JPH0642793A - Heating and dehumidifying air conditioning apparatus - Google Patents

Heating and dehumidifying air conditioning apparatus

Info

Publication number
JPH0642793A
JPH0642793A JP4196716A JP19671692A JPH0642793A JP H0642793 A JPH0642793 A JP H0642793A JP 4196716 A JP4196716 A JP 4196716A JP 19671692 A JP19671692 A JP 19671692A JP H0642793 A JPH0642793 A JP H0642793A
Authority
JP
Japan
Prior art keywords
dehumidifying
air
temperature
heating
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4196716A
Other languages
Japanese (ja)
Inventor
Akira Morikawa
朗 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4196716A priority Critical patent/JPH0642793A/en
Publication of JPH0642793A publication Critical patent/JPH0642793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent the condensation of moisture in air in an area of window glass by controlling operation of a dehumidifying means with reasonable control form. CONSTITUTION:The setting of an objective humidity condition (rb') is changed automatically to low humidity side when a detecting outside air temperature (to) of an outside air temperature detecting means 19 is reduced so that the setting condition that the absolute humidity in an area in the objective humidity condition (rb') becomes lower than the absolute humidity of saturated air at the detecting outside temperature (to). In this case, the objective humidity condition (rb') in the objective area P is controlled by the control of operation of a dehumidifying means 6c through a dehumidifying control means 15 under a setting condition that the absolute humidity in the area under the objective humidity condition (rb') becomes lower than the absolute humidity of saturated air at the outside air temperature (to). According to this method, the dew point temperature of air in the area P is kept lower than the outside temperature (to) even when the temperature of a window glass is reduced to a temperature equal to the outside temperature (to) whereby the condensation of moisture in air in the area P on the window glass can be prevented surely and comfortability in the area can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、対象域を暖房する暖房
手段、前記対象域を除湿する除湿手段、及び、前記対象
域の空気状態検出に基づき、前記暖房手段による暖房状
態において前記対象域の湿度状態を目標湿度状態にする
ように、前記除湿手段を出力調整する除湿制御手段を設
けた暖房除湿空調装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a heating means for heating a target area, a dehumidifying means for dehumidifying the target area, and an air condition detection of the target area. The present invention relates to a heating / dehumidifying air conditioner provided with a dehumidifying control means for adjusting the output of the dehumidifying means so as to bring the humidity state of 1 to the target humidity state.

【0002】[0002]

【従来の技術】従来、上記の如き暖房除湿空調装置にお
いては、目標湿度状態(一般には目標相対湿度)を人為
的に設定するようにしており、域内への水分侵入や域内
での水分発生等の除湿負荷に対し対象域は、上記の除湿
制御手段による除湿手段の出力調整により単に人為設定
の目標湿度状態に調整・維持されるに過ぎなかった。
2. Description of the Related Art Conventionally, in the heating and dehumidifying air conditioner as described above, the target humidity condition (generally, the target relative humidity) is artificially set, so that the moisture intrusion into the region or the moisture generation in the region occurs. With respect to the dehumidifying load of No. 3, the target area was merely adjusted and maintained at the artificially set target humidity state by adjusting the output of the dehumidifying unit by the above dehumidifying control unit.

【0003】[0003]

【発明が解決しようとする課題】しかし、主に冬期、暖
房状態にある域内に比べ低温の外気に晒される窓ガラス
が曇ったり、その窓において凝縮水の雫が垂れたりする
ことを防止するため、安全を見込んで目標湿度状態(目
標相対湿度)をかなりの低湿側に設定すると、常時、高
出力で除湿手段を継続運転することとなるため運転経費
が高く付き、又、域内が常に乾燥状態となるため域内快
適性が大巾に損なわれる問題があった。
However, in order to prevent the window glass, which is exposed to the outside air at a temperature lower than that in the heated area, from clouding and the condensed water drop dripping in the window, mainly in winter. If the target humidity condition (target relative humidity) is set to a considerably low humidity side in consideration of safety, the dehumidifying means will be continuously operated with a high output at all times, resulting in high operating costs, and the area is always dry. Therefore, there is a problem that the comfort in the area is greatly impaired.

【0004】本発明の目的は、除湿手段を合理的な制御
形態をもって運転制御することにより、上記の問題を解
消して、窓ガラスにおける曇りや雫垂れといった域内空
気中水分の結露現象を確実に防止しながら、運転経費の
節減、及び、域内快適性の向上を達成する点にある。
An object of the present invention is to solve the above problems by controlling the operation of the dehumidifying means in a rational control mode, and to surely prevent the dew condensation phenomenon of moisture in the air in the region such as fog on the window glass or drizzling. While preventing it, it is to reduce operating costs and improve comfort in the area.

【0005】[0005]

【課題を解決するための手段】本発明による暖房除湿空
調装置の第1特徴構成は、対象域を暖房する暖房手段、
前記対象域を除湿する除湿手段、及び、前記対象域の空
気状態検出に基づき、前記暖房手段による暖房状態にお
いて前記対象域の湿度状態を目標湿度状態にするよう
に、前記除湿手段を出力調整する除湿制御手段を設ける
構成において、外気温度を検出する外気温検出手段、及
び、この検出外気温度に基づき、前記の目標湿度状態に
おける域内絶対湿度が検出外気温度における飽和空気の
絶対湿度以下となる設定状態を保つように、前記の目標
湿度状態を検出外気温度が低下するほど低湿側へ自動的
に設定変更する設定変更手段を設けたことにあり、その
作用・効果は次の通りである。
A first characteristic configuration of a heating and dehumidifying air conditioner according to the present invention is heating means for heating a target area,
Based on the dehumidifying means for dehumidifying the target area, and the air condition detection of the target area, the output of the dehumidifying means is adjusted so that the humidity state of the target area becomes the target humidity state in the heating state by the heating means. In the configuration provided with the dehumidification control means, the outside air temperature detection means for detecting the outside air temperature, and the setting such that the absolute humidity in the region in the target humidity state is equal to or less than the absolute humidity of the saturated air at the detected outside air temperature based on the detected outside air temperature. In order to maintain the state, there is provided the setting change means for automatically changing the target humidity state to the low humidity side as the detected outside air temperature decreases, and the action and effect are as follows.

【0006】[0006]

【作用】つまり、目標湿度状態における域内絶対湿度が
外気温度における飽和空気の絶対湿度以下となる設定状
態において、除湿制御手段による除湿手段の運転制御で
域内がその目標湿度状態に調整されると、たとえ窓ガラ
スの温度が外気温度と等しい温度にまで低下したとして
も、域内空気の絶対湿度が外気温度における飽和空気の
絶対湿度以下、すなわち、域内空気の露点温度が外気温
度以下であることから、その窓ガラスでの域内空気中水
分の結露は確実に防止される。
That is, when the internal humidity is adjusted to the target humidity state by the operation control of the dehumidifying means by the dehumidifying control means in a setting state in which the absolute humidity in the area in the target humidity state is equal to or less than the absolute humidity of saturated air at the outside air temperature, Even if the temperature of the window glass drops to a temperature equal to the outside air temperature, the absolute humidity of the inside air is equal to or lower than the absolute humidity of the saturated air at the outside air temperature, that is, the dew point temperature of the inside air is equal to or lower than the outside air temperature. Condensation of moisture in the air on the window glass is reliably prevented.

【0007】そして、外気温変化に対し、外気温度が低
下するほど目標湿度状態を低湿側へ自動的に設定変更さ
せることにより、外気温度が比較的高温で結露が生じに
くいにもかかわらず、除湿手段を不必要に高出力運転し
て域内を必要以上に低い低湿状態(乾燥状態)に調整・
維持したり、また逆に、外気温度が相当に低くて結露が
生じ易いにもかかわらず、目標湿度状態の設定が結露防
止上、不十分な高湿側にあるといったことを回避でき
る。
With respect to the change in the outside air temperature, the target humidity condition is automatically changed to the low humidity side as the outside air temperature lowers, so that the dehumidification is performed even though the outside air temperature is relatively high and dew condensation hardly occurs. Unnecessarily high output operation of the means to adjust the area to a low humidity condition (dry condition) lower than necessary
On the contrary, it is possible to prevent the setting of the target humidity state on the high humidity side, which is insufficient for the purpose of preventing dew condensation, even if the outside air temperature is considerably low and dew condensation is likely to occur.

【0008】[0008]

【発明の効果】従って、本発明の第1特徴構成によれ
ば、窓ガラスにおける曇りや雫だれといった域内空気中
水分の結露現象を確実に防止しながらも、域内を人為設
定された一定の目標湿度状態に調整するだけの従来空調
装置に比べ、除湿手段の不必要な高出力運転を効果的に
回避できて運転経費を節減でき、又、域内を必要以上に
乾燥状態に保つことを回避できて域内快適性を向上でき
る。
Therefore, according to the first characteristic configuration of the present invention, the dew condensation phenomenon of the moisture in the air in the region such as fogging and drop in the window glass can be surely prevented, and a certain target artificially set in the region can be set. Compared with the conventional air conditioner that only adjusts to the humidity condition, unnecessary high output operation of the dehumidifying means can be effectively avoided, operating cost can be saved, and it is possible to avoid keeping the area dry more than necessary. You can improve the comfort in the area.

【0009】〔本発明の第2特徴構成〕本発明による暖
房除湿空調装置の第2特徴構成は、ペリメータゾーンを
前記の対象域として前記除湿手段をペリメータゾーン用
の除湿手段とし、このペリメータゾーン用除湿手段とイ
ンテリアゾーン用除湿手段とに対し除湿用熱源を分配供
給する熱源手段を設け、暖房状態において前記ペリメー
タゾーン用除湿手段に対する除湿用熱源の供給を前記イ
ンテリアゾーン用除湿手段に対する除湿用熱源の供給よ
りも優先する分配制御手段を設けたことにある。
[Second Characteristic Configuration of the Present Invention] In a second characteristic configuration of the heating and dehumidifying air conditioner according to the present invention, the dehumidifying means is a dehumidifying means for the perimeter zone, with the perimeter zone as the target area. The heat source means for supplying the dehumidifying heat source to the dehumidifying means and the interior zone dehumidifying means is provided, and the supply of the dehumidifying heat source to the perimeter zone dehumidifying means in the heating state is performed by the dehumidifying heat source to the interior zone dehumidifying means. This is because the distribution control means having priority over the supply is provided.

【0010】つまり、暖房状態における窓ガラスでの曇
りや雫垂れ等の結露現象は当然のことながらインテリア
ゾーンに比べ屋外に接するペリーメータゾーンにおいて
生じ易い。
That is, the dew condensation phenomenon such as fogging and drop of water on the window glass in the heated state is naturally more likely to occur in the perimeter zone in contact with the outdoors than in the interior zone.

【0011】従って、上記の第2特徴構成を採用すれ
ば、ペリメータゾーン用除湿手段とインテリアゾーン用
除湿手段とに対し除湿用熱源を分配供給する共通熱源手
段の能力が限られている状況においても、又、その熱源
手段に能力的に小型なものを選定しながらも、外気温度
の相当の低温化に対し、ペリメータゾーン用除湿手段に
対する除湿用熱源の優先供給によりペリメータゾーンに
対する除湿効果を高めて、ペリメータゾーンでの結露発
生を確実に防止できる。
Therefore, if the above-mentioned second characteristic structure is adopted, even in a situation where the capacity of the common heat source means for distributing and supplying the heat source for dehumidification to the dehumidifying means for the perimeter zone and the dehumidifying means for the interior zone is limited. In addition, while selecting a small capacity as the heat source means, the dehumidifying effect on the perimeter zone can be enhanced by preferentially supplying the dehumidifying heat source to the dehumidifying means for the perimeter zone in response to a considerable decrease in outside air temperature. , It is possible to reliably prevent the occurrence of dew condensation in the perimeter zone.

【0012】[0012]

【実施例】【Example】

〔第1実施例〕次に第1実施例を説明する。 [First Embodiment] Next, a first embodiment will be described.

【0013】図1はインテリジェントビル等におけるイ
ンテリアゾーンI及びペリメータゾーンPに対する空調
設備を示し、1aはインテリアゾーン用の第1空調ユニ
ット、1bはペリメータゾーン用の第2空調ユニット、
1cは両空調ユニット1a,1bに対する共通の熱源ユ
ニットである。
FIG. 1 shows air conditioning equipment for an interior zone I and a perimeter zone P in an intelligent building or the like, where 1a is a first air conditioning unit for the interior zone, 1b is a second air conditioning unit for the perimeter zone,
1c is a heat source unit common to both air conditioning units 1a and 1b.

【0014】2は両ゾーンI,Pからの還気Rを合流さ
せて第1及び第2空調ユニット1a,1bの夫々に戻す
還気ダクトであり、第1空調ユニット1aは、還気ダク
ト2からの還気Rと外気ダクト3からの導入外気Oとの
混合空気を内装の上流側熱交換器4c、下流側熱交換器
4h、及び、加湿器4mにより温湿度調整し、この調整
空気をインテリアゾーンIに対する給気Saとして給気
ファンFaによりインテリアゾーンIへの給気ダクト5
aへ送出する。
Reference numeral 2 is a return air duct that joins the return air R from both zones I and P and returns it to each of the first and second air conditioning units 1a and 1b. The first air conditioning unit 1a includes the return air duct 2 The mixed air of the return air R from the outside air and the introduced outside air O from the outside air duct 3 is adjusted in temperature and humidity by the upstream side heat exchanger 4c, the downstream side heat exchanger 4h, and the humidifier 4m, and this adjusted air is Air supply duct 5 to interior zone I by air supply fan Fa as air supply Sa to interior zone I
Send to a.

【0015】また同様に、第2空調ユニット1bは、還
気ダクト2からの還気Rを内装の上流側熱交換器6c、
下流側熱交換器6h、及び、加湿器6mにより温湿度調
整し、この調整空気をペリメータゾーンPに対する給気
Sbとして給気ファンFbによりペリメータゾーンPへ
の給気ダクト5bへ送出する。
Similarly, in the second air conditioning unit 1b, the return air R from the return air duct 2 is installed in the upstream heat exchanger 6c,
The temperature and humidity are adjusted by the downstream heat exchanger 6h and the humidifier 6m, and this adjusted air is sent to the air supply duct 5b to the perimeter zone P as the air supply Sb for the perimeter zone P by the air supply fan Fb.

【0016】各ゾーンI,Pの夫々において、7a,7
bはゾーン温度tra,trbを調整する変風量装置で
あり、ゾーン温センサ8a,8bによる検出ゾーン温度
tra,trbと設定器9a,9bによる目標ゾーン温
度tra’,trb’との偏差Δtra,Δtrbに応
じ、制御器10a,10bがダンパ11a,11bの開
度調整により各ゾーンI,Pへの給気風量qa,qbを
調整して、各ゾーンI,Pのゾーン温度tra,trb
を目標ゾーン温度tra’,trb’に調整・維持す
る。
In each of the zones I and P, 7a and 7a
Reference numeral b is a variable air volume device that adjusts the zone temperatures tra and trb, and deviations Δtra and Δtrb between the detected zone temperatures tra and trb by the zone temperature sensors 8a and 8b and the target zone temperatures tra ′ and trb ′ by the setters 9a and 9b. In accordance with the above, the controllers 10a and 10b adjust the supply air amounts qa and qb to the zones I and P by adjusting the opening degrees of the dampers 11a and 11b, respectively, and the zone temperatures tra and trb of the zones I and P are adjusted.
Is adjusted and maintained at the target zone temperatures tra 'and trb'.

【0017】又、12a,12bは、変風量装置7a,
7bによる給気風量qa,qbの調整に対し、風路圧セ
ンサ13a,13bによる検出される各給気ダクト5
a,5bの内部静圧pa,pbに基づき、それら給気ダ
クト5a,5bの内部静圧pa,pbを各々の目標静圧
pa’,pb’に調整・維持するように、各給気ファン
Fa,Fbを出力調整するファン制御器である。
Reference numerals 12a and 12b denote air flow rate changing devices 7a and 7a.
Each air supply duct 5 detected by the airway pressure sensors 13a, 13b in response to the adjustment of the air supply air amounts qa, qb by 7b.
Based on the internal static pressures pa, pb of a, 5b, the respective internal static pressures pa, pb of the air supply ducts 5a, 5b are adjusted and maintained at the respective target static pressures pa ', pb'. It is a fan controller that adjusts the output of Fa and Fb.

【0018】熱源ユニット1cには、熱源用熱交換器1
4、この熱源用熱交換器14に対し吸放熱対象の外気O
を通風するファンFc、圧縮機C、及び、弁機構Vを装
備し、この熱源ユニット1cと各空調ユニット1a,1
bを渡り冷媒配管uにより接続することで、各熱交換器
4c,4h,6c,6h,14にわたり圧縮機Cにより
冷媒を循環させる空気熱源ヒートポンプを構成してあ
る。
The heat source unit 1c includes a heat source heat exchanger 1
4. Outside air O to be absorbed and radiated with respect to the heat exchanger 14 for heat source
Equipped with a fan Fc that ventilates, a compressor C, and a valve mechanism V, this heat source unit 1c and each air conditioning unit 1a, 1
By connecting b through the refrigerant pipe u, an air heat source heat pump in which the refrigerant is circulated by the compressor C over the heat exchangers 4c, 4h, 6c, 6h, 14 is configured.

【0019】そして、このヒートポンプは弁機構Vにお
ける各弁の切り換え操作により下記(イ)〜(ヘ)の冷
媒循環パターンを選択できるようにしてある。
In this heat pump, the following refrigerant circulation patterns (a) to (f) can be selected by switching each valve in the valve mechanism V.

【0020】(イ)暖房・暖房パターン 図2に示すように、圧縮機Cから吐出される高圧冷媒ガ
ス(図中、黒塗りの太線で示す)を2流に分流して、第
1切換弁v1、第3切換弁v3を介し第1空調ユニット
1aにおける下流側熱交換器4hと、第2空調ユニット
1bにおける下流側熱交換器6hとに分配供給し、これ
ら下流側熱交換器4h,6hを凝縮器として空気加熱機
能させる。
(B) Heating / Heating pattern As shown in FIG. 2, the high pressure refrigerant gas discharged from the compressor C (indicated by a thick black line in the figure) is divided into two streams to make the first switching valve. The downstream heat exchanger 4h in the first air conditioning unit 1a and the downstream heat exchanger 6h in the second air conditioning unit 1b are distributed and supplied via v1 and the third switching valve v3, and these downstream heat exchangers 4h, 6h are provided. To function as an air heating condenser.

【0021】各下流側熱交換器4h,6hから送出され
る凝縮冷媒液(図中、ハッチングを施した太線で示す)
は、それぞれ単なる流量調整弁として機能させる第1膨
張弁ex1、第3膨張弁ex3を介し合流させ、この合
流冷媒液を第5膨張弁ex5を介し熱源用熱交換器14
に供給することで、熱源用熱交換器14を蒸発器として
外気Oに対し吸熱機能させる。
Condensed refrigerant liquid delivered from each of the downstream side heat exchangers 4h and 6h (indicated by hatched thick lines in the figure).
Are combined by way of a first expansion valve ex1 and a third expansion valve ex3 which respectively function as simple flow rate adjusting valves, and the combined refrigerant liquid is passed through a fifth expansion valve ex5 and the heat source heat exchanger 14
The heat source heat exchanger 14 functions as an evaporator to cause the outside air O to absorb heat.

【0022】そして、熱源用熱交換器14から送出され
る低圧冷媒ガス(図中、白抜きの太線で示す)を第6切
換弁v6、及び、アキュムレータAcを介し圧縮機Cに
吸入させる。
Then, the low-pressure refrigerant gas (shown by the white thick line in the figure) sent from the heat source heat exchanger 14 is sucked into the compressor C via the sixth switching valve v6 and the accumulator Ac.

【0023】つまり、各空調ユニット1a,1bにおい
て下流側熱交換器4h,6hにより加熱した温風Sa,
Sbを各ゾーンI,Pに供給することで、各ゾーンI,
Pを暖房する。
That is, in each of the air conditioning units 1a and 1b, the warm air Sa heated by the downstream heat exchangers 4h and 6h,
By supplying Sb to each zone I, P, each zone I,
Heat P.

【0024】(ロ)暖房除湿パターン 図3に示すように、上記(イ)の暖房・暖房モードと同
様、圧縮機Cから吐出される高圧冷媒ガス(黒塗りの太
線)を2流に分流して、第1切換弁v1、第3切換弁v
3を介し第1空調ユニット1aにおける下流側熱交換器
4hと、第2空調ユニット1bにおける下流側熱交換器
6hとに分配供給し、これら下流側熱交換器4h,6h
を凝縮器として空気加熱機能させる。
(B) Heating dehumidification pattern As shown in FIG. 3, the high pressure refrigerant gas (thick black line) discharged from the compressor C is divided into two streams as in the heating / heating mode of (a) above. The first switching valve v1 and the third switching valve v
3 to the downstream side heat exchanger 4h in the first air conditioning unit 1a and the downstream side heat exchanger 6h in the second air conditioning unit 1b, and these downstream side heat exchangers 4h, 6h are supplied.
To function as an air heating condenser.

【0025】各下流側熱交換器4h,6hから送出され
る凝縮冷媒液(ハッチングを施した太線)は、それぞれ
単なる流量調整弁として機能させる第1膨張弁ex1、
第3膨張弁ex3を介し合流させるが、この合流冷媒液
は2流に分流して、一方は第5膨張弁ex5を介し熱源
用熱交換器14に供給し、又、他方は第4膨張弁ex4
を介して第2空調ユニット1bにおける上流側熱交換器
6cに供給し、これにより、熱源用熱交換器14を蒸発
器として外気Oに対し吸熱機能させるとともに、ペリメ
ータゾーンPに対する第2空調ユニット1bの上流側熱
交換器6cを蒸発器として空気冷却機能させる。
The condensed refrigerant liquids (thick lines with hatching) sent from the respective downstream side heat exchangers 4h, 6h are first expansion valves ex1, which function as simple flow rate adjusting valves, respectively.
The combined refrigerant liquid is split into two streams, one of which is supplied to the heat source heat exchanger 14 through the fifth expansion valve ex5, and the other of which is the fourth expansion valve ex3. ex4
To the upstream heat exchanger 6c in the second air conditioning unit 1b, whereby the heat source heat exchanger 14 functions as an evaporator to absorb heat from the outside air O, and the second air conditioning unit 1b to the perimeter zone P is supplied. The upstream side heat exchanger 6c is used as an evaporator to perform an air cooling function.

【0026】そして、熱源用熱交換器14、及び、第2
空調ユニット1bの上流側熱交換器6cから送出される
低圧冷媒ガス(白抜きの太線)を第6切換弁v6、及び
第4切換弁v4を介し合流させ、その合流冷媒ガスをア
キュムレータAcを介し圧縮機Cに吸入させる。
Then, the heat exchanger 14 for the heat source and the second
The low-pressure refrigerant gas (white thick line) sent from the upstream heat exchanger 6c of the air conditioning unit 1b is caused to join via the sixth switching valve v6 and the fourth switching valve v4, and the combined refrigerant gas is passed through the accumulator Ac. Let the compressor C inhale.

【0027】つまり、インテリアゾーンIについては第
1空調ユニット1aの下流側熱交換器4hにより加熱し
た温風Saを供給することで暖房を施し、これに対し、
ペリメータゾーンPについては、第2空調ユニット1b
において上流側熱交換器6cでの空気冷却除湿と、それ
に続く下流側熱交換器6hでの再熱により除湿温風Sb
を生成して、この除湿温風Sbを供給することで、ペリ
メータゾーンPに暖房に伴い除湿を施し、これにより、
ペリメータゾーンPにおいて屋外に面する窓ガラスwで
曇りが発生したり凝縮水の雫垂れが生じる等の、ゾーン
内空気中水分の結露現象を防止する。
That is, the interior zone I is heated by supplying the warm air Sa heated by the downstream heat exchanger 4h of the first air conditioning unit 1a.
For the perimeter zone P, the second air conditioning unit 1b
In the above, the air-cooled dehumidification in the upstream heat exchanger 6c and the subsequent reheating in the downstream heat exchanger 6h cause dehumidified hot air Sb.
Is generated and the dehumidified hot air Sb is supplied to dehumidify the perimeter zone P along with heating.
In the perimeter zone P, the phenomenon of dew condensation of moisture in the air in the zone, such as fogging of the window glass w facing the outdoors and drop of condensed water, is prevented.

【0028】尚、この冷媒循環パターンにおいては、イ
ンテリアゾーンIとペリメータゾーンPとのゾーン間連
通、及び、還気ダクト2における各ゾーンI,Pからの
還気Rの合流により、インテリアゾーンIに対してもあ
る程度の除湿効果を同時に与える。
In the refrigerant circulation pattern, the interior zone I and the perimeter zone P are communicated with each other and the return air R from the zones I and P in the return air duct 2 merges into the interior zone I. It also gives some dehumidifying effect at the same time.

【0029】(ハ)冷房・暖房パターン 図4に示すように、圧縮機Cから吐出される高圧冷媒ガ
ス(黒塗りの太線)を第3切換弁v3を介し第2空調ユ
ニット1bの下流側熱交換器6hに供給して、第2空調
ユニット1bの下流側熱交換器6hを凝縮器として空気
加熱機能させる。
(C) Cooling / Heating Pattern As shown in FIG. 4, the high-pressure refrigerant gas (black thick line) discharged from the compressor C is passed through the third switching valve v3 to the downstream heat of the second air conditioning unit 1b. The heat is supplied to the exchanger 6h to cause the downstream heat exchanger 6h of the second air conditioning unit 1b to function as an air heater as a condenser.

【0030】第2空調ユニット1bの下流側熱交換器6
hから送出される凝縮冷媒液(ハッチングを施した太
線)は単なる流量調整弁として機能させる第3膨張弁e
x3を介し2流に分流し、一方は第5膨張弁ex5を介
し熱源用熱交換器14に供給し、又、他方は第2膨張弁
ex2を介して第1空調ユニット1aにおける上流側熱
交換器4cに供給し、これにより、熱源用熱交換器14
を蒸発器として外気Oに対し吸熱機能させるとともに、
インテリアゾーンIに対する第1空調ユニット1aの上
流側熱交換器4cを蒸発器として空気冷却機能させる。
The heat exchanger 6 on the downstream side of the second air conditioning unit 1b
The condensed refrigerant liquid (thick line with hatching) sent from h is a third expansion valve e that functions as a mere flow rate adjusting valve.
x3 and split into two streams, one is supplied to the heat source heat exchanger 14 through the fifth expansion valve ex5, and the other is upstream heat exchange in the first air conditioning unit 1a through the second expansion valve ex2. The heat source heat exchanger 14
Is used as an evaporator to absorb heat from the outside air O, and
The upstream heat exchanger 4c of the first air conditioning unit 1a for the interior zone I functions as an evaporator to perform an air cooling function.

【0031】そして、熱源用熱交換器14、及び、第1
空調ユニット1aの上流側熱交換器4cから送出される
低圧冷媒ガス(白抜きの太線)を第6切換弁v6、及び
第2切換弁v2を介し合流させ、その合流冷媒ガスをア
キュムレータAcを介し圧縮機Cに吸入させる。
Then, the heat exchanger 14 for the heat source and the first
The low-pressure refrigerant gas (white thick line) sent from the upstream heat exchanger 4c of the air conditioning unit 1a is merged through the sixth switching valve v6 and the second switching valve v2, and the combined refrigerant gas is passed through the accumulator Ac. Let the compressor C inhale.

【0032】つまり、インテリアゾーンIに対しては冷
房を施し、又、ペリメータゾーンPに対しては暖房を施
す。
That is, the interior zone I is cooled, and the perimeter zone P is heated.

【0033】(ニ)暖房・冷房パターン 図5に示すように、圧縮機Cから吐出される高圧冷媒ガ
ス(黒塗りの太線)を第1切換弁v1を介し第1空調ユ
ニット1aの下流側熱交換器4hに供給して、第1空調
ユニット1aの下流側熱交換器4hを凝縮器として空気
加熱機能させる。
(D) Heating / cooling pattern As shown in FIG. 5, the high-pressure refrigerant gas (black thick line) discharged from the compressor C is passed through the first switching valve v1 to the downstream heat of the first air conditioning unit 1a. The heat is supplied to the exchanger 4h to cause the downstream heat exchanger 4h of the first air conditioning unit 1a to function as an air heater as a condenser.

【0034】第1空調ユニット1aの下流側熱交換器4
hから送出される凝縮冷媒液(ハッチングを施した太
線)は単なる流量調整弁として機能させる第1膨張弁e
x1を介し2流に分流し、一方は第5膨張弁ex5を介
し熱源用熱交換器14に供給し、又、他方は第4膨張弁
ex4を介して第2空調ユニット1bにおける上流側熱
交換器6cに供給し、これにより、熱源用熱交換器14
を蒸発器として外気Oに対し吸熱機能させるとともに、
ペリメータゾーンPに対する第2空調ユニット1bの上
流側熱交換器6cを蒸発器として空気冷却機能させる。
Downstream heat exchanger 4 of the first air conditioning unit 1a
The condensed refrigerant liquid (thick line with hatching) delivered from h is a first expansion valve e that functions as a mere flow rate adjusting valve.
x1 to split into two streams, one is supplied to the heat source heat exchanger 14 via the fifth expansion valve ex5, and the other is upstream heat exchange in the second air conditioning unit 1b via the fourth expansion valve ex4. The heat exchanger 14 for the heat source.
Is used as an evaporator to absorb heat from the outside air O, and
The upstream heat exchanger 6c of the second air conditioning unit 1b with respect to the perimeter zone P is made to function as an evaporator with an air cooling function.

【0035】そして、熱源用熱交換器14、及び、第2
空調ユニット1bの上流側熱交換器6cから送出される
低圧冷媒ガス(白抜きの太線)を第6切換弁v6、及び
第4切換弁v4を介し合流させ、その合流冷媒ガスをア
キュムレータAcを介し圧縮機Cに吸入させる。
Then, the heat exchanger 14 for the heat source and the second
The low-pressure refrigerant gas (white thick line) sent from the upstream heat exchanger 6c of the air conditioning unit 1b is caused to join via the sixth switching valve v6 and the fourth switching valve v4, and the combined refrigerant gas is passed through the accumulator Ac. Let the compressor C inhale.

【0036】つまり、上記(ハ)の冷房・暖房パターン
とは逆に、インテリアゾーンIに暖房を施し、ペリメー
タゾーンPに冷房を施す。
That is, contrary to the cooling / heating pattern of (c), the interior zone I is heated and the perimeter zone P is cooled.

【0037】(ホ)冷房・冷房パターン 図6に示すように、圧縮機Cから吐出される高圧冷媒ガ
ス(黒塗りの太線)を第5切換弁v5を介し熱源用熱交
換器14に供給し、熱源用熱交換器14を凝縮器として
外気Oに対し放熱機能させる。
(E) Cooling / cooling pattern As shown in FIG. 6, the high-pressure refrigerant gas (black thick line) discharged from the compressor C is supplied to the heat source heat exchanger 14 through the fifth switching valve v5. , The heat source heat exchanger 14 is used as a condenser to radiate heat to the outside air O.

【0038】熱源用熱交換器14から送出される凝縮冷
媒液(ハッチングを施した太線)は単なる流量調整弁と
して機能させる第5膨張弁ex5を介し2流に分流し、
一方は第2膨張弁ex2を介し第1空調ユニット1aの
上流側熱交換器4cに供給し、又、他方は第4膨張弁e
x4を介し第2空調ユニット1bの上流側熱交換器6c
に供給し、これにより、これら上流側熱交換器4c,6
cを蒸発器として空気冷却機能させる。
The condensed refrigerant liquid (thick line with hatching) sent from the heat source heat exchanger 14 is split into two streams via the fifth expansion valve ex5 which functions as a simple flow rate adjusting valve,
One is supplied to the upstream heat exchanger 4c of the first air conditioning unit 1a via the second expansion valve ex2, and the other is supplied to the fourth expansion valve e.
x4 through the upstream side heat exchanger 6c of the second air conditioning unit 1b
To the upstream heat exchangers 4c, 6
The air cooling function of c is used as an evaporator.

【0039】そして、各上流側熱交換器4c,6cから
送出される低圧冷媒ガスを第2切換弁v2、及び第4切
換弁v4を介し合流させ、この合流冷媒液をアキュムレ
ータAcを介し圧縮機Cに吸入させる。
Then, the low-pressure refrigerant gas delivered from each of the upstream heat exchangers 4c and 6c is merged through the second switching valve v2 and the fourth switching valve v4, and the combined refrigerant liquid is compressed through the accumulator Ac. Let C inhale.

【0040】つまり、各空調ユニット1a,1bにおい
て上流側熱交換器4c,6cにより冷却した冷風Sa,
Sbを各ゾーンI,Pに供給することで、各ゾーンI,
Pを冷房する。
That is, in each of the air conditioning units 1a and 1b, the cold air Sa cooled by the upstream heat exchangers 4c and 6c,
By supplying Sb to each zone I, P, each zone I,
Cool P.

【0041】(へ)冷房除湿パターン 図7に示すように、圧縮機Cから吐出される高圧冷媒ガ
ス(黒塗りの太線)を3流に分流して、第1切換弁v
1、第3切換弁v3、第5切換弁v5を介し第1空調ユ
ニット1aの下流側熱交換器4h、第2空調ユニット1
bの下流側熱交換器6h、及び、熱源用熱交換器14に
分配供給し、これにより、各空調ユニット1a,1bの
下流側熱交換器4h,6hを凝縮器として空気加熱機能
させるとともに、熱源用熱交換器14を外気Oに対し放
熱機能させる。
(V) Cooling / dehumidifying pattern As shown in FIG. 7, the high-pressure refrigerant gas (black thick line) discharged from the compressor C is divided into three streams, and the first switching valve v
1, the third switching valve v3, the fifth switching valve v5, the downstream heat exchanger 4h of the first air conditioning unit 1a, the second air conditioning unit 1
It is distributed and supplied to the downstream side heat exchanger 6h of b, and the heat source heat exchanger 14, thereby making the downstream side heat exchangers 4h and 6h of each air conditioning unit 1a, 1b function as an air heating condenser. The heat exchanger 14 for heat source is made to radiate heat to the outside air O.

【0042】各下流側熱交換器4h,6h、及び、熱源
用熱交換器14から送出される凝縮冷媒液(ハッチング
を施した太線)は、それぞれ単なる流量調整弁として機
能させる第1膨張弁ex1、第3膨張弁ex3、第5膨
張弁ex5を介し合流させるが、この合流冷媒液は2流
に分流して、一方は第2膨張弁ex2を介し第1空調ユ
ニット1aの上流側熱交換器4cに供給し、又、他方は
第4膨張弁ex4を介して第2空調ユニット1bの上流
側熱交換器6cに供給し、これにより、これら各空調ユ
ニット1a,1bの上流側熱交換器4c,6cを蒸発器
として空気冷却機能させる。
The condensed refrigerant liquids (thick hatched lines) sent from the downstream side heat exchangers 4h and 6h and the heat source heat exchanger 14 respectively function as first flow rate adjusting valves ex1. , The third expansion valve ex3 and the fifth expansion valve ex5 are combined, and the combined refrigerant liquid is divided into two streams, one of which is through the second expansion valve ex2 and the upstream heat exchanger of the first air conditioning unit 1a. 4c, and the other is supplied to the upstream heat exchanger 6c of the second air conditioning unit 1b via the fourth expansion valve ex4, whereby the upstream heat exchanger 4c of each of the air conditioning units 1a, 1b is supplied. , 6c function as an evaporator for air cooling.

【0043】そして、各空調ユニット1a,1bの上流
側熱交換器4c,6cから送出される低圧冷媒ガス(白
抜きの太線)を第2切換弁v2、及び第4切換弁v4を
介し合流させ、その合流冷媒ガスをアキュムレータAc
を介し圧縮機Cに吸入させる。
Then, the low-pressure refrigerant gas (white thick line) sent from the upstream heat exchangers 4c, 6c of each air conditioning unit 1a, 1b is merged via the second switching valve v2 and the fourth switching valve v4. , The combined refrigerant gas to accumulator Ac
To be sucked into the compressor C via.

【0044】つまり、各空調ユニット1a,1bの夫々
において、上流側熱交換器4c,6cでの空気冷却除湿
と、それに続く下流側熱交換器4h,6hでの再熱によ
り除湿冷風Sa,Sbを生成して、これら除湿冷風S
a,Sbを各ゾーンI,Pに供給することで、インテリ
アゾーンI及びペリメータゾーンPの夫々に冷房に伴い
除湿を施す。
That is, in each of the air conditioning units 1a and 1b, dehumidifying cold air Sa and Sb is generated by the air cooling and dehumidifying in the upstream heat exchangers 4c and 6c and the subsequent reheating in the downstream heat exchangers 4h and 6h. To generate these dehumidified cold air S
By supplying a and Sb to each of the zones I and P, the interior zone I and the perimeter zone P are dehumidified by cooling.

【0045】尚、前述(ロ)の暖房除湿パターン以外の
パターンにおける暖房については必要に応じ加湿器4
m,6mを運転する。
As for heating in patterns other than the heating and dehumidifying pattern described in (b) above, the humidifier 4 may be used as necessary.
Drive m, 6m.

【0046】15はヒートポンプの運転制御を司る制御
器であり、この制御器15は、指定される運転モードに
応じ上述(イ)〜(ヘ)の冷媒循環パターンのうちの1
つを、ないしは、複数を順次に選択使用して所期の空調
状態を現出する構成としてあり、次に、各種の運転モー
ドのうち〔暖房除湿モード〕が指定された場合の運転制
御形態について詳説する。
Reference numeral 15 denotes a controller for controlling the operation of the heat pump. This controller 15 is one of the refrigerant circulation patterns (a) to (f) according to a specified operation mode.
One or a plurality of them are sequentially selected and used to display the desired air-conditioning state. Next, regarding the operation control mode when [heating dehumidification mode] is specified among various operation modes I will explain in detail.

【0047】運転モード指定において〔暖房除湿モー
ド〕が指定されると、制御器15は図8に示すように、
先ず、前述(イ)の暖房・暖房パターン(図2)での
(暖房立ち上げ運転)を変風量装置7a,7bによる給
気風量調整下で実施し、この(暖房立ち上げ運転)にお
いてゾーン温センサ8a,8bにより検出される各ゾー
ンI,Pのゾーン温度tra,trbが夫々、目標ゾー
ン温度tra’,trb’にまで上昇すると、(暖房立
ち上げ運転)から(暖房調温運転)に移る。
When the [heating / dehumidifying mode] is specified in the operation mode specification, the controller 15 controls the operation mode as shown in FIG.
First, the (heating start-up operation) in the heating / heating pattern (FIG. 2) described above (a) is performed under the adjustment of the supply air volume by the air flow rate changing devices 7a and 7b, and the zone temperature is set in this (heating start-up operation). When the zone temperatures tra and trb of the respective zones I and P detected by the sensors 8a and 8b rise to the target zone temperatures tra 'and trb', respectively, the (heating start-up operation) shifts to the (heating temperature control operation). .

【0048】(暖房調温運転)では、引き続き(イ)の
暖房・暖房パターン(図2)を採用し、そして、変風量
装置7a,7bによる給気風量調整下で、給気温センサ
16a,16bにより検出される各ゾーンI,Pに対す
る給気温度tsa,tsbを各々の設定値tsa’,t
sb’に調整して、所定時間Ta(例えば10分間)に
わたり各ゾーン温度tra,trbの安定化を待ち、そ
の後、(除湿調温運転)に移る。
In the (heating temperature control operation), the heating / heating pattern of (a) (FIG. 2) is continuously adopted, and the air supply air temperature sensors 16a, 16b are adjusted under the air supply air volume adjustment by the air flow rate changing devices 7a, 7b. The supply air temperatures tsa and tsb for the respective zones I and P detected by
After adjusting to sb ′, stabilization of each zone temperature tra, trb is waited for a predetermined time Ta (for example, 10 minutes), and thereafter, (dehumidification temperature control operation) is started.

【0049】尚、他の運転モードの一つである〔暖房・
暖房モード〕が指定された場合では、同様に(暖房立ち
上げ運転)を実施した後、上記の(暖房調温運転)を運
転終了まで継続する運転形態としてある。
Incidentally, this is one of the other operation modes [heating /
In the case where the "heating mode" is specified, the above-described (heating temperature control operation) is continued until the end of the operation after similarly performing (heating start-up operation).

【0050】(除湿調温運転)では、前述(ロ)の暖房
除湿パターン(図3)を採用し、変風量装置7a,7b
による給気風量調整下で、各ゾーンI,Pに対する給気
温度tsa,tsbを各々の設定値tsa’,tsb’
に調整・維持しながら、ペリメータゾーンPに対する除
湿を開始して、ペリメータゾーンPの相対湿度rbを目
標相対湿度rb’まで低下させる。
In the (dehumidifying / temperature controlling operation), the heating / dehumidifying pattern (FIG. 3) described above (b) is adopted, and the air flow rate changing devices 7a, 7b are used.
The supply air temperature tsa, tsb for each zone I, P is adjusted to their respective set values tsa ', tsb' under the supply air volume adjustment by
The dehumidification of the perimeter zone P is started while adjusting and maintaining the above, and the relative humidity rb of the perimeter zone P is reduced to the target relative humidity rb ′.

【0051】そして、(除湿調温運転)においてペリメ
ータゾーンPの湿度センサ17bにより検出される相対
湿度rbが目標相対湿度rb’まで低下すると、(除湿
調温運転)から(調温・調湿運転)に移る。
When the relative humidity rb detected by the humidity sensor 17b of the perimeter zone P in the (dehumidifying and temperature controlling operation) decreases to the target relative humidity rb ', the (dehumidifying and temperature controlling operation) to the (temperature and humidity controlling operation). ).

【0052】(調温・調湿運転)では、(除湿調温運
転)と同様に暖房除湿パターン(図3)を採用して、変
風量装置7a,7bによる給気風量調整下で、各ゾーン
I,Pに対する給気温度tsa,tsbを各々の設定値
tsa’,tsb’に調整・維持しながら、ペリメータ
ゾーンPに対する除湿出力を調整してペリメータゾーン
Pの相対湿度rbを目標相対湿度rb’に保ち、以降、
運転終了指令が与えられるまで、この(調温・調湿運
転)を継続する。
In the (temperature control / humidity control operation), the heating / dehumidification pattern (FIG. 3) is adopted in the same manner as in the (dehumidification / temperature control operation), and each zone is adjusted while the supply air volume is adjusted by the air flow rate changing devices 7a and 7b. The relative humidity rb of the perimeter zone P is adjusted by adjusting the dehumidification output to the perimeter zone P while adjusting / maintaining the supply air temperatures tsa and tsb for I and P to the respective set values tsa ′ and tsb ′. Keep it
This (temperature control / humidity control) is continued until the operation end command is given.

【0053】上記の基本制御フロー中における各運転に
ついてさらに説明すると、(暖房立ち上げ運転)につい
ては、変風量装置7a,7bによる給気風量調整下での
暖房・暖房パターン(図2)において、図9に示すよう
に、下記#1,#2,#3のサイクルを繰り返す。
Each operation in the above basic control flow will be further described. Regarding (heating start-up operation), in the heating / heating pattern (FIG. 2) under the supply air volume adjustment by the air flow rate changing devices 7a and 7b, As shown in FIG. 9, the following cycles # 1, # 2, and # 3 are repeated.

【0054】(#1)圧縮機Cの入口における圧力・温
度センサの検出情報に基づき、圧縮機吸入冷媒の過熱度
shを第5膨張弁ex5の調節により設定値sh’(例
えば8℃)に調整する。
(# 1) Based on the detection information from the pressure / temperature sensor at the inlet of the compressor C, the superheat degree sh of the compressor suction refrigerant is adjusted to a set value sh '(for example, 8 ° C.) by adjusting the fifth expansion valve ex5. adjust.

【0055】(#2)インテリアゾーン側の給気温セン
サ16aの検出情報に基づき、圧縮機出力fcの調整に
より第1空調ユニット1aにおける下流側熱交換器4h
の加熱出力haを調整して、インテリアゾーンIに対す
る給気温度tsaをインテリアゾーン側の設定値ts
a’に調整する。
(# 2) The downstream heat exchanger 4h in the first air conditioning unit 1a is adjusted by adjusting the compressor output fc based on the information detected by the air temperature sensor 16a on the interior zone side.
Of the interior zone I by adjusting the heating output ha of the interior zone I.
Adjust to a '.

【0056】(#3)インテリアゾーン側及びペリメー
タゾーン側の両給気温センサ16a,16bの検出情報
に基づき、それぞれ流量調整弁としての第1膨張弁ex
1と第3膨張弁ex3とを背反的に開度調節することに
より、第1及び第2空調ユニット1a,1bにおける各
下流側熱交換器4h,6hの加熱出力ha,hbを調整
して、ペリメータゾーンPに対する給気温度tsbをイ
ンテリアゾーン側の給気温センサ16aにより検出され
るインテリアゾーン側の給気温度tsaに一致させる。
(# 3) The first expansion valve ex as a flow rate adjusting valve based on the detection information of both the air supply temperature sensors 16a and 16b on the interior zone side and the perimeter zone side.
By adjusting the opening degrees of 1 and the third expansion valve ex3 in a contradictory manner, the heating outputs ha and hb of the downstream heat exchangers 4h and 6h in the first and second air conditioning units 1a and 1b are adjusted, The air supply temperature tsb for the perimeter zone P is made to match the air supply temperature tsa on the interior zone side detected by the air supply temperature sensor 16a on the interior zone side.

【0057】尚、この背反的開度調節では、第1膨張弁
ex1の冷媒流量と第3膨張弁ex3の冷媒流量との和
(すなわち、第5膨張弁ex5の冷媒流量)を変化させ
ずに、それら流量比を変更調整するべく、第1膨張弁e
x1の開度α1と第3膨張弁ex3の開度α3との合計
開度(α1+α3)を所定の一定値に保ちながら、それ
らの開度比(換言すれば、一定合計開度における第3膨
張弁ex3の開度割合α3/(α1+α3))を変更す
る調節形態を採用する。
It should be noted that in the antithetic adjustment, the sum of the refrigerant flow rate of the first expansion valve ex1 and the refrigerant flow rate of the third expansion valve ex3 (that is, the refrigerant flow rate of the fifth expansion valve ex5) is not changed. , The first expansion valve e for changing and adjusting the flow rate ratio
While maintaining the total opening (α1 + α3) of the opening α1 of x1 and the opening α3 of the third expansion valve ex3 at a predetermined constant value, the opening ratio (in other words, the third expansion at the constant total opening) An adjustment mode in which the opening ratio α3 / (α1 + α3) of the valve ex3 is changed is adopted.

【0058】(暖房立ち上げ運転)に続く(暖房調温上
げ運転)については、同様に変風量装置7a,7bによ
る給気風量調整下での暖房・暖房パターン(図2)にお
いて、図10に示すように、下記#4,#5のサイクル
を繰り返す。
Regarding (heating / heating control operation) subsequent to (heating start-up operation), FIG. 10 shows the heating / heating pattern (FIG. 2) under the adjustment of the supply air volume by the air flow rate changing devices 7a and 7b. As shown, the following cycles # 4 and # 5 are repeated.

【0059】(#4)前記の(#2)と同じく、インテ
リアゾーン側の給気温センサ16aの検出情報に基づ
き、圧縮機出力fcの調整により第1空調ユニット1a
における下流側熱交換器4hの加熱出力haを調整し
て、インテリアゾーンIに対する給気温度tsaを設定
値tsa’に調整する。
(# 4) Similar to (# 2) above, the first air conditioning unit 1a is adjusted by adjusting the compressor output fc based on the detection information of the air temperature sensor 16a on the interior zone side.
The heating output ha of the downstream side heat exchanger 4h is adjusted to adjust the supply air temperature tsa for the interior zone I to the set value tsa ′.

【0060】(#5)前記の(#3)では、ペリメータ
ゾーンPに対する給気温度tsbをインテリアゾーン側
の給気温センサ16aにより検出されるインテリアゾー
ン側の給気温度tsaに一致させる調整を実施したが、
(#5)では、(#3)における弁調節形態と同じ調整
形態をもって、それぞれ流量調整弁としての第1膨張弁
ex1と第3膨張弁ex3とを背反的に開度調節するこ
とにより、ペリメータゾーンPに対する給気温度tsb
をペリメータゾーン側の設定値tsb’に調整する。
(# 5) In the above (# 3), adjustment is performed so that the supply air temperature tsb for the perimeter zone P matches the supply air temperature tsa on the interior zone side detected by the supply air temperature sensor 16a on the interior zone side. However,
In (# 5), the perimeter is adjusted in a reciprocal manner by adjusting the opening degree of each of the first expansion valve ex1 and the third expansion valve ex3 as flow rate adjusting valves in the same adjustment form as the valve adjustment form in (# 3). Supply air temperature tsb for zone P
To the set value tsb ′ on the perimeter zone side.

【0061】尚、各給気温度tsa,tsbについてイ
ンテリアゾーン側の設定値tsa’とペリメータゾーン
側の設定値tsb’とが等しい場合もある。
In some cases, the set value tsa 'on the interior zone side and the set value tsb' on the perimeter zone side are the same for each of the supply air temperatures tsa and tsb.

【0062】(除湿調温運転)については、変風量装置
7a,7bによる給気風量調整下での暖房除湿パターン
(図3)において、図11に示すように、下記#6〜#
10のサイクルを繰り返す。
Regarding (dehumidifying and temperature controlling operation), as shown in FIG. 11, in the heating dehumidifying pattern (FIG. 3) under the adjustment of the supply air volume by the air flow rate changing devices 7a and 7b, the following # 6 to # are performed.
Repeat 10 cycles.

【0063】(#6)圧縮機出力fcを所定値Δfcだ
け増大させる。
(# 6) The compressor output fc is increased by a predetermined value Δfc.

【0064】(#7)圧縮機Cの入口における圧力・温
度センサの検出情報に基づき、第5膨張弁ex5の開度
α5を変化させずに第4膨張弁ex4の開度α4を調節
して、第5膨張弁ex5と第4膨張弁ex4との合計開
度(α4+α5)を調整することにより、圧縮機吸入冷
媒の過熱度shを設定値sh’に調整する。
(# 7) Based on the information detected by the pressure / temperature sensor at the inlet of the compressor C, the opening α4 of the fourth expansion valve ex4 is adjusted without changing the opening α5 of the fifth expansion valve ex5. By adjusting the total opening (α4 + α5) of the fifth expansion valve ex5 and the fourth expansion valve ex4, the superheat degree sh of the compressor suction refrigerant is adjusted to the set value sh ′.

【0065】(#8)インテリアゾーン側の給気温セン
サ16aの検出情報に基づき、それぞれ流量調整弁とし
ての第1膨張弁ex1と第3膨張弁ex3とを背反的に
開度調節することにより、第1空調ユニット1aにおけ
る下流側熱交換器4hの加熱出力haを調整して、イン
テリアゾーンIに対する給気温度tsaを設定値ts
a’に調整する。
(# 8) By opening the first expansion valve ex1 and the third expansion valve ex3, which are flow rate adjusting valves, on the basis of the information detected by the air temperature sensor 16a on the interior zone side, the opening degrees are adjusted in a contradictory manner. The heating output ha of the downstream heat exchanger 4h in the first air conditioning unit 1a is adjusted to set the supply air temperature tsa for the interior zone I to the set value ts.
Adjust to a '.

【0066】尚、この背反的開度調節では、前記の(#
3)と同様、第1膨張弁ex1の冷媒流量と第3膨張弁
ex3の冷媒流量との和(すなわち、第4膨張弁ex4
と第5膨張弁ex5との合計冷媒流量)を変化させず
に、それら流量比を変更調整するべく、第1膨張弁ex
1の開度α1と第3膨張弁ex3の開度α3との合計開
度(α1+α3)を所定の一定値に保ちながら、それら
の開度比(換言すれば、一定合計開度における第1膨張
弁ex1の開度割合α1/(α1+α3))を変更する
調節形態を採用する。
Incidentally, in this antithetic opening adjustment, the above (#
Similar to 3), the sum of the refrigerant flow rate of the first expansion valve ex1 and the refrigerant flow rate of the third expansion valve ex3 (that is, the fourth expansion valve ex4
And the fifth expansion valve ex5), the first expansion valve ex5 is used in order to change and adjust the flow ratio without changing the total refrigerant flow rate.
While maintaining the total opening degree (α1 + α3) of the opening degree α1 of 1 and the opening degree α3 of the third expansion valve ex3 at a predetermined constant value, the opening ratio (in other words, the first expansion at the constant total opening degree). An adjustment mode in which the opening ratio α1 / (α1 + α3) of the valve ex1 is changed is adopted.

【0067】(#9)ペリメータゾーン側の給気温セン
サ16bによる検出情報に基づき、第5膨張弁ex5と
第4膨張弁ex4との合計開度(α4+α5)を(#
7)での合計開度に保った状態で第4膨張弁exと第5
膨張弁ex5との開度比(換言すれば、一定合計開度に
おける第4膨張弁ex4の開度割合α4/(α4+α
5))を調節して、第2空調ユニット1bにおける上流
側熱交換器6cの冷却出力cbを調整することにより、
ペリメータゾーンPに対する給気温度tsbを設定値t
sb’に調整する。
(# 9) The total opening (α4 + α5) of the fifth expansion valve ex5 and the fourth expansion valve ex4 is set to (#
In the state where the total opening in 7) is maintained, the fourth expansion valve ex and the fifth expansion valve ex
Opening ratio with the expansion valve ex5 (in other words, the opening ratio α4 / (α4 + α of the fourth expansion valve ex4 at a constant total opening)
5)) by adjusting the cooling output cb of the upstream heat exchanger 6c in the second air conditioning unit 1b,
The supply air temperature tsb for the perimeter zone P is set to the set value t
Adjust to sb '.

【0068】(#10)第2空調ユニット1bにおける
上流側熱交換器6cのコイル表面温度検出に基づき、そ
の検出コイル表面温度tpb(すなわち、装置露点温度
に相当)が、除湿効率を考慮して決定された設定値tp
b’にまで低下したか否かを判定するとともに、圧縮機
出力fcが最大出力fcmaxに至ったか否かを判定
し、それらの判定結果として、検出コイル表面温度tp
bが設定値tpb’以下となっているか、あるいは、圧
縮機出力fcが最大出力fcmaxに至っているときに
は、次の(#11)及び(#12)における湿度低下完
了の判定(図8)に移り、又、検出コイル表面温度tp
bが設定値tpb’より高くて圧縮機出力fcが未だ最
大出力fcmax未満のときには(#6)に戻る。
(# 10) Based on the coil surface temperature detection of the upstream heat exchanger 6c in the second air conditioning unit 1b, the detected coil surface temperature tpb (that is, the device dew point temperature) is taken into consideration in dehumidification efficiency. The determined setting value tp
It is determined whether or not the compressor output fc has reached the maximum output fcmax, and the determination coil surface temperature tp is obtained as the determination result.
When b is less than or equal to the set value tpb 'or the compressor output fc reaches the maximum output fcmax, the process proceeds to the determination of the completion of humidity decrease in (# 11) and (# 12) (FIG. 8). , The detection coil surface temperature tp
When b is higher than the set value tpb 'and the compressor output fc is still less than the maximum output fcmax, the process returns to (# 6).

【0069】ペリメータゾーンPの相対湿度rbを目標
相対湿度rb’まで低下させた後の(調温・調湿運転)
については、変風量装置7a,7bによる給気風量調整
下での暖房除湿パターン(図3)において、図12に示
すように、下記#13〜#16のサイクルを繰り返す。
After lowering the relative humidity rb of the perimeter zone P to the target relative humidity rb '(temperature control / humidity control operation)
As for the above, as shown in FIG. 12, the following cycles # 13 to # 16 are repeated in the heating / dehumidifying pattern (FIG. 3) under the adjustment of the supply air volume by the air flow rate changing devices 7a and 7b.

【0070】(#13)圧縮機Cの入口における圧力・
温度センサの検出情報に基づき、第4膨張弁ex4の開
度α4、及び、第5膨張弁ex5の開度α5を、それら
の開度比を保った状態で増減調整して、圧縮機吸入冷媒
の過熱度shを設定値sh’に調整する。
(# 13) Pressure at the inlet of compressor C
Based on the detection information of the temperature sensor, the opening degree α4 of the fourth expansion valve ex4 and the opening degree α5 of the fifth expansion valve ex5 are increased / decreased while maintaining their opening ratios, and the compressor suction refrigerant The superheat degree sh of is adjusted to the set value sh '.

【0071】(#14)前記の(#8)と同じく、イン
テリアゾーン側の給気温センサ16aの検出情報に基づ
き、それぞれ流量調整弁としての第1膨張弁ex1と第
3膨張弁ex3との合計開度(α1+α3)を所定の一
定値に保ちながら、それら第1,第3膨張弁ex1,e
x3の開度比(換言すれば、一定合計開度における第1
膨張弁ex1の開度割合α1/(α1+α3))を調節
することにより、第1空調ユニット1aにおける下流側
熱交換器4hの加熱出力haを調整して、インテリアゾ
ーンIに対する給気温度tsaを設定値tsa’に調整
する。
(# 14) Similar to (# 8) above, based on the detection information of the air temperature sensor 16a on the interior zone side, the sum of the first expansion valve ex1 and the third expansion valve ex3 as flow rate adjusting valves, respectively. While maintaining the opening (α1 + α3) at a predetermined constant value, the first and third expansion valves ex1, e
The opening ratio of x3 (in other words, the first opening at a fixed total opening)
By adjusting the opening ratio α1 / (α1 + α3)) of the expansion valve ex1, the heating output ha of the downstream heat exchanger 4h in the first air conditioning unit 1a is adjusted to set the supply temperature tsa for the interior zone I. Adjust to the value tsa '.

【0072】(#15)前記の(#9)と同じく、ペリ
メータゾーン側の給気温センサ16bによる検出情報に
基づき、第5膨張弁ex5と第4膨張弁ex4との合計
開度(α4+α5)を(#13)での合計開度に保った
状態で第4膨張弁exと第5膨張弁ex5との開度比
(換言すれば、一定合計開度における第4膨張弁ex4
の開度割合α4/(α4+α5))を調節して、第2空
調ユニット1bにおける上流側熱交換器6cの冷却出力
cbを調整することにより、ペリメータゾーンPに対す
る給気温度tsbを設定値tsb’に調整する。
(# 15) Similar to (# 9) above, the total opening (α4 + α5) of the fifth expansion valve ex5 and the fourth expansion valve ex4 is set based on the information detected by the air temperature sensor 16b on the perimeter zone side. The opening ratio of the fourth expansion valve ex and the fifth expansion valve ex5 (in other words, the fourth expansion valve ex4 at a constant total opening is maintained at the total opening of (# 13)).
By adjusting the opening degree ratio α4 / (α4 + α5)) to adjust the cooling output cb of the upstream heat exchanger 6c in the second air conditioning unit 1b, the supply air temperature tsb to the perimeter zone P is set to a set value tsb '. Adjust to.

【0073】(#16)ペリメータゾーンPの湿度セン
サ17bによる相対湿度検出に基づき、検出相対湿度r
bと目標相対湿度rb’との偏差Δrbに応じ圧縮機出
力fcを増減調整することにより、ペリメータゾーンP
の相対湿度rbを目標相対湿度rb’に調整・維持す
る。
(# 16) Based on the relative humidity detected by the humidity sensor 17b in the perimeter zone P, the detected relative humidity r
b and the target relative humidity rb 'by increasing or decreasing the compressor output fc according to the deviation Δrb between the perimeter zone P and the target relative humidity rb'.
The relative humidity rb of is adjusted and maintained at the target relative humidity rb ′.

【0074】〔暖房除湿モード〕において、上記の目標
相対湿度rb’は、ペリメータゾーンPにおける相対湿
度rbの低下を目的とする(除湿調温運転)から、ペリ
メータゾーンPにおける相対湿度rbの維持を目的とす
る(調温・調湿運転)への移行条件となるが、この目標
相対湿度rb’については、制御器15における湿度設
定変更部18が(#11)において、外気温度toと目
標相対湿度rb’との関係を与える所定の関数式rb’
=F(to)に基づき、外気温センサ19により検出さ
れる外気温度toに応じて目標相対湿度rb’を自動設
定するようにしてある。
In the [heating and dehumidifying mode], the target relative humidity rb 'is intended to reduce the relative humidity rb in the perimeter zone P (dehumidifying temperature control operation), so that the relative humidity rb in the perimeter zone P is maintained. The target condition for shifting to (temperature control / humidity control) is the target relative humidity rb ', but the humidity setting change unit 18 in the controller 15 (# 11) sets the target relative humidity rb' to the outside air temperature to and the target relative humidity. A predetermined functional expression rb ′ that gives a relationship with the humidity rb ′
Based on = F (to), the target relative humidity rb 'is automatically set according to the outside air temperature to detected by the outside air temperature sensor 19.

【0075】そして、図13において実線のグラフが、
各外気温度to(横軸)について、外気温度toxにお
ける飽和空気の絶対湿度と等しい絶対湿度で温度がペリ
メータゾーンPの目標ゾーン温度trb’にある空気の
相対湿度rx(縦軸)を与えるグラフ(換言すれば、温
度trb’の空気の相対湿度r(縦軸)と露点温度td
p(横軸)との関係を与えるグラフ)であるのに対し、
破線のグラフで示す上記の関数式rb’=F(to)に
は、各外気温度toについて、外気温度toxにおける
飽和空気の絶対湿度と等しい絶対湿度で温度がペリメー
タゾーンPの目標ゾーン温度trb’にある空気の相対
湿度rxよりも所定値Δrだけ低湿側の相対湿度値(r
x−Δr)を目標相対湿度rb’として与える式(換言
すれば、各外気温度toに対して、露点温度が外気温度
toxよりも所定値Δtだけ低温側となる空気の温度t
rb’における相対湿度値を目標相対湿度rb’として
与える式)を選定してある。
Then, the solid line graph in FIG.
For each outside air temperature to (horizontal axis), a graph giving the relative humidity rx (vertical axis) of the air whose temperature is at the target zone temperature trb ′ of the perimeter zone P at an absolute humidity equal to the absolute humidity of the saturated air at the outside air temperature tox ( In other words, the relative humidity r (vertical axis) of the temperature trb ′ and the dew point temperature td.
p (horizontal axis) is a graph that gives the relationship with
In the above functional expression rb ′ = F (to) indicated by the broken line graph, for each outside air temperature to, the target zone temperature trb ′ of the perimeter zone P is the absolute humidity equal to the absolute humidity of the saturated air at the outside air temperature tox. Relative humidity value (r
x-Δr) as the target relative humidity rb ′ (in other words, for each outside air temperature to, the temperature t of the air whose dew point temperature is lower than the outside air temperature tox by a predetermined value Δt).
An equation which gives the relative humidity value at rb ′ as the target relative humidity rb ′ is selected.

【0076】つまり、〔暖房除湿モード〕において上記
の如く目標相対湿度rb’を外気温度toに応じ自動的
に設定変更させることにより、外気温度toが比較的高
くてペリメータゾーンPでの窓ガラスwの曇りや凝縮水
の雫垂れ等の結露現象が生じにくいにもかかわらず、ペ
リメータゾーンPに対し不必要に高出力の除湿を施して
ペリメータゾーンPを必要以上に低い低湿状態(乾燥状
態)に調整・維持したり、また逆に、外気温度toが相
当に低くてペリメータゾーンPで上記のような結露現象
が生じ易いにもかかわらず、目標相対湿度rb’の設定
が結露防止上、不十分な高湿側にあるといったことを回
避する。
That is, in [heating and dehumidifying mode], the target relative humidity rb 'is automatically changed according to the outside air temperature to as described above, so that the outside air temperature to is relatively high and the window glass w in the perimeter zone P is relatively high. Although the dew condensation phenomenon such as cloudy weather and drizzling of condensed water is unlikely to occur, the perimeter zone P is unnecessarily high-power dehumidified and the perimeter zone P is set to a low humidity state (dry state) lower than necessary. The target relative humidity rb ′ is not sufficiently set in order to prevent the dew condensation, even though the dew phenomenon is likely to occur in the perimeter zone P because the outside air temperature to is considerably low because the outside air temperature to is considerably low. Avoid being on a high humidity side.

【0077】又、暖房状態での結露現象が外部に接する
ペリメータゾーンPで生じることに対し、上記の〔暖房
除湿モード〕では、インテリアゾーンIに対する除湿手
段となる第1空調ユニット1a側の上流側熱交換器4c
への冷媒供給を断って、除湿用熱源としての凝縮冷媒液
(ハッチングを施した太線)をペリメータゾーンPに対
する除湿手段、すなわち、第2空調ユニット1b側の上
流側熱交換器6cへ優先供給することにより、圧縮機C
の能力が限られているなかでペリメータゾーンPに対す
る除湿能力を極力大きく確保して、外気温度toの低温
化に対しペリメータゾーンPでの結露現象をより確実に
防止するようにしてある。
Further, in contrast to the dew condensation phenomenon in the heating state occurring in the perimeter zone P in contact with the outside, in the above [heating / dehumidifying mode], the upstream side of the first air conditioning unit 1a side which is the dehumidifying means for the interior zone I. Heat exchanger 4c
To the dehumidifying means for the perimeter zone P, that is, the upstream heat exchanger 6c on the second air conditioning unit 1b side by preferentially supplying the condensed refrigerant liquid (hatched thick line) as a heat source for dehumidification to the dehumidifying means. By this, the compressor C
The dehumidifying ability of the perimeter zone P is ensured as much as possible while the dehumidifying ability of the perimeter zone P is ensured to be as large as possible while the performance of the perimeter zone P is limited.

【0078】〔第2実施例〕次に第2実施例を説明す
る。
[Second Embodiment] Next, a second embodiment will be described.

【0079】図14は、前述の第1実施例と同様のイン
テリアゾーンIに対する第1空調ユニット1a、ペリメ
ータゾーンPに対する第2空調ユニット1b、及び、そ
れら空調ユニット1a,1bに対する共通の熱源ユニッ
ト1cを備えるが、各ゾーンI,Pに対する変風量装置
7a,7bの装備を省略した形式の空調設備を示す。
尚、この第2実施例において、前述の第1実施例で説明
した装置と同じ装置については、第1実施例で用いた符
号と同じ符号を付し、説明は省略する。
FIG. 14 shows a first air conditioning unit 1a for the interior zone I, a second air conditioning unit 1b for the perimeter zone P, and a common heat source unit 1c for the air conditioning units 1a, 1b, as in the first embodiment. However, the air-conditioning equipment of the type in which the air flow rate changing devices 7a and 7b for the respective zones I and P are omitted is shown.
In the second embodiment, the same devices as those described in the first embodiment are designated by the same reference numerals as those used in the first embodiment, and the description thereof will be omitted.

【0080】この空調設備では、インテリアゾーンIに
暖房を施し、かつ、ペリメータゾーンPに暖房とともに
除湿を施す〔暖房除湿モード〕を第1実施例と同様、前
述の図8に示す基本制御フローに従って実施するが、そ
の基本制御フロー中における(暖房立ち上げ運転)、
(暖房調温運転)、(除湿調温運転)、(調温・調湿運
転)の各運転を下記の如く実施する構成としてある。
In this air conditioner, the interior zone I is heated and the perimeter zone P is heated and dehumidified [heating dehumidification mode] in the same manner as in the first embodiment according to the basic control flow shown in FIG. The basic control flow (heating start-up operation),
Each of the (heating temperature control operation), (dehumidification temperature control operation), and (temperature control / humidity control operation) is configured as follows.

【0081】(暖房立ち上げ運転)については、暖房・
暖房パターン(図2)において図15に示すように、下
記#1’,#2’,#3’のサイクルを繰り返す。
Regarding (heating start-up operation),
In the heating pattern (FIG. 2), as shown in FIG. 15, the following cycles # 1 ′, # 2 ′ and # 3 ′ are repeated.

【0082】(#1’)圧縮機Cの入口における圧力・
温度センサの検出情報に基づき、圧縮機吸入冷媒の過熱
度shを第5膨張弁ex5の調節により設定値sh’に
調整する(第1実施例における(#1)と同じ)。
(# 1 ') Pressure at the inlet of the compressor C
Based on the information detected by the temperature sensor, the superheat degree sh of the compressor suction refrigerant is adjusted to the set value sh'by adjusting the fifth expansion valve ex5 (the same as (# 1) in the first embodiment).

【0083】(#2’)圧縮機出力fcを最大出力fc
maxに調整する。
(# 2 ') Compressor output fc is maximum output fc
Adjust to max.

【0084】(#3’)インテリアゾーン側及びペリメ
ータゾーン側の両ゾーン温センサ8a,8bの検出情報
に基づき、それぞれ流量調整弁としての第1膨張弁ex
1と第3膨張弁ex3とを背反的に開度調節することに
より、第1及び第2空調ユニット1a,1bにおける各
下流側熱交換器4h,6hの加熱出力ha,hbを調整
して、ペリメータゾーンPのゾーン温度trbをインテ
リアゾーン側のゾーン温センサ8aにより検出されるイ
ンテリアゾーン側のゾーン温度traに一致させる。
(# 3 ') Based on the detection information of both the zone temperature sensors 8a and 8b on the interior zone side and the perimeter zone side, the first expansion valve ex as a flow rate adjusting valve, respectively.
By adjusting the opening degrees of 1 and the third expansion valve ex3 in a contradictory manner, the heating outputs ha and hb of the downstream heat exchangers 4h and 6h in the first and second air conditioning units 1a and 1b are adjusted, The zone temperature trb of the perimeter zone P is matched with the zone temperature tra of the interior zone detected by the zone temperature sensor 8a of the interior zone.

【0085】尚、この背反的開度調節では、第1膨張弁
ex1の冷媒流量と第3膨張弁ex3の冷媒流量との和
(すなわち、第5膨張弁ex5の冷媒流量)を変化させ
ずに、それら流量比を変更調整するべく、第1膨張弁e
x1の開度α1と第3膨張弁ex3の開度α3との合計
開度(α1+α3)を所定の一定値に保ちながら、それ
らの開度比(換言すれば、一定合計開度における第3膨
張弁ex3の開度割合α3/(α1+α3))を変更す
る調節形態を採用する。
Incidentally, in the antithetic opening adjustment, the sum of the refrigerant flow rate of the first expansion valve ex1 and the refrigerant flow rate of the third expansion valve ex3 (that is, the refrigerant flow rate of the fifth expansion valve ex5) is not changed. , The first expansion valve e for changing and adjusting the flow rate ratio
While maintaining the total opening (α1 + α3) of the opening α1 of x1 and the opening α3 of the third expansion valve ex3 at a predetermined constant value, the opening ratio (in other words, the third expansion at the constant total opening) An adjustment mode in which the opening ratio α3 / (α1 + α3) of the valve ex3 is changed is adopted.

【0086】(暖房立ち上げ運転)に続く(暖房調温上
げ運転)については、同様に暖房・暖房パターン(図
2)において図16に示すように、下記#4’,#5’
のサイクルを繰り返す。
Regarding (heating / heating control operation) subsequent to (heating start-up operation), as shown in FIG. 16 in the heating / heating pattern (FIG. 2), the following # 4 ', # 5' are similarly set.
Repeat the cycle.

【0087】(#4’)インテリアゾーン側のゾーン温
センサ8aの検出情報に基づき、圧縮機出力fcの調整
により第1空調ユニット1aにおける下流側熱交換器4
hの加熱出力haを調整して、インテリアゾーンIのゾ
ーン温度traをインテリアゾーン側の目標ゾーン温度
tra’に調整する。
(# 4 ') The downstream heat exchanger 4 in the first air conditioning unit 1a is adjusted by adjusting the compressor output fc based on the information detected by the zone temperature sensor 8a on the interior zone side.
By adjusting the heating output ha of h, the zone temperature tra of the interior zone I is adjusted to the target zone temperature tra 'on the interior zone side.

【0088】(#5’)前記の(#3’)では、ペリメ
ータゾーンPのゾーン温度trbをインテリアゾーン側
のゾーン温センサ8aにより検出されるインテリアゾー
ン側のゾーン温度traに一致させる調整を実施した
が、(#5’)では、(#3’)における弁調節形態と
同じ調整形態をもって、それぞれ流量調整弁としての第
1膨張弁ex1と第3膨張弁ex3とを背反的に開度調
節することにより、ペリメータゾーンPのゾーン温度t
rbをペリメータゾーン側の目標ゾーン温度trb’に
調整する。
(# 5 ') In the above (# 3'), adjustment is performed so that the zone temperature trb of the perimeter zone P matches the zone temperature tra of the interior zone detected by the zone temperature sensor 8a of the interior zone. However, in (# 5 ′), the opening degree of each of the first expansion valve ex1 and the third expansion valve ex3, which are flow rate adjusting valves, is adjusted in the same manner as the valve adjustment method in (# 3 ′). By setting the zone temperature t of the perimeter zone P
rb is adjusted to the target zone temperature trb ′ on the perimeter zone side.

【0089】尚、インテリアゾーン側及びペリメータゾ
ーン側夫々の目標ゾーン温度tra’,trb’が等し
い場合もある。
The target zone temperatures tra 'and trb' on the interior zone side and the perimeter zone side may be the same.

【0090】(除湿調温運転)については、暖房除湿パ
ターン(図3)において図17に示すように、下記#
6’〜#10’のサイクルを繰り返す。
Regarding the (dehumidification / temperature control operation), as shown in FIG. 17 in the heating / dehumidification pattern (FIG. 3), the following #
Repeat the cycle from 6'to # 10 '.

【0091】(#6’)圧縮機出力fcを所定値Δfc
だけ増大させる(第1実施例における(#6)と同
じ)。
(# 6 ') Compressor output fc is set to a predetermined value Δfc
Only (the same as (# 6) in the first embodiment).

【0092】(#7’)圧縮機Cの入口における圧力・
温度センサの検出情報に基づき、第5膨張弁ex5の開
度α5を変化させずに第4膨張弁ex4の開度α4を調
節して、第5膨張弁ex5と第4膨張弁ex4との合計
開度(α4+α5)を調整することにより、圧縮機吸入
冷媒の過熱度shを設定値sh’に調整する(第1実施
例における(#7)と同じ)。
(# 7 ') Pressure at the inlet of the compressor C
Based on the information detected by the temperature sensor, the opening α5 of the fourth expansion valve ex4 is adjusted without changing the opening α5 of the fifth expansion valve ex5, and the sum of the fifth expansion valve ex5 and the fourth expansion valve ex4 is adjusted. By adjusting the opening degree (α4 + α5), the superheat degree sh of the compressor suction refrigerant is adjusted to the set value sh ′ (the same as (# 7) in the first embodiment).

【0093】(#8’)インテリアゾーン側のゾーン温
センサ8aの検出情報に基づき、それぞれ流量調整弁と
しての第1膨張弁ex1と第3膨張弁ex3とを背反的
に開度調節することにより、第1空調ユニット1aにお
ける下流側熱交換器4hの加熱出力haを調整して、イ
ンテリアゾーンIのゾーン温度traをインテリアゾー
ン側の目標ゾーン温度tra’に調整する。
(# 8 ') Based on the information detected by the zone temperature sensor 8a on the interior zone side, the opening degrees of the first expansion valve ex1 and the third expansion valve ex3, which are flow rate adjusting valves, are adjusted in a contradictory manner. The heating output ha of the downstream heat exchanger 4h in the first air conditioning unit 1a is adjusted to adjust the zone temperature tra of the interior zone I to the target zone temperature tra 'on the interior zone side.

【0094】尚、この背反的開度調節では、前記の(#
3’)と同様、第1膨張弁ex1の冷媒流量と第3膨張
弁ex3の冷媒流量との和(すなわち、第4膨張弁ex
4と第5膨張弁ex5との合計冷媒流量)を変化させず
に、それら流量比を変更調整するべく、第1膨張弁ex
1の開度α1と第3膨張弁ex3の開度α3との合計開
度(α1+α3)を所定の一定値に保ちながら、それら
の開度比(換言すれば、一定合計開度における第1膨張
弁ex1の開度割合α1/(α1+α3))を変更する
調節形態を採用する。
Incidentally, in this antithetic opening adjustment, the above (#
3 '), the sum of the refrigerant flow rate of the first expansion valve ex1 and the refrigerant flow rate of the third expansion valve ex3 (that is, the fourth expansion valve ex3).
4 and the fifth expansion valve ex5), the first expansion valve ex5 is used to change and adjust the flow ratio without changing the total refrigerant flow rate.
While maintaining the total opening degree (α1 + α3) of the opening degree α1 of 1 and the opening degree α3 of the third expansion valve ex3 at a predetermined constant value, the opening ratio (in other words, the first expansion at the constant total opening degree). An adjustment mode in which the opening ratio α1 / (α1 + α3) of the valve ex1 is changed is adopted.

【0095】(#9’)ペリメータゾーン側のゾーン温
センサ8bによる検出情報に基づき、第5膨張弁ex5
と第4膨張弁ex4との合計開度(α4+α5)を(#
7’)での合計開度に保った状態で第4膨張弁exと第
5膨張弁ex5との開度比(換言すれば、一定合計開度
における第4膨張弁ex4の開度割合α4/(α4+α
5))を調節して、第2空調ユニット1bにおける上流
側熱交換器6cの冷却出力cbを調整することにより、
ペリメータゾーンPのゾーン温度trbをペリメータゾ
ーン側の目標ゾーン温度trb’に調整する。
(# 9 ') The fifth expansion valve ex5 is based on the information detected by the zone temperature sensor 8b on the perimeter zone side.
And the fourth opening of the fourth expansion valve ex4 (α4 + α5) (#
7 ′), the opening ratio of the fourth expansion valve ex5 and the fifth expansion valve ex5 (in other words, the opening ratio α4 / of the fourth expansion valve ex4 at a constant total opening). (Α4 + α
5)) by adjusting the cooling output cb of the upstream heat exchanger 6c in the second air conditioning unit 1b,
The zone temperature trb of the perimeter zone P is adjusted to the target zone temperature trb ′ on the perimeter zone side.

【0096】(#10’)第2空調ユニット1bにおけ
る上流側熱交換器6cのコイル表面温度検出に基づき、
その検出コイル表面温度tpb(すなわち、装置露点温
度に相当)が、除湿効率を考慮して決定された設定値t
pb’にまで低下したか否かを判定するとともに、圧縮
機出力fcが最大出力fcmaxに至ったか否かを判定
し、それらの判定結果として、検出コイル表面温度tp
bが設定値tpb’以下となっているか、あるいは、圧
縮機出力fcが最大出力fcmaxに至っているときに
は、図8に示す基本制御フローにおける(#11)及び
(#12)での湿度低下完了の判定に移り、又、検出コ
イル表面温度tpbが設定値tpb’より高くて圧縮機
出力fcが未だ最大出力fcmax未満のときには(#
6’)に戻る(第1実施例における(#10)と同
じ)。
(# 10 ') Based on the coil surface temperature detection of the upstream heat exchanger 6c in the second air conditioning unit 1b,
The detection coil surface temperature tpb (that is, equivalent to the device dew point temperature) is a set value t determined in consideration of dehumidification efficiency.
It is determined whether or not the compressor output fc has reached the maximum output fcmax, and the determination coil surface temperature tp is obtained as the determination result.
When b is equal to or less than the set value tpb 'or the compressor output fc reaches the maximum output fcmax, the humidity reduction completion in (# 11) and (# 12) in the basic control flow shown in FIG. 8 is completed. If the detection coil surface temperature tpb is higher than the set value tpb ′ and the compressor output fc is still less than the maximum output fcmax (#
6 ') (the same as (# 10) in the first embodiment).

【0097】ペリメータゾーンPの相対湿度rbを目標
相対湿度rb’まで低下させた後の(調温・調湿運転)
については、暖房除湿パターン(図3)において図18
に示すように、下記#13’〜#16’のサイクルを繰
り返す。
After lowering the relative humidity rb of the perimeter zone P to the target relative humidity rb '(temperature control / humidity control operation)
18 in the heating dehumidification pattern (FIG. 3).
As shown in, the following cycles # 13 'to # 16' are repeated.

【0098】(#13’)圧縮機Cの入口における圧力
・温度センサの検出情報に基づき、第4膨張弁ex4の
開度α4、及び、第5膨張弁ex5の開度α5を、それ
らの開度比を保った状態で増減調整して、圧縮機吸入冷
媒の過熱度shを設定値sh’に調整する。
(# 13 ') Based on the detection information of the pressure / temperature sensor at the inlet of the compressor C, the opening α4 of the fourth expansion valve ex4 and the opening α5 of the fifth expansion valve ex5 are opened. The superheat degree sh of the compressor suction refrigerant is adjusted to a set value sh'by increasing or decreasing while maintaining the temperature ratio.

【0099】(#14’)前記の(#8’)と同じく、
インテリアゾーン側のゾーン温センサ8aの検出情報に
基づき、それぞれ流量調整弁としての第1膨張弁ex1
と第3膨張弁ex3との合計開度(α1+α3)を所定
の一定値に保ちながら、それら第1,第3膨張弁ex
1,ex3の開度比(換言すれば、一定合計開度におけ
る第1膨張弁ex1の開度割合α1/(α1+α3))
を調節することにより、第1空調ユニット1aにおける
下流側熱交換器4hの加熱出力haを調整して、インテ
リアゾーンIのゾーン温度traをインテリアゾーン側
の目標ゾーン温度tra’に調整する。
(# 14 ') Similar to the above (# 8'),
Based on the detection information of the zone temperature sensor 8a on the interior zone side, the first expansion valve ex1 as a flow rate adjusting valve, respectively.
While maintaining the total opening (α1 + α3) of the first and third expansion valves ex3 at a predetermined constant value.
1, ex3 opening ratio (in other words, opening ratio α1 / (α1 + α3) of the first expansion valve ex1 at a constant total opening)
Is adjusted to adjust the heating output ha of the downstream heat exchanger 4h in the first air conditioning unit 1a to adjust the zone temperature tra of the interior zone I to the target zone temperature tra 'on the interior zone side.

【0100】(#15’)前記の(#9’)と同じく、
ペリメータゾーン側のゾーン温センサ8bによる検出情
報に基づき、第5膨張弁ex5と第4膨張弁ex4との
合計開度(α4+α5)を(#13’)での合計開度に
保った状態で第4膨張弁exと第5膨張弁ex5との開
度比(換言すれば、一定合計開度における第4膨張弁e
x4の開度割合α4/(α4+α5))を調節して、第
2空調ユニット1bにおける上流側熱交換器6cの冷却
出力cbを調整することにより、ペリメータゾーンPの
ゾーン温度trbをペリメータゾーン側の目標ゾーン温
度trb’に調整する。
(# 15 ') Similar to the above (# 9'),
Based on the detection information by the zone temperature sensor 8b on the perimeter zone side, the total opening (α4 + α5) of the fifth expansion valve ex5 and the fourth expansion valve ex4 is maintained at the total opening of (# 13 ′). Opening ratio of the fourth expansion valve ex and the fifth expansion valve ex5 (in other words, the fourth expansion valve e at a constant total opening)
By adjusting the opening ratio α4 / (α4 + α5) of x4 to adjust the cooling output cb of the upstream heat exchanger 6c in the second air conditioning unit 1b, the zone temperature trb of the perimeter zone P is adjusted to the perimeter zone side. Adjust to the target zone temperature trb '.

【0101】(#16’)ペリメータゾーンPの湿度セ
ンサ17bによる相対湿度検出に基づき、検出相対湿度
rbと目標相対湿度rb’との偏差Δrbに応じ圧縮機
出力fcを増減調整することにより、ペリメータゾーン
Pの相対湿度rbを目標相対湿度rb’に調整・維持す
る。
(# 16 ') Based on the relative humidity detected by the humidity sensor 17b in the perimeter zone P, the compressor output fc is increased or decreased in accordance with the deviation Δrb between the detected relative humidity rb and the target relative humidity rb'. The relative humidity rb of the zone P is adjusted and maintained at the target relative humidity rb '.

【0102】そして、上記の〔暖房除湿モード〕におい
て目標相対湿度rb’は、第1実施例と同様に、制御器
15における湿度設定変更部18が図8に示す基本制御
フローにおける(#11)において、外気温度toと目
標相対湿度rb’との関係を与える所定の関数式rb’
=F(to)に基づき、外気温センサ19により検出さ
れる外気温度toに応じて目標相対湿度rb’を自動設
定するようにしてあり、又、その関数式rb’=F(t
o)にも、第1実施例と同様に、図13に実線のグラフ
で示す如く、各外気温度toについて、外気温度tox
における飽和空気の絶対湿度と等しい絶対湿度で温度が
ペリメータゾーンPの目標ゾーン温度trb’にある空
気の相対湿度rxよりも所定値Δrだけ低湿側の相対湿
度値(rx−Δr)を目標相対湿度rb’として与える
式(すなわち、各外気温度toに対して、露点温度が外
気温度toxよりも所定値Δtだけ低温側となる空気の
温度trb’における相対湿度値を目標相対湿度rb’
として与える式)を選定してある。
Then, in the above [heating / dehumidifying mode], the target relative humidity rb 'is the same as in the first embodiment, in the basic control flow shown in FIG. 8 by the humidity setting changing unit 18 in the controller 15 (# 11). , A predetermined functional expression rb ′ that gives the relationship between the outside air temperature to and the target relative humidity rb ′
= F (to), the target relative humidity rb 'is automatically set according to the outside air temperature to detected by the outside air temperature sensor 19, and its functional expression rb' = F (t
Similarly to the first embodiment, the outside air temperature tox for each outside air temperature to, as shown by the solid line graph in FIG.
The relative humidity value (rx−Δr) lower than the relative humidity rx of the air whose temperature is at the target zone temperature trb ′ of the perimeter zone P by the predetermined humidity Δr at the absolute humidity equal to the absolute humidity of the saturated air at the target relative humidity. Expression given as rb ′ (that is, for each outside air temperature to, the relative humidity value at the temperature trb ′ of the air whose dew point temperature is lower than the outside air temperature tox by the predetermined value Δt, is the target relative humidity rb ′.
The formula given as is selected.

【0103】〔別実施例〕次に別実施例を列記する。[Other Embodiments] Next, other embodiments will be listed.

【0104】前述の各実施例においては、目標湿度状態
を相対湿度値(目標相対湿度rb’)で与えたが、これ
に代えて、目標湿度状態を絶対湿度値や水蒸気分圧、あ
るいは、露点温度で与える等、目標湿度状態の指定形態
には種々の形態を採用できる。
In each of the above-described embodiments, the target humidity state is given by the relative humidity value (target relative humidity rb '). Instead, however, the target humidity state is expressed by the absolute humidity value, the water vapor partial pressure, or the dew point. Various modes can be adopted as the mode for designating the target humidity condition, such as the temperature.

【0105】それぞれ種々の除湿方式を採用できるイン
テリアゾーン用の除湿手段、及び、ペリメータゾーン用
除湿手段の装備において、ペリメータゾーン用除湿手段
に対する除湿用熱源の供給をインテリアゾーン用除湿手
段に対する除湿用熱源の供給よりも優先する分配制御を
実施するにあたり、ペリメータゾーン用除湿手段に対し
目標湿度状態の達成に必要な除湿用熱源を分配供給する
に並行して、余剰の除湿用熱源をインテリアゾーン用除
湿手段に分配供給し、これにより、暖房状態においてイ
ンテリアゾーンIにもある程度の除湿を直接的に施すよ
うにしてもよい。
In the equipment of the dehumidifying means for the interior zone and the dehumidifying means for the perimeter zone, each of which can employ various dehumidification methods, the dehumidifying means for the dehumidifying means for the perimeter zone is supplied with the dehumidifying heat source for the dehumidifying means for the interior zone. When performing distribution control that has priority over the supply of heat, the excess heat source for dehumidification is supplied to the dehumidifying means for the perimeter zone in parallel with the heat source for dehumidification necessary for achieving the target humidity condition. Alternatively, the interior zone I may be directly dehumidified to some extent in a heated state.

【0106】又、インテリアゾーンIに対する除湿手段
を省略する構成を採用してもよい。
Further, a structure in which the dehumidifying means for the interior zone I is omitted may be adopted.

【0107】前述の実施例の如く複数のゾーンを空調対
象とする空調設備に限らず、本発明は、ペリメータゾー
ン専用等の単一の対象域を空調対象とする空調設備に適
用してもよい。
The present invention is not limited to the air-conditioning equipment for which a plurality of zones are subject to air-conditioning as in the above-mentioned embodiment, but the present invention may be applied to the air-conditioning equipment for subjecting a single target area such as a dedicated perimeter zone to air conditioning. .

【0108】尚、特許請求の範囲の項に図面との対照を
便利にするため符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【0109】[0109]

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例における空調設備の全体図FIG. 1 is an overall view of an air conditioning facility according to a first embodiment.

【図2】暖房・暖房パターンの冷媒経路を示す回路図FIG. 2 is a circuit diagram showing a refrigerant path of a heating / heating pattern.

【図3】暖房除湿パターンの冷媒経路を示す回路図FIG. 3 is a circuit diagram showing a refrigerant path of a heating dehumidification pattern.

【図4】冷房・暖房パターンの冷媒経路を示す回路図FIG. 4 is a circuit diagram showing a refrigerant path of a cooling / heating pattern.

【図5】暖房・冷房パターンの冷媒経路を示す回路図FIG. 5 is a circuit diagram showing a refrigerant path of a heating / cooling pattern.

【図6】冷房・冷房パターンの冷媒経路を示す回路図FIG. 6 is a circuit diagram showing a cooling medium path of a cooling / cooling pattern.

【図7】冷房除湿パターンの冷媒経路を示す回路図FIG. 7 is a circuit diagram showing a refrigerant path of a cooling / dehumidifying pattern.

【図8】暖房除湿モードの基本制御フローを示すフロー
チャート
FIG. 8 is a flowchart showing a basic control flow of a heating dehumidification mode.

【図9】第1実施例における暖房立ち上げ運転のフロー
チャート
FIG. 9 is a flowchart of a heating start-up operation according to the first embodiment.

【図10】第1実施例における暖房調温運転のフローチ
ャート
FIG. 10 is a flowchart of a heating temperature control operation in the first embodiment.

【図11】第1実施例における除湿調温運転のフローチ
ャート
FIG. 11 is a flowchart of a dehumidifying temperature control operation in the first embodiment.

【図12】第1実施例における調温・調湿運転のフロー
チャート
FIG. 12 is a flow chart of temperature control / humidity control operation in the first embodiment.

【図13】目標相対湿度と外気温度との関係を示すグラ
FIG. 13 is a graph showing the relationship between target relative humidity and outside air temperature.

【図14】第2実施例における空調設備の全体図FIG. 14 is an overall view of an air conditioning facility in the second embodiment.

【図15】第2実施例における暖房立上げ運転のフロー
チャート
FIG. 15 is a flowchart of a heating start-up operation according to the second embodiment.

【図16】第2実施例における暖房調温運転のフローチ
ャート
FIG. 16 is a flowchart of a heating temperature control operation in the second embodiment.

【図17】第2実施例における除湿調温運転のフローチ
ャート
FIG. 17 is a flowchart of the dehumidifying and temperature-controlling operation in the second embodiment.

【図18】第2実施例における調温・調湿運転のフロー
チャート
FIG. 18 is a flowchart of temperature control / humidity control operation in the second embodiment.

【符号の説明】[Explanation of symbols]

4c インテリアゾーン用除湿手段 6h 暖房手段 6c 除湿手段(ペリメータゾーン用除湿手段) 15 除湿制御手段(分配制御手段) 18 設定変更手段 19 外気温検出手段 C 熱源手段 P 対象域(ペリメータゾーン) rb’ 目標湿度状態 to 外気温度 4c Dehumidification means for interior zone 6h Heating means 6c Dehumidification means (dehumidification means for perimeter zone) 15 Dehumidification control means (distribution control means) 18 Setting change means 19 Outside air temperature detection means C Heat source means P Target area (perimeter zone) rb 'Target Humidity condition to outside temperature

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 対象域(P)を暖房する暖房手段(6
h)、前記対象域(P)を除湿する除湿手段(6c)、
及び、前記対象域(P)の空気状態検出に基づき、前記
暖房手段(6h)による暖房状態において前記対象域
(P)の湿度状態を目標湿度状態(rb’)にするよう
に、前記除湿手段(6c)を出力調整する除湿制御手段
(15)を設けた暖房除湿空調装置であって、 外気温度(to)を検出する外気温検出手段(19)、
及び、この検出外気温度(to)に基づき、前記の目標
湿度状態(rb’)における域内絶対湿度が検出外気温
度(to)における飽和空気の絶対湿度以下となる設定
状態を保つように、前記の目標湿度状態(rb’)を検
出外気温度(to)が低下するほど低湿側へ自動的に設
定変更する設定変更手段(18)を設けた暖房除湿空調
装置。
1. A heating means (6) for heating a target area (P).
h), dehumidifying means (6c) for dehumidifying the target area (P),
And the dehumidifying means for changing the humidity state of the target area (P) to the target humidity state (rb ′) in the heating state by the heating means (6h) based on the detection of the air state of the target area (P). A heating and dehumidifying air conditioner provided with a dehumidifying control means (15) for adjusting the output of (6c), the outside air temperature detecting means (19) for detecting an outside air temperature (to),
Based on this detected outside air temperature (to), the above-mentioned target humidity state (rb ′) is maintained so that the absolute humidity in the region is equal to or less than the absolute humidity of saturated air at the detected outside air temperature (to). A heating / dehumidifying air conditioner provided with setting changing means (18) for automatically changing the target humidity state (rb ') to a low humidity side as the detected outside air temperature (to) decreases.
【請求項2】 ペリメータゾーン(P)を前記の対象域
として前記除湿手段(6c)をペリメータゾーン用の除
湿手段とし、このペリメータゾーン用除湿手段(6c)
とインテリアゾーン用除湿手段(4c)とに対し除湿用
熱源を分配供給する熱源手段(C)を設け、暖房状態に
おいて前記ペリメータゾーン用除湿手段(6c)に対す
る除湿用熱源の供給を前記インテリアゾーン用除湿手段
(4c)に対する除湿用熱源の供給よりも優先する分配
制御手段(15)を設けた請求項1記載の暖房除湿空調
装置。
2. A dehumidifying means (6c) for the perimeter zone, wherein the dehumidifying means (6c) is the dehumidifying means for the perimeter zone, and the dehumidifying means (6c) is for the perimeter zone.
A heat source means (C) for supplying a dehumidifying heat source to the dehumidifying means (4c) for the interior zone and the dehumidifying means (4c) for the interior zone are provided, and the heat source for dehumidification is supplied to the dehumidifying means (6c) for the perimeter zone in the heating state. The heating and dehumidifying air conditioner according to claim 1, further comprising a distribution control means (15) which has priority over the supply of the dehumidifying heat source to the dehumidifying means (4c).
JP4196716A 1992-07-23 1992-07-23 Heating and dehumidifying air conditioning apparatus Pending JPH0642793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4196716A JPH0642793A (en) 1992-07-23 1992-07-23 Heating and dehumidifying air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4196716A JPH0642793A (en) 1992-07-23 1992-07-23 Heating and dehumidifying air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH0642793A true JPH0642793A (en) 1994-02-18

Family

ID=16362410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4196716A Pending JPH0642793A (en) 1992-07-23 1992-07-23 Heating and dehumidifying air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH0642793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930236A (en) * 1995-07-17 1997-02-04 Denso Corp Air conditioner for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930236A (en) * 1995-07-17 1997-02-04 Denso Corp Air conditioner for vehicle

Similar Documents

Publication Publication Date Title
CN102914030B (en) Thermostat dehumidification control method of air conditioner
JP4555097B2 (en) Clean room air conditioner
US5752389A (en) Cooling and dehumidifying system using refrigeration reheat with leaving air temperature control
WO2013099913A1 (en) Air-conditioning system that adjusts temperature and humidity
CN108800375B (en) Air heat source heat pump type air conditioner
JP6835141B2 (en) Air conditioning system
JP4555671B2 (en) Air conditioner
WO2020261982A1 (en) Air conditioning system
JP2007139212A (en) Air-conditioning control system
JP2003294274A (en) Constant temperature and humidity air-conditioning system
JPH1151445A (en) Radiant air conditioning system
JP4376285B2 (en) Mixed air conditioner
JP5217701B2 (en) Air conditioning system
JP5673524B2 (en) Air conditioning system that adjusts temperature and humidity
JPH06337150A (en) Method for controlling air-conditioning device
JPH0642793A (en) Heating and dehumidifying air conditioning apparatus
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2020041796A (en) Air conditioner with dehumidifying function and control method thereof
JPH0763392A (en) Controller for air conditioner
JP2898866B2 (en) Double coil heat pump package air conditioner
JPH05322370A (en) Air conditioner
CN114322087B (en) Indoor unit, control method and device of air conditioner, air conditioner and storage medium
CN220379894U (en) Full-working-condition energy-saving direct expansion type constant temperature and humidity air conditioning unit
JP2703149B2 (en) Reheat dehumidifying air conditioner
JP2014137207A (en) Air conditioning system