とする光干渉手段と、第1及び第2の
物体の各回折格子から垂直方向に夫々取り出され、且つ
前記光干渉手段によって光ヘテロダイン干渉光となった
回折光を検出してビート信号を夫々生成する検出手段と
、第1及び第2の物体の前記回折格子のうち格子定数の
等しいもの同士の回折光から前記検出手段によって得ら
れるビート信号の位相差を夫々測定してこれらの位相差
に基づき前記移動機構に制御信号を出力し、第1の物体
及び/又は第2の物体を動かして位置合せする信号処理
制御手段とを有することを特徴とする位置合せ装置。
(4) 2 arranged side by side on each of the first and second objects
A diffraction grating having different grating constants of more than one species, a movement mechanism that moves the first object and/or the second object, and a light source that generates coherent light of two slightly different frequencies;
an incident angle adjusting means for making the coherent light irradiated from the light source enter each of the diffraction gratings of the first and second objects from ±n-order directions, and at the time when the irradiated light is diffracted by each diffraction grating; or an optical interference means that interferes two frequency components in the optical path of the diffracted light taken out in the vertical direction from each diffraction grating to produce optical heterodyne interference light; detection means for detecting the diffracted lights that are respectively taken out and turned into optical heterodyne interference light by the optical interference means to generate beat signals, respectively; The phase difference between the beat signals obtained by the detection means from the diffracted light between the objects is measured, and a control signal is output to the moving mechanism based on these phase differences to move the first object and/or the second object. A positioning device characterized by having a signal processing control means that moves and performs positioning.
(5)第1及び第2の物体の夫々に並べて配置された2
種以上の異なる格子定数からなる回折格子と、第1の物
体及び/又は第2の物体を動かす移動機構と、わずかに
異なる2周波数のコヒーレント光を発生させる光源と、
該光源か発生したコヒーレント光を前記第1及び第2の
物体の各回折格子に対し垂直方向から照射した時にこれ
らの回折格子から生ずる回折光のうち±n次回折光の取
り出しを行なう回折光の取り出し手段と、前記各回折光
の取り出し光路途中で2周波成分を干渉せしめて光ヘテ
ロダイン干渉光とする光干渉手段と、前記回折光取り出
し手段によって取り出され且つ光干渉手段によって光ヘ
テロダイン干渉光となった回折光を検出してビート信号
を夫々生成する検出手段と、第1及び第2の物体の前記
回折格子のうち格子定数の等しいもの同士の回折光から
前記検出手段によって得られるビート信号の位相差を夫
々測定してこれらの位相差に基づき前記移動機構に制御
信号を出力し、第1の物体及び/又は第2の物体を動か
して位置合せする信号処理制御手段とを有することを特
徴とする位置合せ装置。
(5) 2 arranged side by side on each of the first and second objects
A diffraction grating having different grating constants of more than one species, a movement mechanism that moves the first object and/or the second object, and a light source that generates coherent light of two slightly different frequencies;
Extracting diffracted light by extracting ±n-order diffracted light among the diffracted lights generated from the diffraction gratings of the first and second objects when the coherent light generated by the light source is irradiated from the perpendicular direction to each of the diffraction gratings of the first and second objects. means, an optical interference means for making two frequency components interfere with each other in the middle of the extraction optical path of each of the diffracted lights to produce optical heterodyne interference light; and an optical interference means for making optical heterodyne interference light extracted by the diffracted light extraction means and turned into optical heterodyne interference light by the optical interference means. Detection means for detecting diffracted light to generate beat signals respectively; and a phase difference between beat signals obtained by the detection means from diffracted light of the diffraction gratings having the same grating constant among the diffraction gratings of the first and second objects. and signal processing control means for measuring the respective phase differences and outputting a control signal to the moving mechanism based on these phase differences to move and align the first object and/or the second object. Alignment device.
JP2177236A 1990-04-19 1990-07-06 Position detecting method, apparatus therefor and position aligning apparatus Expired - Lifetime JPH0635927B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2177236A JPH0635927B2 (en) 1990-07-06 1990-07-06 Position detecting method, apparatus therefor and position aligning apparatus
US07/688,115 US5182610A (en) 1990-04-19 1991-04-19 Position detecting method and device therefor as well as aligning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2177236A JPH0635927B2 (en) 1990-07-06 1990-07-06 Position detecting method, apparatus therefor and position aligning apparatus

Publications (2)

Publication Number Publication Date
JPH0465604A true JPH0465604A (en) 1992-03-02
JPH0635927B2 JPH0635927B2 (en) 1994-05-11

Family

ID=16027529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2177236A Expired - Lifetime JPH0635927B2 (en) 1990-04-19 1990-07-06 Position detecting method, apparatus therefor and position aligning apparatus

Country Status (1)

Country Link
JP (1) JPH0635927B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326002A (en) * 1993-03-15 1994-11-25 Toshiba Corp Position aligning device
JPH0981736A (en) * 1995-09-08 1997-03-28 Fuji Electric Co Ltd Flaw inspecting device
JP2014529896A (en) * 2011-08-23 2014-11-13 エーエスエムエル ネザーランズ ビー.ブイ. Metrology method and apparatus and device manufacturing method
JP2017204539A (en) * 2016-05-10 2017-11-16 キヤノン株式会社 Position detector, position detection method, imprint device and manufacturing method of article
CN114812443A (en) * 2022-04-24 2022-07-29 合肥工业大学 Straightness and roll angle error simultaneous measurement system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06326002A (en) * 1993-03-15 1994-11-25 Toshiba Corp Position aligning device
JPH0981736A (en) * 1995-09-08 1997-03-28 Fuji Electric Co Ltd Flaw inspecting device
JP2014529896A (en) * 2011-08-23 2014-11-13 エーエスエムエル ネザーランズ ビー.ブイ. Metrology method and apparatus and device manufacturing method
JP2017204539A (en) * 2016-05-10 2017-11-16 キヤノン株式会社 Position detector, position detection method, imprint device and manufacturing method of article
CN114812443A (en) * 2022-04-24 2022-07-29 合肥工业大学 Straightness and roll angle error simultaneous measurement system

Also Published As

Publication number Publication date
JPH0635927B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
US4848911A (en) Method for aligning first and second objects, relative to each other, and apparatus for practicing this method
US5369486A (en) Position detector for detecting the position of an object using a diffraction grating positioned at an angle
US5610718A (en) Apparatus and method for detecting a relative displacement between first and second diffraction gratings arranged close to each other wherein said gratings have different pitch sizes
KR100577107B1 (en) Multi-channel grating interference alignment sensor
US4895447A (en) Phase-sensitive interferometric mask-wafer alignment
US5321502A (en) Measuring method and measuring apparatus
JPH0794969B2 (en) Positioning method and device thereof
JPH0465604A (en) Method and device for position detection and aligning device
JPH0749926B2 (en) Alignment method and alignment device
JPH042116A (en) Method and device for detecting position and alignment device
JPH083404B2 (en) Alignment method
JP2773779B2 (en) Displacement measuring method and displacement measuring device using diffraction grating
JP2931082B2 (en) Method and apparatus for measuring small displacement
JP2646297B2 (en) Alignment light transmittance control method and apparatus
JPH09138110A (en) Method and apparatus for position alignment using diffraction grating
JP2694045B2 (en) Positioning device using diffraction grating
JP2677662B2 (en) Relative alignment method and device
JPS63172904A (en) Method and device for position detection by diffraction grating
JPH0799325B2 (en) Minute displacement measuring method and minute displacement measuring device
JPH06147827A (en) Positional shift detecting method
JP2656333B2 (en) Gap setting method and apparatus
JPH0228502A (en) Aligning method
JPH0635928B2 (en) Position detection method and position alignment method
JP2837532B2 (en) Method and apparatus for measuring small displacement
JPH0587530A (en) Interference measurement device